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Preface

This book is the new edition of the original two-volume book, published in
1994, and of its corrected second printing published in 1998. The first volume
dealt with linearized problems, while the second one was dedicated to fully
nonlinear problems.

The current edition is new in many significant ways.
In the first place, the two volumes have been merged into one. This seems

to me a more appropriate choice that on the one hand, provides a natural logi-
cal unity to the subject, and on the other hand, furnishes a better presentation
of the topics. In fact, nonlinear problems cannot be addressed properly with-
out a careful analysis of their suitable linear counterparts, and, conversely,
linearized problems can find full justification only as approximations of the
complete nonlinear model.

In the second place, I have added two entirely new chapters (Chapter VIII
and Chapter XI). The motivation for this addition comes from the increasing
effort that mathematicians, especially over the past decade, have devoted
to problems describing the interaction of a viscous liquid with rigid bodies.
For this reason, I dedicated the above chapters to a systematic and updated
analysis of a fundamental question of liquid–solid interaction, namely, the
steady flow of a viscous liquid around a body that is allowed to translate and
to rotate. In the years 2003 through 2010, over fifty relevant mathematical
papers, directly or indirectly dedicated to this subject, have been published.
Therefore, I deem it very useful for the interested researcher to have a place
where all significant basic results are collected and treated in an organized
and detailed fashion.

Furthermore, several important new contributions to the field that were
published after 1998 have led me to update numerous sections extensively, as
well as to add other new ones, not to mention the corresponding substantial
increase in the number of bibliographic items. Among the above contribu-
tions, I would like to point out especially those dedicated to the regularity
of solutions to the nonlinear problem in arbitrary dimension, as well as those
concerning the asymptotic behavior in two-dimensional exterior domains.



iv

Another new feature of this edition is that most of the proofs given in
the previous editions, not only for the main results but also for those on the
periphery, have been clarified either through a simplification or else through
an extended treatment. For completeness, I also have included the proofs of
several basic theorems that were not provided in the previous editions.

Finally, again for the reader’s sake, I have included an introductory section
collecting the basic properties of Banach spaces and related results that are
very often referenced in the text.

Last, but not least, I take this opportunity to convey my warmest thanks
to all my colleagues from whose collaboration I have benefited enormously in
writing this new edition, and in particular to Josef Bemelmans, Paul Deuring,
Reinhard Farwig, Mads Kyed, Anne Robertson (who is not “just” a collabo-
rator), Ana Silvestre, Christian Simader, and Hermann Sohr.

In conclusion, I hope that the interested scientist will enjoy this book and
derive great benefit from reading it just as I did while writing it.

Pittsburgh, Beechwood Blvd

April 2011 Giovanni Paolo Galdi
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I

Steady-State Solutions of the Navier–Stokes

Equations: Statement of the Problem and
Open Questions

O muse o alto ingegno or m’aiutate.
O mente che scrivesti ciò ch’io vidi
qui si parrà la tua nobilitate.

DANTE, Inferno II, vv. 7-9

Introduction

Let us consider a viscous fluid of constant density (in short: a viscous liquid)
L moving within a fixed region Ω of three-dimensional space R3. We shall
assume that the generic motion of L, with respect to an inertial frame of
reference, is described by the following system of equations:

ρ

(
∂v

∂t
+ v · ∇v

)
= µ∆v −∇π − ρf (x, t) ,

∇ · v = 0 ,

(I.0.1)

where t is the time, x = (x1, x2, x3) is a point of Ω, ρ is the constant density
of L, v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and π = π(x, t) are the Eulerian
velocity and pressure fields, respectively, and the positive constant µ is the
shear viscosity coefficient. Moreover,

v · ∇v ≡
3∑

i=1

vi
∂v

∂xi

is the convective term, and

∆ ≡
3∑

i=1

∂2

∂x2
i



2 I Steady-State Solutions: Formulation of the Problems and Open Questions

is the Laplace operator, while

∇ ≡
(

∂

∂x1
,
∂

∂x2
,
∂

∂x3

)

is the gradient operator, and

∇ · v ≡
3∑

1=1

∂vi

∂xi

is the divergence of v. Finally, −f is the external force per unit mass (body
force) acting on L.

Equation (I.0.1)1 expresses the balance of linear momentum (Newton’s
law), while (I.0.1)2 ensures that the velocity field is solenoidal and represents
the equation of conservation of mass (incompressibility condition). Notice that
in contrast to the compressible scheme, here the pressure π is not a thermo-
dynamic variable; rather it represents the “reaction force” that must act on
L in order to leave any material volume unchanged.

System (I.0.1) was proposed for the first time by the French engineer
C.L.M.H. Navier in 1822, cf. Navier (1827, p. 414), on the basis of a suitable
molecular model.1 However, it was only later, by the efforts of Poisson (1831),
de Saint Venant (1843), and mainly by the clarifying work of Stokes (1845),
that equations (I.0.1) found a completely satisfactory justification on the ba-
sis of the continuum mechanics approach.2 Nowadays, equations (I.0.1) are
usually referred to as Navier–Stokes equations.3 In the language of modern
rational mechanics we may say that the underlying constitutive assumption
on the liquid L that leads to (I.0.1) is that the dynamical part of the Cauchy
stress tensor T is linearly related to the stretching tensor D, namely,

T = −πI + 2µD, (I.0.2)

1 In this regard, we wish to quote the following comment of Truesdell (1953, p. 455):

“Such models were not new, having occurred in philosophical or qualitative
speculations for millennia past. Navier’s magnificent achievement was to put
these notions into sufficiently concrete form that he could derive equations
of motion for them.”

2 A detailed account of the history of the Navier–Stokes equations can be found in
the beautiful paper of Darrigol (2002).

3 Some authors, showing questionable semantic taste, often speak of “incompress-
ible” and “compressible” Navier-Stokes equations. The latter definition is given
to the generalization of (I.0.1), that takes into account the variation of the density
in space and time. Besides the awkward nomenclature, it should be observed, for
the sake of precision, that C.L.M.H. Navier never obtained such a generalization
and that it was derived for the first time by S.D.Poisson in 1829 (Poisson 1831),
and later clarified on a sound and clear phenomenological basis by G.G. Stokes
(Stokes 1845).
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where I is the identity matrix and D = {Dij} with

Dij =
1

2

(
∂vi

∂xj
+
∂vj

∂xi

)
. (I.0.3)

Liquids satisfying the constitutive equation (I.0.2) are also called Newtonian
liquids.4

In several mathematical questions related to the unique solvability of prob-
lem (I.0.1), two-dimensional solutions describing the plane motions of L de-
serve separate attention. For these solutions the fields v and p depend only on
x1, x2 (say), and t, and, moreover, v3 ≡ 0. Consequently, the relevant (spatial)
region of flow Ω becomes a subset of the plane R2.

Till a few decades ago (early 1930s), there was unanimous opinion that the
Navier–Stokes equations were useful (in agreement with the experiments, that
is) only at “low”-velocity regimes. It is also thanks to the efforts of outstand-
ing mathematicians such as Jean Leray, Eberhard Hopf, Olga Ladyzhenskaya,
and Robert Finn that they are nowadays regarded as the universal foundation
of fluid mechanics, no matter how complicated and unpredictable the behav-
ior of its solutions may be. In fact, when a “simply” formulated problem does
not seem to have a solution, one never knows whether it is because of lack of
sufficient mathematical knowledge or because of some hidden physical phe-
nomenon. In any case, there is a firm belief in the mathematical community
that these equations hide many mysteries and secrets that are still far beyond
our current reach.

When dealing with equations (I.0.1), the primary goal is to study such
significant and basic properties of solutions v, π as existence, uniqueness, and
regularity, and asymptotic behavior in space (when Ω is unbounded) and in
time.5 Of course, these properties may be rather different according to whether

4 Roughly speaking, the relation (I.0.2) states that the shear stress in a viscous liq-
uid produces a gradient of velocity that is proportional to the stress. In Newton’s
words: “Resistentiam, quæ oritur ex defectu lubricitatis partium Fluidi, cæteris
paribus, proportionalem esse velocitati, qua partes Fluidi separantur ab invicem”
(“The resistance, arising from the want of lubricity in the parts of a fluid is, cæ-
teris paribus, proportional to the velocity with which the parts of the fluid are
separated from each other”); see Newton (1686, Book 2, Sect. IX, p. 373).

5 We wish to observe that with a view to solving the above-mentioned questions,
the Navier–Stokes equations can be considered the mathematical prototype of
more complicated models that can be used to take into account other than
purely mechanical phenomena of the liquid, such as thermal conduction in the
Boussinesq approximation or electrical conduction in the nonrelativistic (incom-
pressible) magnetohydrodynamic scheme. In fact, for these more general systems,
one can prove results that are qualitatively analogous to those achieved for the
simpler system (I.0.1) and that present for their proof approximately the same
degree of difficulty one encounters for (I.0.1). However, the situation becomes
completely different, and, in principle, more complicated, if the liquid is modeled
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we are interested in steady or unsteady flows of L, that is, according to whether
the velocity and pressure fields depend or do not depend explicitly on time.

Throughout this book we shall consider steady motions, for which system
(I.0.1), with ∂v/∂t ≡ 0 and f = f(x), takes the form

ν∆v = v · ∇v + ∇p+ f ,

∇ · v = 0 ,
(I.0.4)

where p = π/ρ, and ν = µ/ρ is the kinematic viscosity coefficient. We shall
continue to call p “the pressure” (or “the pressure field”) of the liquid L.

In order to perform our study, however, we need to add to (I.0.4) appropri-
ate supplementary conditions that may depend on the physics of the problem
we want to address, which, in turn, can be broadly characterized in terms of
the type of region Ω where the flow occurs. To this end, we shall distinguish
the following cases:

(i) Ω is bounded;
(ii) Ω is the complement of a bounded region (in short: Ω is an exterior

region).

In both circumstances Ω has a bounded boundary. However, it is also of
great relevance to study flow in regions with an unbounded boundary, such as
infinite tubes or pipes. Therefore, we shall also consider the following situation:

(iii) Ω has an unbounded boundary.

In all three cases (i), (ii), and (iii), the associated mathematical problems
present several difficulties and basic open questions. The aim of the following
sections is, for each case, to formulate these problems, to outline the related
difficulties, and to point out those fundamental questions that still have no
answer.

I.1 Flow in Bounded Regions

Usually, for flow in bounded regions, the driving mechanism is due either to
the movement of part of the boundary, as in the flow between two rotating,
concentric spheres, or to the injection and removal of liquid through the per-
meable part of the boundary, as in the case of a flow in a region with a finite
number of “sources” and “sinks.” In such situations, we append to (I.0.4) the
following condition:

v(y) = v∗(y), y ∈ ∂Ω, (I.1.1)

by a constitutive equation different from (I.0.2). These latter liquids are called
non-Newtonian. We refer the reader to the Notes at the end of this chapter, for
the basic mathematical literature related to certain relevant non-Newtonian liquid
models.
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that describes the situation in which the velocity field is prescribed at the
bounding walls ∂Ω of the region Ω.6

It is worth noticing that in particular, condition (I.1.1), often referred
to as a no-slip boundary condition, requires that the particles of the liquid
“adhere” to the boundary ∂Ω in the case that ∂Ω is motionless, rigid, and
impermeable (v∗ ≡ 0). This fact appears to be verified within a very good
degree of experimental accuracy.7

Because of the solenoidality condition (I.0.4)2, and in view of Gauss the-
orem, it turns out that the field v∗ must satisfy the compatibility condition:

∫

∂Ω

v∗ · n = 0 (I.1.2)

with n unit outer normal to ∂Ω. From the physical viewpoint, relation (I.1.2)
requires that the total mass flux through the boundary must vanish. If ∂Ω is
constituted by the union ofm ≥ 1 closed non-intersecting surfaces Γ1, . . . , Γm,
condition (I.1.2) becomes

m∑

i=1

∫

Γi

v∗ · ni ≡
m∑

i=1

Φi = 0 (I.1.3)

with ni unit outer normal to Γi.
The problem of proving or disproving existence of solutions to (I.0.4),

(I.1.1), and (I.1.2) under no restrictions on v∗ (other than (I.1.2) and, of
course, certain regularity requirements) and on the number m of surfaces Γi

is among the most outstanding and still open questions, not only in the steady-
state case but in the whole mathematical theory of Navier–Stokes equations.

6 Instead of (I.1.1), one may consider different boundary conditions. A popular
alternative is the so-called stress-free (or pure slip) boundary condition, which
consists in prescribing the normal component of the velocity and the tangential
component of the stress vector at the boundary. This type of condition is often
used in stability problems, since it considerably simplifies the calculations (Chan-
drasekhar 1981). Throughout this book we shall always assume condition (I.1.1)
at the bounding walls. We refer the reader to the literature quoted in the Notes
at the end of this chapter for other work related to the Navier-Stokes equations
with boundary conditions different from (I.1.1).

7 The adherence condition is quite reasonable, at least for liquids filling rigid ves-
sels under ordinary conditions (Perucca 1963, Vol. I, p. 451). However, such a
condition need not be satisfied in different situations. For instance, assuming ad-
herence at the contact line Γ of a free surface of a liquid with a rigid plane wall
steadily moving along itself would lead to an infinite dissipation rate of the liquid
near Γ (Pukhnacev & Solonnikov 1982, pp. 961–962). Furthermore, the adher-
ence condition is not expected to hold for fluids other than liquids. In particular,
experimental evidence shows that in high-altitude aerodynamics an adherence
condition is no longer true (Serrin 1959b, §64); see also Bateman, Dryden, &
Murnaghan (1932; §§1.2, 1.7, 3.2), and Truesdell (1952, §79).
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Actually, so far, one can prove its solvability only when the fluxes Φi through
Γi satisfy, in addition to (I.1.3), a condition of the type

m∑

i=1

|Φi| < cν, (I.1.4)

where c depends only onΩ. Notice that in view of (I.1.2) and (I.1.3), inequality
(I.1.4) is automatically satisfied if m = 1; otherwise, it becomes an extra
requirement.

It is not clear whether the above restriction is really needed. This is a typ-
ical example, which we mentioned previously, where we do not know whether
the fact that we are unable to give an answer is due to a lack of a sufficient
mathematical knowledge or to a “hidden” physical phenomenon that we are
not able to see. The mathematician often experiences similar situations while
studying the Navier–Stokes equations, and probably, it is just for this reason
that these equations are so particularly fascinating.

Referring the reader to Chapter IX for a detailed analysis of the question,
here we may wish to briefly explain why it may be difficult to avoid restriction
(I.1.4). The resolution of (I.0.4), (I.1.1), and (I.1.2) relies, usually, on some
approximating procedure whose convergence requires a uniform a priori bound
on the approximating solutions. If v∗ ≡ 0, following the ideas of Leray (1933,
1936), this bound can be simply obtained by the following formal computation.
We dot-multiply through both sides of (I.0.4)1 by v and use the known identity

∇ · (ϕw) = w · ∇ϕ+ ϕ∇ ·w

together with (I.0.4)2 to obtain8

−ν∇v : ∇v+ ∇ ·
(
ν

2
∇v2 − p v − 1

2
v2 v

)
= f · v.

Integrating this expression over Ω and taking into account v = v∗ ≡ 0 at ∂Ω,

8 For A = {Aij} and B = {Bij} second-order tensors in the n-dimensional Eu-
clidean space R

n we set, as is customary,

A : B ≡
nX

i,j=1

AijBij , |A| ≡
 

nX

i,j=1

AijAij

!1/2

.

Moreover, if a is a vector of R
n, by the symbols

a ·A and A · a

we mean vectors with components

nX

i=1

aiAij and

nX

i=1

ajAij ,

respectively.
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we deduce9

ν

∫

Ω

∇v : ∇v = −
∫

Ω

f · v . (I.1.5)

By the well-known inequality (see (II.5.1)10)

∫

Ω

v2 ≤ γ

∫

Ω

∇v : ∇v, (I.1.6)

where γ depends on Ω, from (I.1.5) and the Schwarz inequality we obtain
∫

Ω

∇v : ∇v ≤ γ

ν

∫

Ω

f2 , (I.1.7)

which (formally) furnishes the a priori bound for v when v∗ ≡ 0. When v∗ 6≡ 0,
again following the ideas of Leray (1933) and Hopf (1941, 1957), one writes 11

v = u + V , (I.1.8)

where V is a (sufficiently smooth) solenoidal vector field in Ω that equals v∗
at ∂Ω. Placing (I.1.8) into (I.0.4)1 and proceeding as before, we arrive at the
following identity:

ν

∫

Ω

∇u : ∇u = −
∫

Ω

(u · ∇V ·u+V · ∇V ·u+ ν∇V : ∇u+f ·u), (I.1.9)

which generalizes (I.1.6) to the case v∗ 6≡ 0. By use of the Schwarz inequality
and (I.1.6), it is easily seen that the last three terms on the right-hand side
of (I.1.9) can be increased, for instance, as follows:

∫

Ω

|V · ∇V · u| ≤ √
γ sup

Ω
|V |

(∫

Ω

∇V : ∇V
)1/2(∫

Ω

∇u : ∇u
)1/2

,

ν

∫

Ω

|∇V : ∇u| ≤ ν

(∫

Ω

∇V : ∇V
)1/2(∫

Ω

∇u : ∇u
)1/2

,

∫

Ω

|f · u| ≤ γ

(∫

Ω

f2

)1/2(∫

Ω

∇u : ∇u
)1/2

.

Placing these inequalities back into (I.1.9), we obtain

ν

∫

Ω

∇u : ∇u ≤ −
∫

Ω

u · ∇V · u +C

(∫

Ω

∇u : ∇u
)1/2

, (I.1.10)

9 Unless their use clarifies the context, the infinitesimal volume and surface elements
in the integrals will generally be omitted.

10 That is, the first display in Section 5 of Chapter II.
11 For another approach, again due to Leray, we refer the reader to the Notes for

Chapter IX.
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with C depending only on Ω, V (i.e., v∗), and f . Therefore, in order to obtain
a bound depending only on the data for the quantity

∫

Ω

∇u : ∇u,

or, what amounts to the same thing, for

∫

Ω

∇v : ∇v,

it is sufficient to prove the following one-sided inequality:

−
∫

Ω

u · ∇V ·u ≤ k

∫

Ω

∇u : ∇u, (I.1.11)

with some constant k (depending on V and Ω) such that

k < ν, (I.1.12)

and for all smooth solenoidal vector fields u vanishing at ∂Ω. Of course, if we
do not want to impose restrictions on ν , we should be able to prove that for
any k > 0 there exists a solenoidal field V = V (x; k) assuming the value v∗
at ∂Ω and satisfying (I.1.11) for all the above specified vectors u . However,
Takeshita (1993) and, more recently, Heywood (2010) showed by means of
counterexamples that in general, the latter property does not hold if ∂Ω is
composed by more than one surface Γi, and consequently, if one follows in
such a case the method of Leray–Hopf, one must impose some restrictions
on ν or, equivalently, on v∗. To date, the best one can show, in general,12 is
that (I.1.11) and (I.1.12) are certainly satisfied, provided the fluxes Φi satisfy
the restriction (I.1.4). As already observed, (I.1.4) becomes redundant if the
number of surfaces Γi reduces to one.13

I.2 Flow in Exterior Regions

The most significant physical problem that motivates this type of study is the
motion of a rigid body B through a viscous liquid. Such a problem originates

12 In some special cases of plane flow, one can remove the extra condition (I.1.4);
see the Notes to Chapter IX.

13 It is interesting to observe that for a certain class of non-Newtonian liquids, where
the shear viscosity coefficient µ depends in a monotonically increasing way on the
magnitude of the stretching tensor |D|, the corresponding steady-state problem
in the bounded domain Ω can be solved under the sole compatibility condition
(I.1.2); see the Notes at the end of this chapter.
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with the pioneering work of G.G. Stokes (1851) on the effect of internal friction
on the movement of a pendulum in a liquid.

Usually, the influence on the motion of B of the boundary walls of the
container of the liquid L can be safely disregarded, and this leads to the
mathematical (simplifying, in principle) assumption that L fills the whole
space region Ω complementary to B, and that it is at rest at spatial infinity.
Hence, Ω becomes an exterior region.

Another classical problem that can be formulated as an exterior problem
is the flow past an obstacle, where the center of mass of B is held in place by
appropriate forces and the liquid flows past B tending to a uniform velocity
field at large distances from B (as in a wind tunnel).

In the above situations, it is convenient to describe the motion of the
liquid from a frame of reference S attached to B. This is because the region
occupied by the liquid then becomes time-independent. However, since, in
general, B may rotate, the frame S is no longer inertial, and consequently,
we have to modify the original equations (I.0.1) accordingly, in order to take
into account the fictitious forces. Assuming that the angular velocity, ω, of
B with respect to the initial frame is constant in time (a case of particular
interest in many applications), this amounts to adding, on the right-hand side
of (I.0.4)1, the term 2ω × v representing the Coriolis force (per unit mass),
while the centrifugal force (per unit mass), ω × (ω × x), can be formally
absorbed in the pressure term. Equations (I.0.1) then modify to the following
ones (see, e.g., Batchelor 1999, pp. 139–140, or Galdi 2002, §1):

∂v

∂t
+ v · ∇v = ν∆v− 2ω × v −∇p− f ,

∇ · v = 0 ,

(I.2.1)

where now v has to be interpreted as the velocity of the particles of L relative
to S, and we have still denoted by p the original pressure field modified by
the addition of the term −1

2 (ω × x)2. The steady-state counterpart of (I.2.1)
thus becomes

ν∆v = v · ∇v + 2ω × v −∇p+ f ,

∇ · v = 0 .
(I.2.2)

These equations must be endowed with a condition on v at the bounding
walls ∂Ω and at infinity. For the former, we will adopt (I.1.1), whereas the
latter will be taken to be of the form

lim
|x|→∞

(v(x) + v∞(x)) = 0 , (I.2.3)

with v∞ = v0 +ω×x, and v0 a constant vector. A most significant situation
described by the problem (I.2.2)–(I.2.3), is that of a rigid body moving with
constant angular velocity ω in a liquid that is quiescent at large distances. In
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such a case, the vector v0 can be viewed as the velocity of the center of mass
of B with respect to S, assumed to be a constant.14,15

The problem just described is formulated for three-dimensional motions.
However, it also has a very significant counterpart in the case of plane motions
of L. Specifically, assuming that the relevant region of motion is located in
the plane Π , we have that the vector v0 is prescribed parallel to Π , while ω
is orthogonal to it. A classic example of such flows is furnished by the motion
of L past a fixed long and straight cylinder C, of cross-section S, and axis a

assuming that the velocity field v tends to a given constant at large distances
from C. In a region of flow sufficiently far from the two ends of C and including
C, one can assume that v is independent of the coordinate parallel to a and,
moreover, that there is no motion in the direction of a. The plane Π is thus
orthogonal to a, while Ω becomes the region of Π exterior to S.

The study of problem (I.2.2), (I.1.1), (I.2.3) and the description of the
corresponding known results is tightly related to whether we consider three- or
two-dimensional flow. Therefore, we shall analyze these two cases separately.

I.2.1 Three-Dimensional Flow

The cases ω = 0 and ω 6= 0 will be referred to as the irrotational and
rotational cases, respectively.

Irrotational Case. In this situation, problem (I.2.2), (I.1.1), (I.2.3) reduces
to

ν∆v = v · ∇v + ∇p+ f

∇ · v = 0

}
in Ω ,

v = v∗ at ∂Ω ,

lim
|x|→∞

v(x) = −v0 .

(I.2.4)

As in the case of a bounded region of flow, the first fundamental contri-
bution to the existence problem was given by Leray (1933), who showed that

14 It is worth noticing that even though the velocity of the center of mass G is
constant in S, it can be time-dependent in an inertial frame I. In fact, denoting
by η the velocity of G with respect to I, we find that v0 is constant in S if and
only if dη/dt = ω × η, that is, if and only if G moves, in I, with constant speed
along a circular helix whose axis is parallel to ω. However, the components of η
and v0 along ω must coincide, that is, η · ω = v0 · ω. Thus, in particular, the
velocity of G will be constant also in I if and only if it is parallel to ω (in which
case η = v0), and the helix degenerates into a straight line. On the other hand,
if η is orthogonal to ω (or, equivalently, v0 is orthogonal to ω), the helix will
degenerate into a circle lying in a plane orthogonal to ω, which means that the
motion of the body reduces to a constant rotation around an axis not necessarily
passing through G. Further details can be found, e.g., in Galdi (2002, §1).

15 For other interesting (unsolved) exterior problems, we refer the reader to the
Notes at the end of this chapter.
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an a priori estimate of the type (I.1.7) suffices to ensure the convergence of a
suitable approximating procedure to a regular solution to (I.2.4);16 see Chap-
ter X. However, the outstanding problem Leray left out was the investigation
of the asymptotic behavior at large distances of such solutions. This question
is of primary importance since, as is easily realized, it is intimately related
to the physical properties that any solution that deserves this name should
possess. For example, solutions must satisfy the energy equation

2ν

∫

Ω

D(v) : D(v) −
∫

∂Ω

[(v∗ + v0) · T (v, p) − 1
2
(v∗ + v0)

2v∗
]
· n

+

∫

Ω

f · (v + v0) = 0,

(I.2.5)

with D and T stretching and stress tensors (I.0.2), which represents the bal-
ance between the power of the work of external force, the power of the work
done on the “bodies” represented by the connected components of R3 − Ω,
and the energy dissipated by the viscosity. Also, if f , v∗, and v0 are “suffi-
ciently small” with respect to the viscosity ν ,17 the corresponding solutions
are expected to be unique. In addition, in the case when v0 6= 0, the flow
must exhibit an infinite wake extending in the direction opposite to v0, and
the order of convergence of v to −v0 has to be rather different according
to whether it is calculated inside or outside the wake. Finally, in conformity
with the boundary layer concept, the flow is expected to be potential outside
a small neighborhood of the bodies and of the wake, which means that the
vorticity should decay sufficiently fast at large distances and outside the wake.

If v0 6= 0, the above questions found a definitive answer through the
fundamental work of R. Finn, K.I. Babenko, and their co-workers during the
years 1959–1973. In particular, using the results of Finn, Babenko has shown
that the solution constructed by Leray admits an asymptotic development
at infinity in which the dominant term is a solution to the corresponding
linearized equations, which, for v0 6= 0, are the Oseen equations; see also
Galdi (1992b), Farwig & Sohr (1998). Therefore, Leray’s solution behaves at
infinity in such a way as to ensure the validity of all the above-mentioned
properties; see Chapter X.

If v0 = 0, the picture is much less clear: the methods adopted by the above
authors generally do not work. Nevertheless, by means of completely different
tools, and following the approach given by Galdi (1992c), one can show that
conclusions somewhat analogous to the case v0 6= 0 can be drawn also when

16 As a matter of fact, Leray proved (I.2.4)4 only for v0 = 0, while for v0 6= 0 he
proved only that v tends to v0 in a weaker sense. (As Leray himself noted, his
proof for v0 = 0 fails if v0 6= 0.) The validity of (I.2.4)4 when v0 6= 0 was shown,
independently, by Finn (1959a) and by Ladyzhenskaya (1969, Chapter 5 Theorem
8 and p. 206).

17 More precisely, if a suitable nondimensional (Reynolds) number depending on v∗,
f , ν, and Ω is “sufficiently small.”
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v0 = 0, provided, however, that v∗ and f are not too large compared to
ν .18 Specifically, under the stated restrictions on the data, the solution con-
structed by Leray admits an asymptotic development at large spatial distances
whose dominant term behaves like the solution of the corresponding linearized
equations that, for v0 = 0, are the Stokes equations. However, as shown by
Deuring & Galdi (2000), the dominant term in this expansion cannot be a
solution to the corresponding Stokes equations. In fact, more recent results
due to Korolev & Šverák (2007, 2011) establish that the leading term in the
asymptotic expansion coincides with a suitable exact, singular solution of the
full nonlinear problem obtained by Landau (1944); see Chapter X.

Thus, if v0 = 0, several basic questions remain open, among others the
following:

(i) Given v∗ and f , no matter how smooth but of unrestricted size, do there
exist corresponding solutions satisfying the energy equation?

(ii) Do these solutions, if they exist at all, admit a suitable asymptotic expan-
sion for large |x| whose leading term is the corresponding Landau solution?

It is quite clear that in order to answer these questions, one has to employ
ideas and methods that go well beyond the simple perturbative analysis, by
which the “small” data results referred above are obtained.

Another puzzling question that arises in the case v0 = 0 is the following
Liouville-like problem. Consider

ν∆v = v · ∇v+ ∇p

∇ · v = 0

}
in R3 ,

lim
|x|→∞

v(x) = 0 ,

∫

R3

∇v : ∇v <∞ .

(I.2.6)

As will be shown later on, in Chapter X, all possible solutions (v, p) to (I.2.6)
are infinitely differentiable, and moreover, all derivatives of v and ∇p tend to
zero as |x| → ∞. Of course, the null solution v ≡ ∇p ≡ 0 is a solution to
(I.2.6). The question is this:

(iii) Is the null solution the only (smooth) solution to (I.2.6)?

In connection with this problem, it is worth emphasizing the following facts.
In the first place, if the homogeneous condition at infinity is replaced by
lim|x|→∞ v(x) = v0, for some nonzero v0, then one can show that the only
solution is v(x) = v0, ∇p(x) = 0, for all x ∈ R3; see Chapter X. In the
second place, the n-dimensional counterpart of this question, i.e., obtained by
replacing, in (I.2.6), R3 with the n-dimensional Euclidean space Rn, n ≥ 2
and n 6= 3, admits a positive answer, so that only the case n = 3 remains
open; see Chapter X and Chapter XII.

18 See footnote 17.
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We shall finally describe another interesting question that might deserve
an appropriate investigation. For the existence of Leray’s solution it is not
required that the total mass flux through ∂Ω, i.e.,

Φ ≡
∫

∂Ω

v∗ · n, (I.2.7)

satisfy the vanishing condition (I.1.2). For, unlike the case of flow in a bounded
region, (I.1.2) is no longer a priori a compatibility condition. This latter fact
can be explained as follows. By the incompressibility condition (I.0.4)2, the
flux Φ is equal to the flux ΦR of v through the surface SR of a ball of radius R
surrounding the bodies Bi. Since the behavior of the velocity field v at large
distances is expected to be, in general, like |x|−1, ΦR need not vanish as R
tends to infinity, and so Φ need not be zero a priori. However, to date, one is
able to prove existence only if Φ is sufficiently small with respect to ν . Thus:

(iv) Is it possible to prove existence for arbitrarily large values of Φ?

Rotational Case. As probably expected, the rotational case presents further
and new challenges, and, consequently, more unresolved issues, if compared to
the irrotational case. To describe these latter, we begin by observing that, as
shown in Chapter VIII and Chapter XI, after a suitable change of coordinates
(Mozzi–Chasles transformation) problem (I.2.2), (I.1.1), and (I.2.3) with ω 6=
0 is formally equivalent to the following one:

ν∆u = (u− λω − ω × x) · ∇u+ω × u + ∇p+ f

∇ · u = 0

}
in Ω ,

u = v∗ + v∞ ≡ u∗ at ∂Ω ,

lim
|x|→∞

u(x) = 0 ,

(I.2.8)

where u := v+ v∞, λ := v0 ·ω/|ω|2, p is the “original” pressure field and Ω
is a suitable exterior region.

The characteristic feature of problem (I.2.8) is that the term ω × x · ∇u
has a coefficient that becomes unbounded at large distances. Therefore, the
rotational case cannot be viewed as a perturbation of the irrotational case.

Despite this difficulty, one can show with relative ease that for data of
arbitrary “size” (in appropriate function classes), problem (I.2.8) has at least
one solution. As in the cases previously described, the proof of such a result,
originally due to Leray (1933, Chapter III),19 is based on the fact that (I.2.8)
admits the following formal a priori estimate

∫

Ω

∇u : ∇u ≤M , (I.2.9)

19 In his 1933 memoir, Leray proved (I.2.8)4 only in a certain weak sense. The first
proof of (I.2.8)4 is due to Galdi (2002, Theorem 4.6).
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where M is a positive constant depending on the data, Leray (1933, §17);
see also Borchers (1992, Korollar 4.1) and Chapter XI. In analogy with the
case ω = 0 (and the case of a bounded domain as well), solutions to (I.2.8)
satisfying (I.2.9) will be called Leray solutions. Such solutions can be shown
to possess as much regularity as allowed by the data, so that the next and
crucial question is whether they exhibit all fundamental properties expected
on physical grounds, already described in the previous section for the case
ω = 0. To date, the answer to this question depends on whether v0 · ω 6= 0
or v0 · ω = 0 (namely, λ 6= 0 or λ = 0).

If v0 ·ω 6= 0, Galdi & Kyed (2011a) have proved that the velocity field (re-
spectively, its gradient) of every Leray solution corresponding to f of bounded
support is pointwise bounded above, at large distances, by a function that be-
haves like the solution (respectively, its gradient) to the (linearized) Oseen
equations. In particular, it exhibits a wake region extending in the direction
opposite to ω if v0 · ω > 0, and along ω otherwise, satisfies the energy equa-
tion and is unique, in the class of Leray solutions, for sufficiently “small” data.
However, the investigation of Galdi & Kyed leaves unanswered the following
important question:

(v) Do Leray solutions admit an asymptotic expansion for large |x| whose
leading term is a solution to the Oseen equations?

If v0 ·ω = 0, the physical properties of the solution originally constructed
by Leray are known to hold, to date, only for “small” data. In particular Galdi
& Kyed (2010) have shown that under these assumptions, the velocity field
and its gradient are bounded above, at large distances, by the corresponding
quantities of a function that behaves like a solution to the Stokes equations.
One significant property that follows from this result is that Leray solutions
satisfy the energy equation, but for “small” data only. Therefore, question (i)
listed previously for the case ω = 0 continues to be a significant open question
in the case ω 6= 0 as well. However, on the bright side, and in contrast to the
case v0 · ω 6= 0, one is able to furnish a detailed asymptotic expansion of the
velocity field and of its derivatives for large |x|, but again, for small data. In
fact, under these circumstances, Farwig & Hishida (2009) and Farwig, Galdi,
& Kyed (2010) have shown that, as in the case ω = 0, the leading term of
the expansion is a suitable Landau solution. Consequently, question (ii) listed
previously for the case ω = 0 is a significant open question also in the case
ω 6= 0.

I.2.2 Plane Flow

The results and open questions considered so far refer to three-dimensional
solutions of the problem described by (I.0.4), (I.1.1), and (I.2.3). The two-
dimensional solutions representing plane motions of L, deserve separate con-
sideration. As is well known, for these solutions the fields v and p depend
only on x1, x2 (say) and, moreover, v3 ≡ 0. Therefore, the relevant region for
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a description of the motion becomes a two-dimensional one. We shall restrict
ourselves to the case v∞(x) = v0, that is, ω = 0.20

Again, the first contribution to the resolution of the existence problem of
plane flow in an exterior region is due to Leray (1933). Given f and v∗, with
v∗ satisfying condition (I.1.2), he proved the existence of a regular pair v, p
satisfying (I.0.4) and (I.1.1). However, in contrast to the three-dimensional
case, Leray was unable to show whether the velocity field v satisfies condition
(I.2.3). This is because the only information available on the behavior of v at
large distances is the finiteness of the Dirichlet integral:

∫

Ω

∇v : ∇v <∞. (I.2.10)

Condition (I.2.10) alone does not even ensure that v remains bounded at large
spatial distances.21 The question left open by Leray has been reconsidered,
more than forty years later, by several authors (Gilbarg and Weinberger 1974,
1978; Amick 1986, 1988; Galdi 2004); see also Chapter XII. One of the main
results found by these authors is that if v, p is the solution constructed by
Leray, or if v, p is any (regular) solution to (I.0.4) corresponding to v∗ ≡ f ≡
0, with v satisfying (I.2.10), then there exists a vector ṽ to which v converges
uniformly pointwise; also, the pressure field tends pointwise and uniformly at
infinity to some constant. Notice that in general, no information is available
about ṽ. In principle, ṽ can be zero even though v∞ 6= 0. The fundamental
question that still needs an answer is then

(v) Does the vector ṽ coincide with v∞?

A somewhat related question is

(vi) If ṽ 6= 0, does v tend pointwise to ṽ? 22

Another question that naturally arises is that of the order of decay of v at
infinity. Here one may expect that if v satisfies (I.2.10) and tends uniformly
pointwise to some limit ṽ, then v can be represented asymptotically by an
expansion in “reasonable” functions of r ≡ |x| with coefficients independent
of r. However, if ṽ = 0, not every such solution can be represented in this way,

20 In this regard, it is worth noticing that to date, the case ω 6= 0 is virtually
untouched. See also the Notes at the end of this chapter.

21 Take, for instance, Ω the exterior of the unit circle, and

v(x) = logα |x|, 0 < α < 1/2.

Clearly, v vanishes at ∂Ω, has a finite Dirichlet integral, and becomes unbounded
for large |x|.

22 Concerning this question, it should be observed that under suitable conditions
on the symmetry of the flow, it admits a positive answer; see Amick (1988) and
Chapter XII. Unfortunately, the proof of the result reported in Galdi (2004, The-
orem 3.4) is not correct.
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for one can exhibit examples of solutions that satisfy (I.2.10) and decay more
slowly than any negative power of r (see Hamel 1916 and cf also Chapter XII).
It is interesting to remark that for these solutions the flux Φ defined in (I.2.7)
is not zero. Nevertheless, it should be observed that if v(x) tends uniformly
pointwise to ṽ 6= 0, and satisfies (I.2.10), Sazonov (1999) has shown, with
the help of the results of Smith (1965), that v admits such an expansion,
where the leading term is a solution to the (linearized) Oseen equations; see
Chapter XII. This property can be considered the analogue of that established
by Babenko for the three-dimensional case.

In view of what we said, the following question deserves attention:

(vii) Is it possible to characterize the behavior, in a neighborhood of infinity,
of a solution v satisfying (I.2.10) and tending uniformly to ṽ = 0?

The most important feature of Leray’s solution is that it is global in the
sense that it does not require restrictions on the size of the data. On the
other hand, by what we have seen, one does not know, to date, whether
such a solution satisfies condition (I.2.3).23 Thus, we may wonder whether,
using a different construction, we could prove existence in the full problem
(I.0.4), (I.1.1), and (I.1.2) at least in the small, that is, by imposing suitable
restrictions on the size of the data. Here again, we have to distinguish between
the cases v∞ 6= 0 and v∞ = 0. In the former case, the answer is positive and
is due to Finn and Smith (1967b) and Galdi (1993); see also Chapter XI.
If, however, v∞ = 0, no result is available. So we are led to formulate the
following questions:

(viii) Does existence in problem (I.0.4), (I.1.1), and (I.1.2) with v∞ = 0 hold,
even for small data f and v∗?

(ix) Can the solution of Finn and Smith be related to that of Leray with the
same data? 24

My conjecture is that for generic data, the answer to (viii) is negative.
This view is reinforced by the fact that the analogous problem for the linear
case, obtained by formally suppressing the term v ·∇v in (I.0.4), admits an af-
firmative answer if and only if the data satisfy a finite number of compatibility
conditions, or in other words, the space of the data has finite codimension; see
Section 7 in Chapter V. (For an analogous situation in the three-simensional
case, see Galdi 2009.)

Question (ix) can be framed within the more general problem of the
uniqueness of two-dimensional solutions. In this regard it should be pointed
out that such a subject is still essentially obscure and that no significant result
is available, with the exception of that of Finn and Smith (1967b) and Galdi
(1993), which concern a somewhat restricted class of solutions; see Chapter

23 For this reason, in dimension two, the Leray solution strictly speaking should not
be called a “solution” to the steady-state exterior problem.

24 See the previous footnote. It should be observed that the solution of Finn and
Smith has a bounded Dirichlet integral.
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XII.25 The main reason for the lack of results is that the traditional meth-
ods usually employed to test the uniqueness of solutions of Navier–Stokes
equations absolutely do not work in such a case. Perhaps the introduction of
genuinely new tools to attack uniqueness will open new avenues to a better
understanding of the entire problem of plane flow.

All the above considerations raise the question of whether the classical
two-dimensional exterior problem with v∞ 6= 0 is indeed solvable for data of
“arbitrary size.” This question has been analyzed by Galdi (1999b). In that
paper it is assumed that v∗ ≡ f ≡ 0, v∞ 6= 0, and that R3 − Ω 6= ∅ is
sufficiently smooth, and symmetric around v∞, and it is shown that if there
is v such that (I.2.4), with the above data and v0 ≡ v∞, has no solution for
all |v∞| ≥ v, then the homogeneous problem

∆u = u · ∇u+ ∇τ
∇ · u = 0

}
in Ω ,

u|∂Ω = 0 ,

lim
|x|→∞

u(x) = 0 uniformly pointwise ,

(I.2.11)

with u satisfying (I.2.9), must have at least one nonzero smooth solution
(u, τ ) that is also symmetric (in a well defined sense) around v∞. Although
at first glance, this possibility seems to be easily ruled out, a mathemati-
cal proof showing that problem (I.2.11) admits only the zero solution is not
yet available, and it is probably far from being obvious. We thus have the
following:

(x) Is u ≡ ∇τ ≡ 0 the only solution to (I.2.11) in the specified class?

It is worth emphasizing that the possibility that (I.2.11) may admit a
nonzero smooth solution is very questionable on physical grounds, and the
occurrence of such a situation would cast serious doubt on the meaning of the
two-dimensional assumption.

I.3 Flow in Regions with Unbounded Boundaries

Even though some basic issues were formulated quite long ago, a systematic
study of flow in region with unbounded boundaries began only more recently,
in the period 1976-1978, through the fundamental work of J.G. Heywood,
C.J. Amick, O.A. Ladyzhenskaya, and V.A. Solonnikov. Therefore, it is not
surprising that several basic questions are still far from being answered. Here,
we wish to mention a few of them.

25 In fact, the uniqueness results given by these authors are of such a “local” type
that it is not known whether the solution of Finn & Smith coincides with that of
Galdi.
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It might be surprising that we don’t find any direct contribution of Jean
Leray to the subject; however, one of the main questions still open seems to
be in fact due to him (Ladyzhenskaya 1959b, p. 77, 1959c, p. 551). Let us
describe this problem. Let Ω be a “distorted tube” of Rn (n = 2, 3) with two
semi-infinite cylindrical ends (strips, for n = 2),26 i.e.,

Ω =

2⋃

i=0

Ωi, (I.3.1)

where Ω0 is a smooth bounded subset of Ω, while Ωi, i = 1, 2, are disjoint
regions that, in possibly different coordinate systems (depending on Ωi, i =
1, 2), reduce to straight cylinders (strips, for n = 2), that is,

Ωi = {x ∈ Rn : xn > 0, x′ ≡ (x1, . . . , xn−1) ∈ Σi} , (I.3.2)

with Σi bounded and simply connected regions in Rn−1. Denoting by Σ any
bounded intersection of Ω with a plane, which in Ωi reduces to Σi, and by n
a unit vector orthogonal to Σ, oriented from Ω1 toward Ω2 (say) owing to the
incompressibility of the liquid and assuming that v vanishes at the boundary,
we at once deduce that the flux Φ of v through Σ is a constant:

Φ ≡
∫

Σ

v · n = const. (I.3.3)

Therefore, a natural question that arises is that of establishing existence of
a flow subject to a given flux. This condition alone, of course, may not be
enough to determine the flow uniquely, and similarly to what we do for flows
in exterior regions, we must prescribe a velocity field v∞i as |x| → ∞ in
the exits Ωi. However, in contrast to the case of flows past bodies, v∞i need
not be uniform, and in fact, if Φ 6= 0, it is easily seen that v∞i cannot be
uniform. Thus, one has to figure out how to prescribe v∞i. What is most
natural to expect is that the flow corresponding to a given flux Φ should tend,
as |x| → ∞ in each Ωi, to the Poiseuille solution of the Navier–Stokes equation

in Ωi corresponding to the flux Φ, that is, to a pair (v(i)
0 , p

(i)
0 ), where

v
(i)
0 ≡ (0, . . . , v

(i)
0 (x′)), ∇p(i)

0 ≡ (0, . . . ,−Ci) (I.3.4)

for some constants Ci = Ci(Φ), and

n−1∑

j=1

∂2v
(i)
0

∂x2
j

= −Ci in Σi ,

v
(i)
0 = 0 at ∂Σi .

(I.3.5)

26 Entirely analogous considerations could be performed for the case of more than
two “outlets” Ωi.
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If, for instance, n = 3 and the sections are circles of radius Ri, the solution
to (I.3.4), (I.3.5) is the Hagen–Poiseuille flow

v
(i)
0 (x′) =

1

4
CiR

2
i (1 − |x′|2/R2

i ).

The problem of determining a motion in a region Ω with cylindrical “exits,”
subject to a given flux Φ and tending in each “exit” to the Poiseuille solution
corresponding to Φ, is known as Leray’s problem (Ladyzhenskaya 1959b, p.77,
1959c, p. 551). This problem has been the object of deep research by Amick
(1977, 1978), Horgan and Wheeler (1978), and Ladyzhenskaya and Solonnikov
(1980). However, its solvability has been shown only for Φ sufficiently small.
We are therefore led to the following basic question:

(i) Is Leray’s problem solvable for any value of the flux Φ?

Despite the seemingly different natures of the two physical problems, due
to the quite different shape of the regions of flow, from the mathematical point
of view question (i) appears to be intimately related to the analogous problem
in a bounded region, which we discussed in Section 1.

Similar questions can be formulated for regions having “outlets” to infinity
whose cross sections are not necessarily bounded. So, assume that Ω is of the
type (I.3.1), (I.3.2), where now, the sections are allowed to vary with xn

and become unbounded as xn tends to infinity.27 This time, the condition
that the limiting velocity fields v∞i are zero is no longer in conflict with the
conservation of flux (I.3.3), and we may try to solve problem (I.0.4), (I.1.1)
(with v∗ = 0) under the condition of prescribed flux and vanishing velocity
as |x| tends to infinity in each “outlet” Ωi.

Unlike flow in exterior regions, here the case of two-dimensional solutions
presents results more complete than in the case of fully three-dimensional
motions, thanks to the thorough investigation of Amick and Fraenkel (1980).
Specifically, these authors prove the existence of solutions and pointwise
asymptotic decay of the corresponding velocity fields under different assump-
tions on the “growth” of Σi and with a “small” flux if the sections have a
certain rate of “growth.” However, two important issues are left out, that is,
uniqueness of solutions and their order of decay at large distances. These two
problems have been recently studied and solved for “small” flux by K. Pileckas
in the particular case that each Ωi is a body of revolution of type

{
x ∈ R2 : x2 > 0, |x1| < gi(x2)

}
,

provided the (smooth) positive functions gi(x2) satisfy suitable “growth” con-
ditions as x2 → ∞. As expected, the decay rate of solutions is related to the
inverse power of the functions gi; see Pileckas (1996c, 1997); see also Nazarov
& Pileckas (1998).

27 We also assume that Σ cannot shrink to a point, that is, the measure |Σ| of Σ is
bounded below by a positive constant.
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On the other hand, several fundamental questions remain open for three-
dimensional flows. Actually, one can prove that if the sections Σi become
unbounded at a sufficiently large rate, then a solution exists that, in the mean,
converges to zero at large distances; otherwise, the problem admits only partial
answers, and in some cases, it is completely unsolved. Let us briefly explain
why. The leading idea is to try to obtain, as in previous instances, a bound on
the Dirichlet integral D (say) of the velocity field v. Now if the cross sections
become unbounded, we may distinguish the following two possibilities:28

(a)

∫ ∞

0

|Σi|−2dx3 <∞, i = 1, 2,

(b)

∫ ∞

0

|Σi|−2dx3 = ∞, i = 1, 2.

In case (a), using inequality (I.1.6) one can show that the condition of constant
flux is compatible with the finiteness of D, and in fact, using more or less
standard, tools one proves an a priori bound that allows us to obtain the
existence of a solution to the problem for arbitrary flux Φ (Ladyzhenskaya and
Solonnikov 1980). However, in general, one cannot prove a pointwise decay of
v at large distances; rather, only a weaker behavior in the mean is achieved.
We are thus led to formulate the following questions:

(ii) In case (a), is it possible to prove the pointwise decay of solutions whose
velocity field has a bounded Dirichlet integral?

(iii) Is it possible to relate the asymptotic behavior of such solutions to the rate
of growth of cross sections Σi?

There is one particular, though interesting, situation in which both ques-
tions (ii) and (iii) are positively answered, namely when each outlet Ωi “de-
generates” into a half-space (Borchers & Pileckas 1992, Chang 1992, 1993,
Coscia & Patria 1992, Galdi & Sohr 1992); see also Chapter XIII. In such a
case, Ω becomes the so-called aperture domain (see Heywood,1976):

Ω = {x ∈ Rn : xn 6= 0 or x′ ∈ S} ,

with S a bounded region of the plane (the “aperture”). However, unlike the
results of Ladyzhenskaya and Solonnikov, the results of all the preceding au-
thors require that the flux Φ be sufficiently small. Therefore, we have the
following question:

(iv) Is it possible to show the known results for three-dimensional flow in the
aperture domain for an arbitrary flux Φ?

It should be remarked that the two-dimensional analogue of this problem
appears to be difficult to treat, and all methods employed by the above authors

28 Of course, we may assume that one section verifies (a) and the other verifies (b).
The considerations to follow should then be modified accordingly which, however,
would produce no conceptual difference.
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do not apply there. Nevertheless, by different tools, one proves the existence of
a solution that tends to zero at large distances uniformly pointwise for any Φ
(Galdi, Padula, and Passerini 1995); however, the asymptotic structure of such
solutions is completely characterized only for small Φ and, more importantly,
when the aperture S is symmetric around x2 (Galdi, Padula and Solonnikov
1996; cf also Chapter XIII).29 Therefore, we have the following question:

(v) Is it possible to characterize the asymptotic structure of plane flow in an
aperture domain when the aperture is not symmetric, even for a small flux
Φ?

Let us next consider case (b). Again using inequality (I.1.6), one shows
that the nonzero flux condition becomes incompatible with the existence of
solutions whose velocity field has a bounded Dirichlet integral. However, if30

Gi ≡
∫ ∞

0

|Σi|−3q/2+1dx3 <∞, i = 1, 2, some q > 2 , (I.3.6)

one can show that solutions may still exist with corresponding velocity field
v satisfying the condition

∫

Ω

(∇v : ∇v)q/2
<∞, q > 2. (I.3.7)

Therefore, a subspace Sq (say) of functions satisfying (I.3.7) seems to be a
“most natural” space in which to set the existence problem. Whether this
conjecture is true is yet to be ascertained in the general case. However, if Ωi

is a body of revolution defined by a smooth positive function gi, K. Pileckas
(1996c, 1997) has proved the existence of solutions in the class (I.3.7) for
arbitrary flux Φ, provided gi satisfies certain conditions at large distances more
restrictive than those merely required by (b) and (I.3.6).31 Corresponding
decay estimates are also given.

A last possibility arises when the sections become unbounded in such a
way that the integrals Gi defined in (I.3.6) are infinite for every value of
q > 1. For such regions of flow it is not even clear in which space the problem
has to be formulated. In this regard we should not overlook the approach of
Ladyzhenskaya and Solonnikov (1980), who, in a rather large class of regions
Ω with outlets Ωi of unbounded cross section, prove the existence of a solution
whose velocity field has a finite Dirichlet integral on every bounded portion
of Ω. Growth estimates from above on such a quantity are then provided in
terms of the growth of the cross sections of Ωi. The question whether these
solutions tend to zero at infinity is, however, left open.

29 In fact, the asymptotes are given by suitable Jeffery–Hamel solutions; see Rosen-
head (1940).

30 Notice that since |Σ| ≥ Σ0 > 0, in case (b) the integrals Gi are infinite for any
q ≤ 2.

31 In such a case, |Σi| = πg2i (x3).
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Notes for Chapter I

Section I.1. The study of the properties of solutions to the Navier–Stokes
equations has received substantial attention also under boundary conditions
other than (I.1.1). A popular one is the following:

v + βn · T (v, p)× n = b∗, at ∂Ω , (∗)

where β is a constant, n is the outer unit normal at ∂Ω, T (v, p) is the Cauchy
stress tensor (I.0.2), and b∗ is a prescribed vector field. Condition (∗) was
introduced for the first time by Navier (1827).32 If β = 0, (∗) reduces to
to (I.1.1), and v is totally prescribed (no slip), while if 1/β → 0, only v ·
n is prescribed, and we lose information on the tangential component vτ

(pure slip). However, if β 6= 0 and finite, (∗) allows for vτ to be nonzero,
by an amount that depends on the magnitude of the tangential stress at the
boundary (partial slip).

The Navier condition (∗), with 1/β 6= 0 or → 0, has been employed in a
wide range of problems. They include free surface problems (see, e.g., Solon-
nikov 1982, Maz’ja, Plamenevskii, & Stupyalis 1984), turbulence modeling
(see, e.g., Parés 1992, Galdi & Layton 2000), and inviscid limits (see, e.g.,
Xiao & Xin 2007, Beirão da Veiga 2010).

Concerning the use of (∗) in steady-state studies, after the pioneering work
of Solonnikov and Ščadilov (1973), where pure slip boundary conditions are
used along with a linearized system of equations (Stokes equations), in the last
few years there has been considerably increasing interest. Besides the papers
of Beirão da Veiga (2004, 2005), which generalize and simplify the proof of the
results of Solonnikov & Ščadilov, we refer the interested reader, for example,
to Ebemeyer & Frehse (2001) for flow in bounded domains, Mucha (2003),
Konieczny (2006), and Beirão da Veiga (2006) for flow in infinite channels and
pipes, to Konieczny (2009) for flow in exterior domains, and to the literature
cited therein.

It is conceptually interesting to notice that some of the basic problems left
open for liquids modeled by the Navier–Stokes equations may find a complete
and positive answer for liquid models whose constitutive assumptions differ
from that given in (I.0.2). Such models are generically referred to as non-
Newtonian.33 Among the most successful and widely adopted models of non-
Newtonian liquids are those called generalized Newtonian, where the shear
viscosity coefficient µ is no longer constant, but depends on the “amount of
shear,” namely, on |D(v)|, with D the stretching tensor defined in (I.0.3).

32 Navier proposed (∗) (or better, an equation equivalent to (∗) with b∗ = 0) in
alternative to the “adherence” condition (I.1.1), with the objective of explaining
the difference between the discharges in glass and copper tubes, as experimentally
observed by Girard (1816).

33 For this type of models and their range of applicability, we refer the interested
reader to the monograph of Bird, Armstrong, and Hassager (1987).
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For example, in an appropriate range of shear, for liquids such as latex paint,
styling gel, molasses, and blood, µ is found to be a decreasing function of
|D(v)| (shear-thinning liquids), whereas for others, such as a mixture of corn
starch and water, and clay slurries, µ increases with |D(v)| (shear-thinning
liquids). A prototypical example of the generalized Newtonian model is the
one with µ related to |D(v)| by the following formula (power law model)

µ = µ0 + ε1|D(v)|ε2 , (∗∗)

where the (material) constants µ0, ε1, and ε2 satisfy µ0 > 0, ε1 ≥ 0, and
ε2 ∈ (−1,∞). Thus, for ε1 > 0, the model is shear-thinning if ε2 ∈ (−1, 0) and
shear-thickening if ε2 ∈ (0,∞), whereas we recover the Newtonian (Navier–
Stokes) model if either ε1 or ε2 is zero. Now, for a given µ0, and ε1, ε2 > 0 ar-
bitrarily small, one can show (Ladyzhenskaya 1967, §4, Galdi 2008, §2.2.1(b))
that the boundary value problem obtained using the constitutive assumption
(∗∗), namely,

∇ · [(µ0 + ε1|D(v)|ε2)D(v)] = ρv · ∇v + ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω ,

(∗ ∗ ∗)

where Ω is a bounded (sufficiently smooth) domain with a possibly discon-
nected boundary, has a solution for any v∗, f in a suitable function class, and,
more importantly, with v∗ satisfying the “natural” compatibility condition
(I.1.2). As we have emphasized, unless ∂Ω is connected, this is an outstand-
ing open question for the Navier–Stokes model, obtained by setting ε1 = 0
or ε2 = 0.34 The above result is conceptually very intriguing, in that it can
be rephrased, in common and provocative words, as follows: “what we do not
know whether it is true for water, becomes certainly true if we add to water
a pinch of corn starch”!

Along the same lines, Galdi & Grisanti (2010) have considered (∗∗∗), with
Ω an exterior region of R2 and v∗ ≡ 0, along with the asymptotic condition
(I.2.4). They have shown that for arbitrary ε1 > 0 and ε2 ∈ (−1, 0), the
resulting boundary value problem possesses a solution for any choice of f in
an appropriate function class, and for arbitrary v0 ∈ R2. As we pointed out in
Section I.2, this is another fundamental open question for the Navier–Stokes
model.

Section I.2. Among the many other significant “exterior” problems that we
can formulate, and that we will not treat in this book, of particular interest is
the steady flow of a Navier–Stokes liquid under the action of a given constant
shear. This problem, which has received great attention in the applied science
community thanks to the fundamental work of Saffman (1965) on the effect

34 This result can be extended to more general constitutive assumptions than (∗∗);
see Galdi, (2008).
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of shear on the lift of a sphere, amounts to solving (I.2.4) with v∗ ≡ f ≡ 0,
along with the following condition at large distances:

lim
|x|→∞

(v(x) − v∞) = 0 , v∞ := κx2e1 ,

where κ is a nonzero constant and e1 is the unit vector in the direction x1.
Unfortunately, the classical methods for existence of steady state solutions
in exterior domains, with which the reader will become familiar by flipping
through the pages of this book, all fail for the above problem. For instance, it
seems very unlikely that one could prove a bound of the type (I.2.9) for the
field u := v − v∞, even for small data. I take this opportunity to bring this
intriguing open question to the attention of the interested mathematician.



II

Basic Function Spaces and Related Inequalities

Incipe parve puer risu cognoscere matrem.

VERGILIUS, Bucolica IV, v.60

Introduction

In this chapter we shall introduce some function spaces and enucleate certain
properties of fundamental importance for further developments. Particular
emphasis will be given to what are called homogeneous Sobolev spaces, which
will play a fundamental role in the study of flow in exterior domains. We shall
not attempt, however, to give an exhaustive treatment of the subject, since
this is beyond the scope of the book. Therefore, the reader who wants more
details is referred to the specialized literature quoted throughout. As a rule,
we give proofs where they are elementary or relevant to the development of
the subject, or also when the result is new or does not seem to be widely
known.

II.1 Preliminaries

In this section we collect a number of preparatory results. After introducing
some basic notation, we shall recall the relevant properties of Banach spaces
and of certain classical spaces of smooth functions as well. We shall finally
define and analyze the properties of special subsets of the Euclidean space.
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II.1.1 Basic Notation1

The symbols N and N+ denote the set of all non-negative and of all positive
natural numbers, respectively.

ForX a set, we denote by Xm, m ∈ N+, the Cartesian product of m copies
of X. Thus, denoting by R the real line, Rn is the n-dimensional Euclidean
space. Points in Rn will be denoted by x = (x1, . . . , xn) ≡ (xi) and corre-
sponding vectors by u = (u1, . . . , un) ≡ (ui). Sometimes, the ith component
ui of the vector u will be denoted by (u)i. More generally, for T a tensor of
order m ≥ 2, its generic component Tij...kl will be also denoted by (T )ij...kl.
The components of the identity tensor I , are denoted by δij (Kronecker delta).

The distance between two points x and y of Rn is indicated by |x− y|, and
we have

|x− y| =

[
n∑

i=1

(xi − yi)
2

]1/2

.

More generally, the distance between two subsets A and B of Rn is indicated
by dist (A,B), where

dist (A,B) = inf
x∈A,y∈B

|x− y| .

The modulus of a vector u is indicated by |u| (or by u) and it is

|u| =

(
n∑

i=1

u2
i

)1/2

.

Given two vectors u, v, the second-order tensor having components uivj

(dyadic product of u, v) will be denoted by u⊗ v.
The canonical basis in Rn is indicated by

{ei} ≡ {e1, . . . , en}
with

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

We also set

Rn
+ = {x ∈ Rn : xn > 0}

Rn
− = {x ∈ Rn : xn < 0} .

1 For other notation, we refer the reader to footnotes 8, 9, and 10 of Section I.1
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For r > 0 and x ∈ Rn we denote by Br(x) the (n-dimensional) open ball
of radius r centered at x, i.e.,

Br(x) = {y ∈ Rn : |x− y| < r} .

For r = 1, we shall put
B1(x) ≡ B(x),

and for x = 0,
Br(0) ≡ Br .

Unless the contrary is explicitly stated, the Greek letter Ω shall always
mean a domain, i.e., an open connected set of Rn.

Let A be an arbitrary set of Rn. We denote by A its closure, by Ac = Rn−A
its complementary set (in Rn), by

◦
A its interior, and by ∂A its boundary. For

n ≥ 2, the boundary of the n-dimensional unit ball centered at the origin (i.e.,
the n-dimensional unit sphere) is denoted by Sn−1:

Sn−1 = ∂B1 .

Moreover, δ(A) is the diameter of A, that is,

δ(A) = sup
x,y∈A

|x− y|.

If Ωc ⊂ Bρ for some ρ ∈ (0,∞) and with the origin of coordinates in Ωc,
we set

Ωr = Ω ∩Br , r > ρ,

Ωr = Ω −Ωr , r > ρ,

Ωr,R = ΩR −Ωr, ρ < r < R.

If A is Lebesgue measurable and µL is the (Lebesgue) measure in Rn, we
put

|A| = µL(A).

The measure of the n-dimensional unit ball is denoted by ωn; therefore,

ωn =
2πn/2

nΓ (n/2)
,

where Γ is the Euler gamma function

By c, ci, C, Ci, i = 1, 2, . . ., we denote generic positive constants, whose
possible dependence on parameters ξ1, . . . , ξm will be specified whenever it is
needed. In such a case, we write c = c(ξ1, . . . , ξm), C = C(ξ1, . . . , ξm), or,
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especially in formulas, cξ1,...,ξm , Cξ1,...,ξm , etc. Sometimes, we shall use the
symbol c to denote a positive constant whose numerical value or dependence
on parameters is not essential to our aims. In such a case, c may have several
different values in a single computation. For example, we may have, in the
same line, 2c ≤ c.

For a real function u in Ω, we denote by supp (u) the support of u, that is,

supp (u) = {x ∈ Ω : u(x) 6= 0}.

For a real smooth function u in Ω we set

Dju =
∂u

∂xj
, Diju =

∂2u

∂xi∂xj
;

likewise,
∇u = (D1u, . . . , Dnu)

denotes the gradient of u,
D2u = {Diju}

is the matrix of the second derivatives. Occasionally, the gradient of u will be
indicated by D1u or, more simply, by Du. We also set2

∆u = Diiu

is the Laplacean of u.

For a vector function u = (u1, . . . , un), the divergence of u, ∇·u, is defined
by

∇ ·u = Diui ,

and, if n = 3,

∇× u = (D2u3 −D3u2, D3u1 −D1u3, D1u2 −D2u1)

denotes the curl of u. Similarly, if n = 2, ∇ × u has only one component,
orthogonal to u, given by (D1u2 −D2u1).

If α is an n-tuple of non-negative integers αi, we set

|α| =
n∑

i=1

αi

and

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαn

n
.

2 According to Einstein’s summation convention, unless otherwise explicitly stated,
pairs of identical indices imply summation from 1 to n.
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The n-tuple α is called a multi-index.
If D is a domain with |D| <∞, and u : D → Rn, n ≥ 1, we denote by uD

the mean value of the function u over the domain D, namely,

uD =
1

|D|

∫

D
u ,

whenever the integral is meaningful.
We shall also use the following standard notation, for functions f and g

defined in a neighborhood of infinity:

f(x) = O(g(x)) means |f(x)| ≤M1|g(x)| for all |x| ≥M2,

f(x) = o(g(x)) means lim
|x|→∞

|f(x)|/|g(x)| = 0

where M1, M2 denote positive constants.
Finally, the symbols � and � will indicate the end of a proof and of a

remark, respectively.

II.1.2 Banach Spaces and their Relevant Properties.

For the reader’s convenience, in this subsection we shall collect all relevant
properties of Banach spaces that will be frequently use throughout this book.

Let X be a vector (or linear) space on the field of real numbers, with
corresponding operations of sum of two elements, x + y, and multiplication
of an element x by a real number α, αx. Then, X is a normed space if there
exists a map, called norm,

‖ · ‖X : x ∈ X → ‖x‖X ∈ R

satisfying the following conditions, for all α ∈ R and all x, y ∈ X:

(1) ‖x‖X ≥ 0, and ‖x‖X = 0 implies x = 0 ;
(2) ‖αx‖X = |α| ‖x‖X;
(3) ‖x+ y‖X ≤ ‖x‖X + ‖y‖X .

In what follows, X denotes a normed space.
Two norms ‖·‖X and ‖·‖∗X onX are equivalent if c1‖·‖X ≤ ‖·‖∗X ≤ c2‖·‖X,

for some constants c1 ≤ c2.
A sequence {xk} in X is convergent to x ∈ X if

lim
k→∞

‖xk − x‖X = 0 , (II.1.1)

or, in equivalent notation, xk → x.
A subset S of X is a subspace if αx+ β y is in S, for all x, y ∈ S and all

α, β ∈ R.



30 II Basic Function Spaces and Related Inequalities

A subset B of X is bounded if there exists a number M > 0 such that
sup
x∈B

‖x‖X ≤M .

A subset C of X is closed if for every sequence {xk} ⊂ C such that xk → x
for some x ∈ X, implies x ∈ C.

The closure of a subset S of X consists of those points of x ∈ X such that
xk → x for some {xk} ⊂ S.

A subset K of X is compact if from every sequence {xk} ⊂ K we can find
a subsequence {xk′} and a point x ∈ K such that xk′ → x.

A subset of X is precompact if its closure is compact.
A subset S of X is dense inX if for any x ∈ X there is a sequence {xk} ⊂ S

such that xk → x.
A subset of X is separable if it contains a countable dense set. We have

the following result (see, e.g. Smirnov 1964, Theorem in §94).

Theorem II.1.1 Let X be a separable normed space. Then every subset of
X is separable.

A space X is (continuously) embedded in a space Y if X is a linear subspace
of Y and the identity map i : X → Y maps bounded sets into bounded sets,
that is, ‖x‖Y ≤ c ‖x‖X , for some constant c and all x ∈ X. In this case, we
shall write

X ↪→ Y .

X is compactly embedded in Y if X ↪→ Y and, in addition, i maps bounded
sets of X into precompact sets of Y . In such a case we write

X ↪→↪→ Y.

Two linear subspaces X1, Y1 of normed spaces X and Y , respectively, are
isomorphic [respectively, homeomorphic] if there is a map L from X1 onto
Y1, called isomorphism [respectively, homeomorphism], such that (i) L is lin-
ear; (ii) L is a bijection, and, moreover, (iii) ‖L(x)‖X = ‖x‖Y [respectively,
c1‖x‖X ≤ ‖L(x)‖Y ≤ c2‖x‖X, for some c1 ≤ c2], for all x ∈ X1, where ‖ · ‖X ,
and ‖ · ‖Y denote the norms in X and Y .

A sequence {xk} ⊂ X is called Cauchy if

given ε > 0 there is n = n(ε) ∈ N: ‖xk − xk′‖X < ε for all k, k′ ≥ n .

If every Cauchy sequence in X is convergent to an element of X, then X
is called complete.

A Banach space is a normed space where every Cauchy sequence is there
convergent or, equivalently, a Banach space is a complete normed space.

If X is not complete, namely, there is at least one Cauchy sequence in X
that is not convergent to an element of X, we can nevertheless find a uniquely
determined3 Banach space X̂ , with the property that X is isomorphic to a

3 Up to an isomorphism.
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dense subset of X̂. The space X̂ is called (Cantor) completion of X, and
its elements are classes of equivalence of Cauchy sequences, where two such
sequences, {xk}, {x′m}, are called equivalent if lim

l→∞
‖xl − x′l‖X = 0; see, e.g.,

Smirnov (1964, §85).
Suppose, now, that on the vector space X we can introduce a real-valued

function (·, ·)X defined in X × X, satisfying the following properties for all
x, y, z ∈ X and all α, β ∈ R

(i) (x, y)X = (y, x)X ,
(ii) (αx+ β y, z)X = α (x, z)X + β (y, z)X ,
(iii) (x, x)X ≥ 0, and (x, x)X = 0 implies x = 0 .

Then X becomes a normed space with norm

‖x‖X ≡
√

(x, x)X . (II.1.2)

The bilinear form (·, ·)X is called scalar product, and if X, endowed with the
norm (II.1.2), is complete, then X is called Hilbert space.

A countable set B ≡ {xk} in a Hilbert space X is called a basis if (i)

(xj, xk) = δjk, for all xj, xk ∈ B, and limN→∞ ‖∑N
k=1(x, xk)xk − x‖X = 0,

for all x ∈ X.
A linear map ` : X → R on a normed space X, such that

s` ≡ sup
x∈X;‖x‖X =1

|`(x)| <∞ (II.1.3)

is called bounded linear functional or, in short, linear functional onX. The set,
X′, of all linear functionals in X can be naturally provided with the structure
of vector space, by defining the sum of two functionals `1 and `2 as that ` ∈ X′

such that `(x) = `1(x)+`2(x) for all x ∈ X, and the product of a real number
α with a functional ` as that functional that maps every x ∈ X into α`(x).
Moreover, it is readily seen that the map ` ∈ X′ → ‖`‖X′ = s` ∈ R, with
s` defined in (II.1.3), defines a norm in X′. It can be proved that if X is a
Banach space, then also X′, endowed with the norm ‖·‖X′ , is a Banach space,
sometime referred to as strong dual; see, e.g. Smirnov (1964, §99).

A Banach space X is naturally embedded into its second dual (X′)′ ≡ X′′

via the map M : x ∈ X → Jx ∈ X′′, where the functional Jx on X′ is defined
as follows: Jx(`) = `(x), ` ∈ X′. One can show that the range, R(M), of M is
closed in X′′ and that M is an isomorphism of X onto R(M); see e.g. Smirnov
(1964, Theorem in §99). If R(M) = X′′, then X is reflexive.

We have the following result (see, e.g. Schechter 1971, Chapter VII, The-
orem 1.1, Theorem 3.1 and Corollary 3.2; Chapter VIII, Theorem 1.2).

Theorem II.1.2 Let X be a Banach space. Then X is reflexive if and only
if X′ is. Moreover if X′ is separable, so is X. Therefore, if X is reflexive and
separable, then so is X′. Finally, if X is reflexive, then so is every closed
subspace of X.



32 II Basic Function Spaces and Related Inequalities

A sequence {xk} in a Banach space X is weakly convergent to x ∈ X if

lim
k→∞

`(xk) = x , for all ` ∈ X′, (II.1.4)

or, in equivalent notation, xk
w→ x. In contrast to this latter, convergence in

the sense of (II.1.1) will be also referred to as strong convergence. It is imme-
diately seen that a strongly convergent sequence is also weakly convergent,
while the converse is not generally true, unless X is isomorphic to Rn; see
e.g. Schechter (1971, Chapter VIII, Theorem 4.3). The topological definitions
given previously (closedness, compactness, etc.) for subsets of X in terms of
strong convergence, can be extended to the more general case of weak conver-
gence in an obvious way. We shall then speak of weakly closed sets, or weakly
compact sets, etc. Moreover, we shall say that a sequence {xk} is weak Cauchy
if the following property holds, for all ` ∈ X′:

given ε > 0 there is n = n(ε, `) ∈ N: |`(xk − xk′)| < ε for all k, k′ ≥ n .

A Banach space X is weakly complete if every weak Cauchy sequence is weakly
convergent to some x ∈ X.

Some significant properties related to weak convergence are collected in
the following.

Theorem II.1.3 Let X be a Banach space. The following properties hold.

(i) If {xk} ⊂ X with xk
w→ x, then there is C independent of k such that

‖xk‖X ≤ C. Moreover,

‖x‖X ≤ lim inf
k→∞

‖xk‖X ;

see, e.g., Smirnov (1964, §101, Theorem 1 and Theorem 5).
(ii)The closed unit ball {x ∈ X : ‖x‖X ≤ 1}, is weakly compact if and only if

X is reflexive; see, e.g., Miranda (1978, §§28, 30).

(iii) If X is reflexive, then X is also weakly complete; see, e.g., Smirnov (1964,
§101 Theorem 7).

Property (ii) will be sometime referred to as weak compactness property.

This property has, in turn, the following interesting consequence.

Theorem II.1.4 Let X be a reflexive Banach space, and let ` ∈ X′. Then,
there exists x ∈ X such that

‖`‖X′ = |`(x)| , ‖x‖X = 1 . (II.1.5)

Proof. If ` = 0, then (II.1.5) is obviously satisfied. So, we assume ` 6= 0. By
definition, we have



II.1.2 Banach Spaces and their Relevant Properties. 33

‖`‖X′ = sup
x∈X;‖x‖X=1

|`(x)| .

Therefore, there exists a sequence {xk} ⊂ X such that

‖`‖X′ = lim
k→∞

|`(xk)| , ‖xk‖X = 1, for all k ∈ N. (II.1.6)

In view of Theorem II.1.3(ii), there exist a subsequence {xk′} and x ∈ X such
that

xk′
w→ x (II.1.7)

Evaluating (II.1.6) along this subsequence , with the help of Theorem II.1.3(i),
we obtain that x satisfies the following conditions

‖`‖X′ = |`(x)| , ‖x‖X ≤ 1. (II.1.8)

If x = 0, it follows ‖`‖X′ = 0 which was excluded, so that x 6= 0. Thus, since

‖`‖X′ ≥ |`(x)|
‖x‖X

,

from this relation and (II.1.8) we prove the result. ut

In the sequel, we shall deal with vector functions, namely, with functions
with values in Rn, whose components belong to the same Banach space X. We
shall, therefore, recall some basic properties of Cartesian products, XN , of N
copies of X. It is readily checked that XN can be endowed with the structure
of vector space by defining the sum of two generic elements x = (x1, . . . , xN)
and y = (y1, . . . , yN), and the product of a real number α with x in the
following way

x+ y = (x1 + y1, . . . , xN + yN ) , αx = (αx1, . . . , αxN) .

Furthermore, we may introduce in XN either one of the following (equivalent)
norms (or any other norm equivalent to them)

‖x‖(q) ≡
(

N∑

i=1

‖xi‖q
X

)1/q

, q ∈ [1,∞) , ‖x‖(∞) ≡ max
i∈{1,...N}

‖xi‖X , x ∈ XN ,

(II.1.9)
in such a way that (as the reader will prove with no pain) XN becomes a
Banach space.

We have the following.

Theorem II.1.5 If X is separable, so is XN . Moreover, XN is reflexive if so
is X,

Proof. The proof of the first property is obvious, while that of the second one
is a consequence of Theorem II.1.3(ii). ut
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The next result establishes the relation between (XN )′ and (X′)N .

Theorem II.1.6 Every L ∈ (XN )′ can be written as follows

L =
N∑

k=1

`i , (II.1.10)

where `i ∈ X′, i = 1, . . . , N are uniquely determined. Moreover, the map

T : L ∈ (XN )′ → (`1, . . . , `N) ∈ (X′)N

is a homeomorphism of (XN )′ onto (X′)N . If, in particular, we endow XN

and (XN )′ with the following norms

‖x‖XN ≡ ‖x‖(1) , ‖L‖(X′)N = ‖L‖(∞) .

then T is an isomorphism.

Proof. The generic element L ∈ XN can be represented as in (II.1.10) where
`1(x) ≡ L(x1, 0, . . . , 0), `2(x) ≡ L(0, x2, . . . , 0), etc. Obviously, each func-
tional `i, i = 1, . . .N , can be viewed as an element of X′. We then consider
the map T in the way defined above. It is clear that T is surjective and injec-
tive and linear. From (II.1.10), it readily follows that

‖L‖(XN )′ ≡ sup
x∈XN ;‖x‖XN =1

|L(x)| ≤ ‖T (L)‖(∞) .

Moreover, by definition of supremum, we must have

‖`i‖X′ ≤ ‖L‖(XN )′ ,

so that we conclude ‖L‖(XN)′ ≥ ‖T (L)‖(∞), which shows that T is an isomor-
phism. If, instead, we use any other norm of the type (II.1.9), we can show by
a simple calculation that uses (II.3.2) that T is, in general, a homeomorphism.
The proof of the lemma is thus completed. ut

We next recall the Hahn–Banach theorem and one of its consequences.
A proof of these results can be found, e.g., in Schechter (1971, Chapter II
Theorem 2.2 and Theorem 3.3).

Theorem II.1.7 Let M be a subspace of a normed space X. The following
properties hold.

(a) Let ` be a bounded linear functional defined on M , and let

‖`‖ = sup
x∈M ;‖x‖X=1

|`(x)| .

Then, there exists a bounded linear functional, `, defined on the whole of
X, such that (i) `(x) = `(x), for all x ∈M , and (ii) ‖`‖X′ = ‖`‖.
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(b)Let x0 ∈ X be such that

d ≡ inf
x∈M

‖x0 − x‖X > 0 .

Then, there is ` ∈ X′ such that ‖`‖X′ = 1/d, `(x0) = 1, and `(x) = 0, for
all x ∈M .

We conclude this section by reporting the classical contraction mapping
theorem (see, e.g., Kantorovich & Akilov 1964, p. 625), that we shall often
use throughout this book in the following form.

Theorem II.1.8 Let M be a closed subset of the Banach space X, and let
T be a map of M into itself. Suppose there exists α ∈ (0, 1) such that

‖T (x) − T (y)‖X ≤ α‖x− y‖X , for all x, y ∈M .

Then, there is a unique x0 ∈M such that T (x0) = x0.

A map satisfying the assumptions of Theorem II.1.8 is called contraction.

II.1.3 Spaces of Smooth Functions

We next define some classical spaces of smooth functions and, for some of
them, we recall their completeness properties.

Given a non-negative integer k, we let Ck(Ω) denote the linear space of
all real functions u defined in Ω which together with all their derivatives Dαu
of order |α| ≤ k are continuous in Ω. To shorten notations, we set

C0(Ω) ≡ C(Ω).

We also set

C∞(Ω) =

∞⋂

k=0

Ck(Ω).

Moreover, by the symbols Ck
0 (Ω) and C∞

0 (Ω) we indicate the (linear) sub-
spaces of Ck(Ω) and C∞(Ω), respectively, of all those functions having com-
pact support in Ω. Furthermore, Ck

0 (Ω), 0 ≤ k ≤ ∞, denotes the class of
restrictions to Ω of functions in Ck

0 (Rn). As before, we put

C0
0 (Ω) ≡ C0(Ω), C0

0(Ω) ≡ C0(Ω).

We next define Ck(Ω) (C(Ω) for k = 0) as the space of all functions u for
which Dαu is bounded and uniformly continuous in Ω, for all 0 ≤ |α| ≤ k.
We recall (Miranda 1978, §54) that for k <∞, Ck(Ω) is a Banach space with
respect to the norm

‖u‖Ck ≡ max
0≤|α|≤k

sup
Ω

|Dαu|. (II.1.11)
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Finally, for λ ∈ (0, 1] and k ∈ N, by Ck,λ(Ω) we denote the closed subspace
of Ck(Ω) consisting of all functions u whose derivatives up to the kth order
inclusive are Hölder continuous (Lipschitz continuous if λ = 1) in Ω, that is,

[u]k,λ ≡ max
0≤|α|≤k

sup
x,y∈Ω,x 6=y

|Dαu(x) −Dαu(y)|
|x− y|λ <∞.

Ck,λ(Ω) is a Banach space with respect to the norm

‖u‖Ck,λ ≡ ‖u‖Ck + [u]k,λ, (II.1.12)

(Miranda 1978, §54).

Exercise II.1.1 Assuming Ω bounded, use the Ascoli-Arzelà theorem (see, e.g.,

Rudin 1987, p. 245) to show that from every sequence of functions uniformly

bounded in Ck+1,λ(Ω) it is always possible to select a subsequence converging in

the space Ck,λ(Ω).

II.1.4 Classes of Domains and their Properties

We begin with a simple but useful result holding for arbitrary domains of Rn.

Lemma II.1.1 Let Ω be an arbitrary domain of Rn. Then there exists an
open covering, O, of Ω satisfying the following properties

(i) O is constituted by an at most countable number of open balls {Bk},
k ∈ I ⊆ N, such that

Bk ⊂ Ω , for all k ∈ I , ∪k∈IBk = Ω ;

(ii)For any family F = {Bl}, l ∈ I′ with I′ ( I, there is B ∈ (O − F) such
that [∪l∈I′Bl] ∩ B 6= ∅ ;

(iii) For any B,B′ ∈ O, there exists a finite number of open balls Bi ∈ O,
i = 1, . . . , N , such that

B ∩ B1 6= ∅ , BN ∩ B′ 6= ∅ , Bj ∩Bj+1 6= ∅ , j = 1, . . .N − 1 .

Proof. Since Ω is open, for each x ∈ Ω we may find an open ball Brx(x) ⊂
Ω. Clearly, the collection C ≡ {Brx(x)}, x ∈ Ω, satisfies ∪x∈ΩBrx(x) =
Ω. However, since Ω is separable, we may determine an at most countable
subcovering, O, of C satisfying condition (i) in the lemma. Next, assume (ii)
is not true. Then, there would be at least one family F′ = {Bk′}, k′ ∈ I′, with
I′ ( I such that
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[ ⋃

k′∈I′

Bk′

]⋂
B = ∅ , for all B ∈ (O− F′) .

Consequently, the sets

A1 ≡
⋃

k′∈I′

Bk′ , A2 ≡
⋃

k∈(I−I′)

Bk

are open, disjoint and satisfy A1∪A2 = Ω, contradicting the assumption that
Ω is connected. Finally, let B,B′ ∈ O and denote their centers by x and x′,
respectively. Since Ω is open and connected, it is, in particular, arc-connected.
Therefore, we may find a curve, γ, joining x and x′, that is homeomorphic
to the interval [0, 1]. Let O′ ⊂ O be a covering of γ. Since γ is compact, we
can extract from O′ a finite covering that satisfies the property stated in the
lemma. ut

We next present certain classes of domains of Rn, along with their relevant
properties. We begin with the following.

Definition II.1.1. Let Ω be a domain with a bounded boundary, namely, Ω
is either a bounded domain or it is a domain complement in Rn of a compact
(not necessarily connected) set, namely, Ω is an exterior domain.4 Assume
that for each x0 ∈ ∂Ω there is a ball B = Br(x0) and a real function ζ defined
on a domainD ⊂ Rn−1 such that in a system of coordinates {x1, . . . , xn} with
the origin at x0:

(i) The set ∂Ω ∩ B can be represented by an equation of the type xn =
ζ(x1, . . . , xn−1);

(ii)Each x ∈ Ω ∩B satisfies xn < ζ(x1, . . . , xn−1).

Then Ω is said to be of class Ck (or Ck-smooth) [respectively, of class Ck,λ

(or Ck,λ-smooth), 0 < λ ≤ 1] if ζ ∈ Ck(D) [respectively, ζ ∈ Ck,λ(D)]. If, in
particular, ζ ∈ C0,1(D), we say that Ω is locally Lipschitz. Likewise, we shall
say that σ ⊂ ∂Ω is a boundary portion of class Ck [respectively, of class Ck,λ]
if σ = ∂Ω ∩ Br(x0), for some r > 0, x0 ∈ ∂Ω and σ admits a representation
of the form described in (i), (ii) with ζ of class Ck [respectively of class Ck,λ].
If, in particular, ζ ∈ C0,1(D), we say that σ is a locally Lipschitz boundary
portion.

If Ω is sufficiently smooth, of class C1, for example, then the unit outer
normal, n, to ∂Ω is well defined and continuous. However, in several inter-
esting cases, we need less regularity on Ω, but still would like to have n
well-defined. In this regard, we have the following result, for whose proof we
refer to Nečas (1967, Chapitre II, Lemme 4.2).

Lemma II.1.2 Let Ω be locally Lipschitz. Then the unit outer normal n
exists almost everywhere on ∂Ω .

4 Hereafter, the whole space R
n will be considered a particular exterior domain.
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We shall now consider a special class of bounded domains Ω called star-
shaped (or star-like) with respect to a point. For such domains, there exist
x ∈ Ω (which we may, occasionally, assume to be the origin of coordinates)
and a continuous, positive function h on the unit sphere such that

Ω =

{
x ∈ Rn : |x− x| < h

(
x− x

|x− x|

)}
. (II.1.13)

Some elementary properties of star-shaped domains are collected in the fol-
lowing exercises.

Exercise II.1.2 Show that Ω is star-shaped with respect to x if and only if every

ray starting from x intersects ∂Ω at one and only one point.

Exercise II.1.3 Assume Ω star-shaped with respect to the origin and set

Ω(ρ) = {x ∈ R
n : x = ρy, for some y ∈ Ω} . (II.1.14)

Show that Ω(ρ) ⊂ Ω if ρ ∈ (0, 1) and Ω(ρ) ⊃ Ω if ρ > 1.

The following useful result holds.

Lemma II.1.3 Let Ω be locally Lipschitz. Then, there exist m locally Lip-
schitz bounded domains G1, . . . , Gm such that

(i) ∂Ω ⊂ ∪m
i=1Gi;

(ii)The domains Ωi = Ω ∩Gi, i = 1, . . . , m, are (locally Lipschitz and) star-
shaped with respect to every point of a ball Bi with Bi ⊂ Ωi.

Proof. Let x0 ∈ ∂Ω. By assumption, there is Br(x0) and a function ζ = ζ(x′),
x′ = (x1, . . . , xn−1) ∈ D ⊂ Rn−1 such that

|ζ(ξ′) − ζ(η′)| < κ|ξ′ − η′|, ξ′, η′ ∈ D,

for some κ > 0 and, moreover, points x = (x′, xn) ∈ ∂Ω ∩Br(x0) satisfy

xn = ζ(x′), x′ ∈ D,

while points x ∈ Ω ∩Br(x0) satisfy

xn < ζ(x′), x′ ∈ D.

We may (and will) take x0 to be the origin of coordinates. Denote next, by
y0 ≡ (0, . . . , 0, yn) the point of Ω intersection of the xn-axis with Br(x0)
and consider the cone Γ (y0, α) with vertex at y0, axis xn, and semiaperture
α < π/2. It is easy to see that, taking α sufficiently small, every ray ρ starting
from y0 and lying in Γ (y0, α) intersects ∂Ω ∩ Br(x0) at (one and) only one
point. In fact, assume ρ cuts ∂Ω ∩ Br(x0) at two points z(1) and z(2) and
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denote by α′ < α the angle formed by ρ with the xn-axis. Possibly rotating
the coordinate system around the xn-axis we may assume without loss 5

z(1) = (z
(1)
1 , 0, . . . , 0, ζ(z

(1)
1 , 0, . . . , 0)), z

(1)
1 > 0

z(2) = (z
(2)
1 , 0, . . . , 0, ζ(z

(2)
1 , 0, . . . , 0)), z

(2)
1 > 0

and so, at the same time,

tanα′ =
z
(1)
1

ζ(z
(1)
1 , 0, . . . , 0)− yn

tanα′ =
z
(2)
1

ζ(z
(2)
1 , 0, . . . , 0)− yn

implying

|ζ(z(1)
1 , 0, . . . , 0)− ζ(z

(2)
1 , 0, . . . , 0)|

|z(1)
1 − z

(2)
1 |

=
1

tanα′ ≥
1

tanα
.

Thus, if (say)

tanα ≤ 1

2κ
,

ρ will cut ∂Ω ∩ Br(x0) at only one point. Next, denote by σ = σ(z) the
intersection of Γ (y0, α/2) with a plane orthogonal to xn-axis at a point z =
(0, . . . , zn) with zn > yn, and set

R = R(z) ≡ dist (∂σ, z).

Clearly, taking z sufficiently close to y0 (z = z, say), σ(z) will be entirely
contained in Ω and, further, every ray starting from a point of σ(z) and lying
within Γ (y0, α/2) will form with the xn-axis an angle less than α and so, by
what we have shown, it will cut ∂Ω ∩ Br(x0) at only one point. Let C be a
cylinder with axis coincident with the xn-axis and such that

C ∩ ∂Ω = Γ (y0, α/2)∩ ∂Ω.

Then, setting
G = C ∩Br(x0),

we have that G is locally Lipschitz and that G∩Ω is star-shaped with respect
to all points of the ball BR(z)(z). Since x0 ∈ ∂Ω is arbitrary, we may form an
open covering G of ∂Ω constituted by domains of the type G. However, ∂Ω
is compact and, therefore, we may select from G a finite subset {G1, . . . , Gm}
satisfying all conditions in the lemma, which is thus completely proved. ut
5 Clearly, the Lipschitz constant κ is invariant by this transformation.
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Other relevant properties related to star-shaped domains are described in
the following exercises.

Exercise II.1.4 Assume that the function h in (II.1.13) is Lipschitz continuous,

so that, by Lemma II.1.2, the outer unit normal n = n(x) on ∂Ω exists for a.a. x.

Then, setting F (x) ≡ n(x) · (x− x), show that ess inf
x∈∂Ω

F (x) > 0.

Exercise II.1.5 Assume Ω bounded and locally Lipschitz. Prove that

Ω =

m[

i=1

Ωi ,

where each Ωi is a locally Lipschitz and star-shaped domain with respect to every

point of a ball Bi with Bi ⊂ Ωi. Hint: Use Lemma II.1.3.

We end this section by recalling the following classical result, whose proof
can be found, e.g., in Nečas (1967, Chapitre 1, Proposition 2.3).

Lemma II.1.4 Let K be a compact subset of Rn, and let O = {O1, · · · ,ON}
be an open covering of K. Then, there exist functions ψi, i = 1, . . . , N satis-
fying the following properties

(i) 0 ≤ ψi ≤ 1 , i = 1, . . . , N ;
(ii) ψi ∈ C∞

0 (Oi) , i = 1, . . . , N ;

(iii)
∑N

i=1 ψi(x) = 1 , for all x ∈ K .

The family {ψi} is referred to as partition of unity in K subordinate to the
covering O.

II.2 The Lebesgue Spaces Lq

For q ∈ [1,∞), let Lq = Lq(Ω) denote the linear space of all (equivalence
classes of) real Lebesgue-measurable functions u defined in Ω such that

‖u‖q ≡
(∫

Ω

|u|q
)1/q

<∞. (II.2.1)

The functional (II.2.1) defines a norm in Lq , with respect to which Lq becomes
a Banach space. Likewise, denoting by L∞ = L∞(Ω) the linear space of all
(equivalence classes of) Lebesgue-measurable real-valued functions u defined
in Ω with

‖u‖∞ ≡ ess sup
Ω

|u| <∞ (II.2.2)

one shows that (II.2.2) is a norm and that L∞ endowed with this norm is a
Banach space. For a proof of the above properties see, e.g., Miranda (1978,
§47). For q = 2, Lq is a Hilbert space under the scalar product
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(u, v) ≡
∫

Ω

uv, u, v ∈ L2.

Whenever confusion of domains might occur, we shall use the notation

‖ · ‖q,Ω, ‖ · ‖∞,Ω, and (·, ·)Ω.

Given a sequence {um} ⊂ Lq(Ω) and u ∈ Lq(Ω), 1 ≤ q ≤ ∞, we thus have
that um → u, namely, {um} converges (strongly) to u, if and only if

lim
k→∞

‖uk − u‖q = 0 .

The following two basic properties, collected in as many lemmas, will be
frequently used throughout. The first one is the classical Lebesgue dominated
convergence theorem (Jones 2001, Chapter 6 §C), while the other one relates
convergence in Lq with pointwise convergence; see Jones (2001, Corollary at
p. 234)

Lemma II.2.1 Let {um} be a sequence of measurable functions on Ω, and
assume that

u(x) ≡ lim
m→∞

um(x) exists for a.a. x ∈ Ω ,

and that there is U ∈ L1(Ω) such that

|um(x)| ≤ |U(x)| for a.a x ∈ Ω .

Then u ∈ L1(Ω) and

lim
m→∞

∫

Ω

um =

∫

Ω

u .

Lemma II.2.2 Let {um} ⊂ Lq(Ω) and u ∈ Lq(Ω), 1 ≤ q ≤ ∞, with um → u.
Then, there exists {um′} ⊆ {um} such that

lim
m′→∞

um′(x) = u(x) , for a.a. x ∈ Ω .

We want now to collect some inequalities in Lq spaces that will be fre-
quently used throughout. For 1 ≤ q ≤ ∞, we set

q′ = q/(q − 1);

one then shows the Hölder inequality
∫

Ω

|uv| ≤ ‖u‖q‖v‖q′ (II.2.3)

for all u ∈ Lq(Ω), v ∈ Lq′
(Ω) (Miranda 1978, Teorema 47.I). The number

q′ is called the Hölder conjugate of q. In particular, (II.2.3) shows that the
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bilinear form (u, v) is meaningful whenever u ∈ Lq(Ω) and v ∈ Lq′
(Ω). In

case q = 2, inequality (II.2.3) is referred to as the Schwarz inequality. More
generally, one has the generalized Hölder inequality

∫

Ω

|u1u2 . . . um| ≤ ‖u1‖q1‖u2‖q2 · . . . · ‖um‖qm , (II.2.4)

where

ui ∈ Lqi (Ω) , 1 ≤ qi ≤ ∞, i = 1, . . . , m ,

m∑

i=1

q−1
i = 1 .

Both inequalities (II.2.3) and (II.2.4) are an easy consequence of the Young
inequality:

ab ≤ εaq

q
+ ε−q′/q b

q′

q′
(a, b, ε > 0) (II.2.5)

holding for all q ∈ (1,∞). When q = 2, relation (II.2.5) is known as the
Cauchy inequality.

Two noteworthy consequences of inequality (II.2.3) are the Minkowski in-
equality:

‖u+ v‖q ≤ ‖u‖q + ‖v‖q , u, v ∈ Lq(Ω), (II.2.6)

and the interpolation (or convexity) inequality:

‖u‖q ≤ ‖u‖θ
s‖u‖1−θ

r (II.2.7)

valid for all u ∈ Ls(Ω) ∩ Lr(Ω) with 1 ≤ s ≤ q ≤ r ≤ ∞, and

q−1 = θs−1 + (1 − θ)r−1, θ ∈ [0, 1].

Another important inequality is the generalized Minkowski inequality re-
ported in the following lemma, and for whose proof we refer to Jones (2001,
Chapter 11, §E).6

Lemma II.2.3 Let Ω1, and Ω2 be domains of Rn and Rm, respectively, with
m, n ≥ 1. Suppose that u : Ω1 × Ω2 → R is a Lebesgue measurable function
such that, for some q ∈ [1,∞],

∫

Ω2

(∫

Ω1

|u(x, y)|qdx
)1/q

dy <∞ .

Then, (∫

Ω1

∣∣∣∣
∫

Ω2

u(x, y) dy

∣∣∣∣
q

dx

)1/q

<∞ ,

and the following inequality holds

6 Actually, it can be proved that (II.2.6) is just a particular case of (II.2.8), hence
the adjective “generalized”; see Jones (2001, p. 272).
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(∫

Ω1

∣∣∣∣
∫

Ω2

u(x, y) dy

∣∣∣∣
q

dx

)1/q

≤
∫

Ω2

(∫

Ω1

|u(x, y)|qdx
)1/q

dy . (II.2.8)

Exercise II.2.1 Assume Ω bounded. Show that if u ∈ L∞(Ω), then

lim
q→∞

‖u‖q = ‖u‖∞.

Exercise II.2.2 Prove inequality (II.2.5). Hint: Minimize the function

tq/q − t+ 1/q′.

Exercise II.2.3 Prove inequalities (II.2.6) and (II.2.7).

We shall now list some of the basic properties of the spaces Lq . We begin
with the following (see, e.g. Miranda 1978, §51).

Theorem II.2.1 For 1 ≤ q <∞, Lq is separable, C0(Ω) being, in particular,
a dense subset

Note that the above property is not true if q = ∞, since C(Ω) is a closed
subspace of L∞(Ω)); see Miranda, loc. cit..

Concerning the density of smooth functions in Lq , one can prove something
more than what stated in Theorem II.2.1, namely, that every function in Lq ,
1 ≤ q <∞, can be approximated by functions from C∞

0 (Ω). This fact follows
as a particular case of a general smoothing procedure that we are going to
describe. To this end, given a real (measurable) function u in Ω, we shall
write

u ∈ Lq
loc(Ω)

to mean

u ∈ Lq(Ω′), for any bounded domain Ω′ with Ω′ ⊂ Ω.

Likewise, we write
u ∈ Lq

loc(Ω)

to mean
u ∈ Lq(Ω′), for any bounded domain Ω′ ⊂ Ω.

Clearly, for Ω bounded we have Lq
loc(Ω) = Lq(Ω). Now, let j ∈ C∞

0 (Ω) be a
non-negative function such that

(i) j(x) = 0, for |x| ≥ 1,

(ii)

∫

Rn

j = 1.
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A typical example is

j(x) =

{
c exp[−1/(1 − |x|2)] if |x| < 1

0 if |x| ≥ 1,

with c chosen in such a way that property (ii) is satisfied. The regularizer (or
mollifier) in the sense of Friedrichs uε of u ∈ L1

loc(Ω) is then defined by the
integral

uε(x) = ε−n

∫

Rn

j

(
x− y

ε

)
u(y)dy, ε < dist (x, ∂Ω).

This function has several interesting properties, some of which will be recalled
now here. First of all, we observe that uε is infinitely differentiable at each
x ∈ Ω with dist (x, ∂Ω) > ε. Moreover, if u ∈ Lq

loc(Ω) we may extend it by
zero outside Ω, so that uε becomes defined for all ε > 0 and all x ∈ Rn. Thus,
in particular, if u ∈ Lq(Ω), 1 ≤ q <∞, one can show (Miranda 1978, §51; see
also Exercise II.2.10 for a generalization)

‖uε‖q ≤ ‖u‖q for all ε > 0 ,

lim
ε→0+

‖uε − u‖q = 0.
(II.2.9)

Exercise II.2.4 Show that for u ∈ C0(Ω),

lim
ε→0+

uε(x) = u(x) holds uniformly in x ∈ Ω.

Exercise II.2.5 For u ∈ Lq(Ω), 1 ≤ q < ∞, show the inequality

sup
Rn

|Dαuε(x)| ≤ ε−n/q−|α|‖Dαj‖q′,Rn‖u‖q,Ω , |α| ≥ 0.

We next observe that, by writing uε(x) as follows:

uε(x) = ε−n

∫

|ξ|<ε

j

(
ξ

ε

)
u(x+ ξ)dξ,

it becomes apparent that, if u is of compact support in Ω and ε is chosen less
than the distance of the support of u from ∂Ω, then uε ∈ C∞

0 (Ω). The latter,
together with (II.2.9)2 and the density of C0 in Lq , yields that C∞

0 (Ω) is a
dense subspace of Lq(Ω), 1 ≤ q < ∞. The proof of this property, along with
some of its consequences, is left to the reader in the following exercises.

Exercise II.2.6 Prove that C∞
0 (Ω) is dense in Lq(Ω), 1 ≤ q < ∞. Hint. Use the

density of C0(Ω) in Lq(Ω) (Miranda 1978, §51) along with the properties of the

mollifier.
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Exercise II.2.7 Prove the existence of a basis in L2(Ω) constituted by functions

from C∞
0 (Ω). Hint: Use the separability of L2 along with the density of C∞

0 into L2.

Exercise II.2.8 Let u ∈ Lq(Ω), 1 ≤ q < ∞. Extend u to zero in R
n − Ω and

continue to denote by u the extension. Show the following continuity in the mean
property: Given ε > 0 there is δ > 0 such that for every h ∈ R

n with |h| < δ the
following inequality holds

Z

Ω

|u(x+ h) − u(x)|q dx < εq .

Hint: Show the property for u ∈ C∞
0 (Ω), then use the density of C∞

0 in Lq.

Exercise II.2.9 Assume u ∈ L1
loc(Ω). Prove that

Z

Ω

uψ = 0, for all ψ ∈ C∞
0 (Ω), implies u ≡ 0, a.e. in Ω.

Hint: Consider the function

sign u =

8
<
:

1 if u > 0

−1 if u ≤ 0.

For a fixed bounded Ω′ with Ω′ ⊂ Ω,

sign u ∈ L1(Ω′)

and so sign u can be approximated by functions from C∞
0 (Ω′).

Exercise II.2.10 Let u ∈ Lq(Rn), 1 ≤ q < ∞, and for z ∈ R
n and k ≤ n set

z(k) = (z1, . . . , zk) , z(k) = (zk+1, . . . , zn) .

Moreover, define

u(k),ε(x) = ε−k

Z

Rk

j

„
x(k) − y(k)

ε

«
u(y(k), y

(k)) dy(k) .

Show the following properties, for each y(k) ∈ R
n−k:

‖u(k),ε‖q,Rk ≤ ‖u(·, y(k))‖q,Rk for all ε > 0 ,

lim
ε→0+

‖u(k),ε − u(·, y(k))‖q,Rk = 0.

Hint: Use the generalized Minkowski inequality, the result in Exercise II.2.8 and

Lebesgue dominated convergence theorem (Lemma II.2.1).

Let v ∈ Lq′
(Ω), with q′ the Hölder conjugate of q. Then, by (II.2.3), the

integral

`(u) =

∫

Ω

vu, u ∈ Lq(Ω) (II.2.10)

defines a linear functional on Lq. However, for q ∈ [1,∞), every linear func-
tional must be of the form (II.2.10). Actually, we have the following Riesz
representation theorem for whose proof we refer to Miranda (1978, §48).
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Theorem II.2.2 Let ` be a linear functional on Lq(Ω), q ∈ [1,∞). Then,
there exists a uniquely determined v ∈ Lq′

(Ω) such that representation
(II.2.10) holds. Furthermore

‖`(u)‖[Lq(Ω)]′ ≡ sup
‖u‖q=1

|`(u)| = ‖v‖q′ . (II.2.11)

From Theorem II.2.2 we thus obtain the following.

Theorem II.2.3 The (normed) dual of Lq is isomorphic to Lq′
for 1 < q <

∞, so that, for these values of q, Lq is a reflexive space.

Exercise II.2.11 Show the validity of (II.2.11) when q ∈ (1,∞). Hint: Use the

representation (II.2.10) .

Exercise II.2.12 Let u ∈ L1
loc(Ω), and assume that there exists a constant C > 0

such that

|(u,ψ)| ≤ C‖ψ‖q , for some q ∈ [1,∞) and all ψ ∈ C∞
0 (Ω).

Show that u ∈ Lq′(Ω) and that ‖u‖q ≤ C. Hint: ψ → (u, ψ) defines a bounded

linear functional on a dense set of Lq(Ω). Then use Hahn–Banach Theorem II.1.7

and the Riesz representation Theorem II.2.2.

Riesz theorem also allows us to give a characterization of weak convergence
of a sequence {uk} ⊂ Lq(Ω) to u ∈ Lq(Ω), 1 < q < ∞. In fact, we have that
uk

w→ u if and only if

lim
k→∞

(v, uk − u) = 0 , for all v ∈ Lq′
(Ω), q′ = q/(q − 1).

In view of Theorem II.1.3(iii) and Theorem II.2.3, we find that Lq is weakly
complete, for q ∈ (1,∞). In fact, this property continues to hold in the case
q = 1; see Miranda (1978, Teorema 48.VII).

We wish now to recall the following results related to weak convergence.

Theorem II.2.4 Let {um} ⊂ Lq(Ω), 1 ≤ q ≤ ∞. The following properties
hold.

(i) If um
w→ u, for some , u ∈ Lq(Ω), then there is C independent of m such

that ‖um‖q ≤ C. Moreover,

‖u‖q ≤ lim inf
m→∞

‖um‖q.

In addition, if 1 < q <∞, and

‖u‖q ≥ lim sup
m→∞

‖um‖q,

then um → u .
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(ii) If 1 < q < ∞ and ‖um‖q ≤ C, for some C independent of m, then there
exists a subsequence {um′} and u ∈ Lq(Ω) such that um′

w→ u.

Proof. The statement in (ii) follows from Theorem II.1.3(ii), while the first
statement in (i) is a consequence of the general result given in Theorem
II.1.3(i). A proof of the second statement in (i) can be found, for example,
in Brezis (1983, Proposition III.5(iii) and Proposition III.30). However, for
q = 2 the proof of (i) becomes very simple and it will be reproduced here. By
hypothesis and Riesz theorem we have that for all v ∈ L2 and ε > 0 there
exists m′ ∈ N such that

|(um − u, v)| < ε, for all m ≥ m′.

If we choose v = um, with the help of the Schwarz inequality we find

‖um‖2
2 ≤ ‖u‖2‖um‖2 + ε .

Using Cauchy inequality on the right-hand side of this latter relation we con-
clude

‖um‖2
2 ≤ ‖u‖2

2 + 2ε ,

which proves the boundedness of the sequence. We next choose

v = u, ε = η‖u‖2, η > 0,

to obtain, again with the aid of Schwarz inequality,

‖u‖2 ≤ ‖um‖2 + η,

which completes the proof of the first part of the statement in (i). The second
part is a consequence of the assumption and the identity

‖um − u‖2
2 = ‖u‖2

2 + ‖um‖2
2 − 2(um, u).

ut

We conclude this section with some observations concerning Lq-spaces of
vector-valued functions. Let [Lq(Ω)]N be the direct product of N copies of
Lq(Ω). Then, as we know from Subsection I.1.2, [Lq(Ω)]N is a Banach space
with respect to any of the following equivalent norms:

‖u‖q,(r) ≡
(

N∑

i=1

‖ui‖r
q

)1/r

, r ∈ [1,∞) ‖u‖q,(∞) ≡ max
i∈{1,...,N}

‖ui‖q ,

where u = (u1, . . . , uN). Moreover, in view of Theorem II.2.1, Theorem II.2.3,
and Theorem II.1.5, we have.

Theorem II.2.5 [Lq(Ω)]N is separable for q ∈ [1,∞), and reflexive for q ∈
(1,∞) .
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Also, the Riesz representation theorem can be suitably extended to this more
general case. In fact, let

(v,u) ≡
N∑

i=1

(ui, vi) , u ∈ [Lq(Ω)]N , v ∈ [Lq′
(Ω)]N , 1/q+ 1/q′ = 1.

In view of Theorem II.1.6 and of Theorem II.2.2 , we then have that for every
L ∈

(
[Lq(Ω)]N

)′
, there exist uniquely determined v ∈ [Lq′

(Ω)]N , such that

L(u) = (v,u) ,

and that the map M : L → v is a homeomorphism. Actually, if we endow
[Lq(Ω)]N with the norm ‖u‖q,(q) ≡ ‖u‖q, the map M is an isomorphism, as
stated in the second part of the following lemma, whose proof can be found
in Simader (1972, Lemma 4.2).7

Theorem II.2.6 Let Ω be a domain of Rn, and let q ∈ (1,∞). Then, for

every L ∈
(
[Lq(Ω)]N

)′
, there exists uniquely determined v ∈ [Lq′

(Ω)]N , such
that

L(u) = (v,u) , u ∈ [Lq(Ω)]N .

Moreover,

‖L‖([Lq(Ω)]N )′ ≡ sup
u∈[Lq(Ω)]N , ‖u‖q=1

|L(u)| = ‖v‖q .

II.3 The Sobolev Spaces Wm,q and Embedding
Inequalities

Let u ∈ L1
loc(Ω). Given a multi-index α, we shall say that a function u(α) ∈

L1
loc(Ω) is the αth generalized (or weak) derivative of u if and only if the

following relation holds:

∫

Ω

uDαϕ = (−1)|α|
∫

Ω

u(α)ϕ, for all ϕ ∈ C∞
0 (Ω).

It is easy to show that u(α) is uniquely determined (use Exercise II.2.9) and
that, if u ∈ C |α|(Ω), u(α) is the αth derivative of u in the ordinary sense, and
the previous integral relation is an obvious consequence of the well-known
Gauss formula. Hereafter, the function u(α), whenever it exists, will be indi-
cated by the symbol Dαu.

7 The assumption made in Simader loc. cit., that Ω is bounded, is completely
superfluous, since it is never used in the proof, as it was also independently
communicated to me by Professor Simader.
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Generalized derivatives have several properties in common with ordinary
derivatives. For instance, given two functions u, v possessing generalized
derivatives Dju, Div we have that βu + γv (β, γ ∈ R) has a generalized
derivative and Dj(βu + γv) = βDju+ γDjv. In addition, if

uv, uDjv + vDju ∈ L1
loc(Ω),

then uv has a generalized derivative and the familiar Leibniz rule holds:

Dj(uv) = uDjv + vDju.

The proof of these properties is left to the reader as an exercise.

Exercise II.3.1 Generalized differentiation and differentiation almost everywhere
are two distinct concepts. Show that a function ϕ that is continuous in [0,1] but not
absolutely continuous admits no generalized derivative. Hint: Assume, per absurdum,
that ϕ has a generalized derivative Φ. Then, it would follow

ϕ(x) =

Z x

0

Φ(t)dt+ ϕ(0), x ∈ (0, 1),

which gives a contradiction. On the other hand, one can give examples of real,

continuous functions f on [0, 1] that are differentiable a.e. in [0, 1] and with f ′ ∈
L1(0, 1) which are not absolutely continuous (Rudin 1987, pp. 144-145). In this

connection, it is worth noticing the following general result (Smirnov 1964, §110): a

function u ∈ L1
loc(Ω) (Ω ⊂ R

n) is weakly differentiable if u = eu a.e. in Ω, with eu
absolutely continuous on almost all line segments parallel to the coordinate axes and

having partial derivatives locally integrable.

Exercise II.3.2 Let u ∈ L1
loc(Ω) and assume that Dαu exists. Show

Dα(uε(x)) = (Dαu)ε(x) , dist (x, ∂Ω) > ε.

Exercise II.3.3 Let Ω ⊂ R
n, and let ψ ∈ C1(Ω) map Ω onto Ω1 ⊂ R

n, with
ψ−1 ∈ C1(Ω1). Assume u possesses generalized derivatives Dju, j = 1, . . . , n, and
set v = u◦ψ−1. Show that also v possesses generalized derivatives Djv, j = 1, . . . , n,
and that the usual change of variable formula applies:

Diu(x) =
∂ψj

∂xi
Djv(y) , y = ψ(x) ,

for a.a. x ∈ Ω and y ∈ Ω1.

For q ∈ [1,∞] and m ∈ N, we let

Wm,q = Wm,q(Ω) = {u ∈ Lq(Ω) : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ m} .

In the linear space Wm,q(Ω) we introduce the following norm:
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‖u‖m,q =


 ∑

0≤|α|≤m

‖Dαu‖q
q




1/q

if 1 ≤ q <∞

‖u‖m,∞ = max
0≤|α|≤m

‖Dαu‖∞ if q = ∞.

(II.3.1)

If confusion of domains arises, we shall write ‖u‖m,q,Ω and ‖u‖m,∞,Ω in place
of ‖u‖m,q and ‖u‖m,∞. Owing to the completeness of the spaces Lq and taking
into account the definition of generalized derivative, it is not hard to show
that Wm,q endowed with the norm (II.3.1) becomes a Banach space, called
Sobolev space (of order (m, q)). Along with this space, we shall consider its
closed subspace Wm,q

0 = Wm,q
0 (Ω), defined as the completion of C∞

0 (Ω) in
the norm (II.3.1). Clearly, we have (see Exercise II.2.6)

W 0,q = W 0,q
0 = Lq.

In the special case q = 2, Wm,q (and thus Wm,q
0 ) is a Hilbert space with

respect to the scalar product

(u, v)m =
∑

0≤|α|≤m

(Dαu,Dαv) .

Exercise II.3.4 Prove that, for any Ω, Wm,q
0 (Ω) is a closed subspace of Wm,q(Ω).

Prove also Wm,q
0 (Rn) = Wm,q(Rn), 1 ≤ q < ∞. Hint: To show the second assertion,

take a function ϕ ∈ C∞(Rn) with ϕ(x) = 1 if |x| ≤ 1, ϕ(x) = 0 if |x| ≥ 2 (“cut-off”
function) and set

um(x) = ϕ(x/m)u(x), u ∈Wm,q (Rn), m ∈ N.

Then, u is approximated in Wm,q (Rn) by {(um)ε} ⊂ C∞
0 (Rn).

Remark II.3.1 Sobolev spaces share several important properties with Le-
besgue spaces Lq. Thus, for example, since a closed subspace of a Banach space
X is reflexive and separable if X is (see Theorem II.1.1 and Theorem II.1.2),
and since Wm,q(Ω) can be naturally embedded in [Lq(Ω)]N , for a suitable
N = N(m), one can readily show, by using Theorem II.2.5 and the fact that
Wm,q(Ω) is complete, that Wm,q(Ω) is separable if 1 ≤ q < ∞ and reflexive
if 1 < q <∞; for details, see, e.g., Adams (1975, §3.4). As a consequence, by
Theorem II.1.3(ii), we find, in particular, that for q ∈ (1,∞), Wm,q has the
weak compactness property. �

Exercise II.3.5 Let u ∈ L1
loc(Ω) and suppose ‖uε‖m,q,B ≤ C, m ≥ 0, 1 < q < ∞,

where B is an arbitrary open ball with B ⊂ Ω, and C is independent of ε. Show

that u ∈ Wm,q
loc (Ω) and that ‖u‖m,q,B ≤ C.
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Another interesting question is whether elements from Wm,q(Ω) can be
approximated by smooth functions. This question is important, for instance,
when one wants to establish in Wm,q inequalities involving norms (II.3.1).
Actually, if such an approximation holds, it then suffices to prove these in-
equalities for smooth functions only. In the case where Ω is either the whole
of Rn or it is star-shaped with respect to a point, the question is affirmatively
answered; cf. Exercise II.3.4 and Exercise II.3.7. In more general cases, we
have a fundamental result, given in Theorem II.3.1, which in its second part
involves domains having a mild property of regularity, i.e., the segment prop-
erty, which states that, for every x ∈ ∂Ω there exists a neighborhood U of x
and a vector y such that if z ∈ Ω ∩ U , then z + ty ∈ Ω, for all t ∈ (0, 1).

Exercise II.3.6 Show that a domain having the segment property cannot lie si-

multaneously on both sides of its boundary.

Theorem II.3.1 For any domain Ω, every function from Wm,q(Ω), 1 ≤
q < ∞, can be approximated in the norm (II.3.1)1 by functions in Cm(Ω) ∩
Wm,q(Ω). Moreover, if Ω has the segment property, it can be approximated
in the same norm by elements of C∞

0 (Ω).

The first part of this theorem is due to Meyers and Serrin (1964), while
the second one is given by Adams (1975, Theorem 3.18).

Exercise II.3.7 (Smirnov 1964, §111). Assume Ω star-shaped with respect to the
origin. Prove that every function u in Wm,q (Ω), 1 ≤ q < ∞, m ≥ 0, can be
approximated by functions from C∞

0 (Ω). (Compare this result with Theorem II.3.1.)
Hint: Consider the sequence

uk(x) =

8
<
:
u ((1− 1/k)x) if x ∈ Ω(k/(k−1))

0 if x 6∈ Ω(k/(k−1))
k = 2, 3, . . . ,

with Ω(ρ) defined in (II.1.14). Then, regularize uk and use (II.2.9) and Exercise

II.3.2.

We wish now to prove some basic inequalities involving the norms (II.3.1).
Such results are known as Sobolev embedding theorems (see Theorem II.3.2
and Theorem II.3.4). To this end, we propose an elementary inequality due
to Nirenberg (1959).

Lemma II.3.1 For all u ∈ C∞
0 (Rn),

‖u‖n/(n−1) ≤
1

2
√
n
‖∇u‖1. (II.3.2)

Proof. Just to be specific, we shall prove (II.3.2) for n = 3, the general case
being treated analogously. We have
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|u(x)| ≤ 1

2

∫ ∞

−∞
|D1u|dx1 ≡ F1(x2, x3)

and similar estimates for x2 and x3. With the obvious meaning of the symbols
we then deduce

|2u(x)|3/2 ≤ [F1(x2, x3)F2(x1, x3)F3(x1, x2)]
1/2

.

Integrating over x1, and using the Schwarz inequality,

∫ ∞

−∞
|2u(x)|3/2dx1 ≤ [F1(x2, x3)]

1/2

(∫ ∞

−∞
F2(x1, x3)dx1

)1/2

×
(∫ ∞

−∞
F3(x1, x2)dx1

)1/2

.

Integrating this relation successively over x2 and x3 and applying the same
procedure, we find

2‖u‖3/2 ≤
(∫

R3

|D1u|
∫

R3

|D2u|
∫

R3

|D3u|
)1/3

≤ (1/3)

3∑

i=1

∫

R3

|Diu|,

which, in turn, after employing the inequality 1

(a1 + a2 + . . .+ am)q ≤mq−1(aq
1 + aq

2 + . . .+ aq
m), ai > 0 , q ≥ 1 (II.3.3)

with m = 3, q = 2, gives (II.3.2). ut

For q ≥ 1, replacing u with |u|q in (II.3.2) and using the Hölder inequality,
we obtain at once

‖u‖qn/(n−1) ≤
(

q

2
√
n

)1/q

‖u‖1−1/q
q ‖∇u‖1/q

q . (II.3.4)

Inequalities (II.3.2), (II.3.4), and (II.2.7) allow us to deduce more general
relations, which are contained in the following lemma.

Lemma II.3.2 Let

r ∈ [q, nq/(n− q)], if q ∈ [1, n),

and
r ∈ [q,∞), if q ≥ n.

Then, for all u ∈ C∞
0 (Rn) we have

1 See Hardy, Littlewood, & Polya 1934, Theorem 16, p. 26.
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‖u‖r ≤
(

c1
2
√
n

)λ

‖u‖1−λ
q ‖∇u‖λ

q , (II.3.5)

where
c1 = max(q, r(n− 1)/n), λ = n(r − q)/rq.

Proof. We shall distinguish the two cases:

(i) q ≤ r ≤ qn/(n− 1),
(ii) r ≥ qn/(n− 1).

In case (i) we have by (II.2.7) and (II.3.4)

‖u‖r ≤ ‖u‖θ
q‖u‖1−θ

qn/(n−1)
≤
(

q

2
√
n

)(1−θ)/q

‖u‖(θ−1)/q+1
q ‖∇u‖(1−θ)/q

q

with

θ =
r(1 − n) + nq

r
.

Substituting the value of θ in the preceding relation furnishes (II.3.5). In case
(ii), we replace u in (II.3.2) with |u|r(n−1)/n and apply the Hölder inequality
to obtain

‖u‖r(n−1)/n
r ≤ r(n − 1)

2n
√
n

‖u‖[r(n−1)−n]/n
β ‖∇u‖q, β =

qr(n− 1) − n

n(q − 1)
.

Notice that q ≤ β. Moreover, it is

β ≤ r for r ≤ nq/(n− q), if q < n

and
β ≤ r for all r <∞, if q ≥ n.

In either case we may use (II.2.7) to obtain

‖u‖β ≤ ‖u‖θ
q‖u‖1−θ

r , θ =
r(q − n) + nq

(r − q)[r(n− 1) − n]
.

Substituting this inequality in the preceding one gives (II.3.5), and the proof
of the lemma is complete. ut

Lemma II.3.2 can be extended to include Lq-norms of derivatives of order
higher than one. A general multiplicative inequality is given in Nirenberg
(1959, p.125). We reproduce here this result, referring the reader to the paper
of Nirenberg for a proof. Set

|u|k,p ≡


∑

|`|=k

∫

Ω

|D`u|p



1/p

.

We have the following.



54 II Basic Function Spaces and Related Inequalities

Lemma II.3.3 Let u ∈ Lq(Rn), with Dαu ∈ Lr(Rn), |α| = m > 0, 1 ≤
q, r ≤ ∞. Then, Dαu ∈ Ls(Rn), |α| = j, and the following inequality holds
for 0 ≤ j < m and some c = c(n,m, j, q, r, a):

|u|j,s ≤ c |u|am,r‖u‖1−a
q , (II.3.6)

where
1

s
=
j

n
+ a

(
1

r
− m

n

)
+ (1 − a)

1

q
,

for all a in the interval
j

m
≤ a ≤ 1,

with the following exceptional cases

1. If j = 0, rm < n, q = ∞ then we make the additional assumption that
either u(x) → 0 as |x| → ∞, or u ∈ Lq(Rn) for some q ∈ (0,∞).

2. if 1 < r <∞, and m− j−n/r is a nonnegative integer then (∗) holds only
for a satisfying j/m ≤ a < 1.

From Lemma II.3.2 we wish to single out some special inequalities that
will be used frequently in the theory of the Navier–Stokes equations. First of
all, we have the Sobolev inequality

‖u‖r ≤ q(n − 1)

2(n− q)
√
n
‖∇u‖q, 1 ≤ q < n, r = nq/(n− q), (II.3.7)

derived for the first time by Sobolev (1938) by a complete different method
and for q ∈ (1, n).2 Inequality (II.3.7), holding a priori only for functions
u ∈ C∞

0 (Rn), can be clearly extended, by density, to every u ∈ W 1,q
0 (Ω),

1 ≤ q < n. We then deduce, in particular, that every such function is in
Lr(Ω) with r given in (II.3.7).

Exercise II.3.8 Let Ω = B1 or Ω = R
n, n ≥ 2. Show, by means of a counterex-

ample, that the Sobolev inequality does not hold if q = n, that is, a (positive, finite)
constant γ independent of u such that

‖u‖∞ ≤ γ‖∇u‖n, u ∈ C∞
0 (Ω), n ≥ 2,

does not exist. (In this respect, see also Section II.9 and Section II.11).3

Remark II.3.2 In connection with (II.3.7) we would like to make some com-
ments. When Ω is an unbounded domain (in particular, exterior to the closure
of a bounded domain) the investigation of the asymptotic properties of a so-
lution u to a system of partial differential equations is strictly related to the

2 In this regard, see Theorem II.11.3 and Exercise II.11.4.
3 For a sharp version of the Sobolev inequality when q = n and Ω is bounded, see

Trudinger (1967).
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Lebesgue space Ls(Ω) to which u belongs and, roughly speaking, the behavior
of u at large distances will be better known when the exponent s is lower.4

Now, as we shall see in subsequent chapters, the inherent information we derive
from the Navier–Stokes equations in such domains is that u (a generic compo-
nent of the velocity field) has first derivatives Diu summable with exponents
qi which, however, may vary with xi, i = 1, . . . , n. Therefore, we may wonder
if (II.3.7) can be replaced by another inequality which takes into account this
different behavior in different directions and leads to an exponent s of summa-
bility for u strictly less than the exponent r given in (II.3.7). This question
finds its answer within the context of anisotropic Sobolev spaces (Nikol’skĭi
1958). Here, we shall limit ourselves to quote, without proof, an inequality
due to Troisi (1969, Teorema 1.2) representing the natural generalization of
(II.3.7) to the anisotropic case. Let

1 ≤ qi <∞, i = 1, . . . , n.

Then, for all u ∈ C∞
0 (Rn) the following Troisi inequality holds:

‖u‖s ≤ c

n∏

i=1

‖Diu‖1/n
qi

,

n∑

i=1

q−1
i > 1, s =

n(∑n
i=1 q

−1
i − 1

) . (II.3.8)

If qi = q, for all i = 1, . . . , n, (II.3.8) reduces to (II.3.7). On the other hand,
if for some i (=1, say), q1 < q ≡ q2 = . . . = qn, from (II.3.8) we deduce

s = r +
nq(q1 − q)

(q − q1) + q1(n − q)
< r.

�

Other special cases of (II.3.5) are now considered. We choose in Lemma
II.3.2 n = q = 2 and r = 4 to deduce the Ladyzhenskaya inequality

‖u‖4 ≤ 2−1/4‖u‖1/2
2 ‖∇u‖1/2

2 , (II.3.9)

shown for the first time by Ladyzhenskaya (1958, 1959a, eq. (6)). It should
be emphasized that (II.3.9) does not hold in three space dimensions with the
same exponents (see Exercise II.3.9). Rather, for n = 3, q = 2, and r = 4,
inequality (II.3.5) delivers

‖u‖4 ≤
(

4

3
√

3

)3/4

‖u‖1/4
2 ‖∇u‖3/4

2 . (II.3.10)

Furthermore, for n = 3, q = 2, r = 6 the Sobolev inequality (II.3.7) specializes
to

4 It is needless to say that the possibility of lowering the exponent s depends on
the particular problem.
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‖u‖6 ≤ 2√
3
‖∇u‖2. (II.3.11)

In two space dimensions there is no analogue of (II.3.11), and so, in particular,
for n = 2, a function having all derivatives in L2(R2) need not be in Lr(R2),
whatever r ∈ [1,∞]. 5

Exercise II.3.9 Let ϕ be the C∞ “cut-off” function introduced in Exercise II.3.4
and set um(x) = ϕ(x) exp(−m|x|), m ∈ N. Obviously, {um} ⊂ C∞

0 (Rn). Show that
for n = 3 the following inequality holds

R(m) ≡ ‖um‖4
4

‖um‖2
2‖∇um‖2

2

≥ cm

Rm

0
e−yy2dyRm

0
e−2yy2dy

,

with c a positive number independent of m. Since R(m) → ∞ as m → ∞, a constant
γ ∈ (0,∞) such that

‖u‖4 ≤ γ‖u‖1/2
2 ‖∇u‖1/2

2 , u ∈ C∞
0 (R3),

does not exist.

The case q > n of Lemma II.3.2 can be further strengthened, as shown by
the following lemma.

Lemma II.3.4 Let q > n. Then, for all u ∈ C1(B(x)) we have

|u(x)| ≤ ω−1
n ‖u‖1,B(x) + ω−1/q

n

(
q − 1

q − n

)1−1/q

‖∇u‖q,B(x) , (II.3.12)

and so, in particular, for all u ∈ C∞
0 (Rn),

sup
x∈Rn

|u(x)| ≤ c2ω
−1/q
n ‖u‖1,q,Rn (II.3.13)

with

c2 = max

{
1,

(
q − 1

q − n

)(q−1)/q
}
.

Proof. It is enough to prove (II.3.12), since (II.3.13) follows by using the
Hölder inequality in the first term of (II.3.12). From the identity

u(x) − u(y) = −
∫ |x−y|

0

∂u(x + re)

∂r
dr, e =

y − x
|y− x| , (II.3.14)

5 For example, for α ∈ (0, 1/2), take u(x) = lnα |x|, if |x| > 1 and u(x) = 0 if
|x| ≤ 1 . The problem of the behavior at large spatial distances of functions with
gradients in Lq(Ω), Ω an exterior domain, will be fully analyzed in Section II.7
and Section II.9.



II.3 The Sobolev Spaces Wm,q and Embedding Inequalities 57

we easily show

ωn|u(x)| ≤ ‖u‖1,B(x) +

∫

B(x)

|∇u(y)| |x− y|1−ndy. (II.3.15)

Applying the Hölder inequality in the integral in (II.3.15) and dividing the
resulting relation by ωn we prove (II.3.12). ut

We want now to draw some consequences from Lemma II.3.2 and Lemma
II.3.4. Employing the Young inequality (II.2.5) and the density of C∞

0 (Ω) in
W 1,q

0 (Ω), from (II.3.3), (II.3.5), and (II.3.13) we find, in particular, that a
function u ∈ W 1,q

0 (Ω) is also in Lr(Ω), for all r ∈ [q, nq/(n − q)], if 1 ≤
q < n, and for all r ≥ q, if q = n. Moreover, if q > n, u coincides a.e. in Ω
with a (uniquely determined) function of C(Ω). Finally, u obeys the following
inequalities:

‖u‖r ≤ C1‖u‖1,q 1 ≤ q < n, q ≤ r ≤ nq

n− q

‖u‖r ≤ C2‖u‖1,q q = n, q ≤ r <∞

‖u‖C ≤ C3‖u‖1,q q > n

(II.3.16)

with Ci = Ci(n, q, r), i = 1, 2, 3. Now, using (II.3.16) and an iterative argu-
ment we may generalize (II.3.16) to functions from Wm,q

0 (Ω), to obtain the
following embedding theorem whose proof is left to the reader as an exercise.

Theorem II.3.2 Let u ∈ Wm,q
0 (Ω), q ≥ 1, m ≥ 0. If mq ≤ n we have

Wm,q
0 (Ω) ↪→ Lr(Ω)

for all r ∈ [q, nq
n−mq ] if mq < n, and for all r ∈ [q,∞) if mq = n. In particular,

there are constants ci, i = 1, 2, depending only on m, q, r and n such that

‖u‖r ≤ c1‖u‖m,q for all r ∈ [q, nq
n−mq ], if mq < n,

‖u‖r ≤c2‖u‖m,q for all r ∈ [q,∞), if mq = n,
(II.3.17)

Finally, if mq > n, each u ∈ Wm,q
0 (Ω) is equal a.e. in Ω to a unique function

in Ck(Ω), 0 ≤ k < m− n/q, and the following inequality holds

‖u‖Ck ≤ c3‖u‖m,q, (II.3.18)

with c3 = c3(m, q, r, n).

We wish now to generalize Theorem II.3.2 to the spaces Wm,q(Ω), Ω 6= Rn.
One of the most usual ways of doing this is to construct an (m, q)-extension
map forΩ. By this we mean that there exists a linear operator E : Wm,q(Ω) →
Wm,q(Rn) such that
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(i) u(x) = [E(u)](x), for all x ∈ Ω
(ii) ‖E(u)‖m,q,Rn ≤ C‖u‖m,q,Ω,

for some constant C independent of u. It is then not hard to show that in-
equalities (II.3.17) and (II.3.18) continue to hold in Wm,q(Ω). For instance,
to prove (II.3.17) from (i) and (ii), we notice that

‖u‖r,Ω ≤ ‖E(u)‖r,Rn ≤ c ‖E(u)‖m,q,Rn ≤ cC‖u‖m,q,Ω.

Results on the existence of an extension map can be proved in a more
or less complicated way, depending on the smoothness of the domain. In this
regard, we shall now state a very general result due to Stein (1970, Chapter VI,
Theorem 5; see also Triebel 1978, §§4.2.2, 4.2.3) on the existence of suitable
extension maps called universal or total in that they do not depend on the
order of differentiability and summability involved. Specifically, we have the
following theorem whose rather deep proof will be omitted.

Theorem II.3.3 Let Ω be locally Lipschitz.6 Then, there exists an (m, q)-
extension map for Ω, for all q ∈ [1,∞] and m ≥ 0.

On the other hand, results similar to those of Theorem II.3.3 can be proved
in an elementary way, provided the domain is of class Cm (see, e.g., Lions 1962,
Théorème 4.1, and Friedman 1969, Lemma 5.2). This is because, for such a
domain, the boundary can be locally straightened by means of the smooth
transformation:

yi = xi if 1 ≤ i ≤ n− 1, yn = xn − ζ(x1, . . . , xn−1).

The extension problem is then reduced to the same problem in Rn
+, for which

a simple solution is available, as shown by the following exercise.

Exercise II.3.10 For x ∈ R
n, we put x′ = (x1, . . . , xn−1). Let u ∈ C∞

0 (R
n
+) and

set

Eu(x) =

8
>><
>>:

u(x) if xn ≥ 0

m+1X

p=1

λpu(x
′,−pxn) if xn < 0

where
m+1X

p=1

λp(−p)` = 1, ` = 0, 1, . . . ,m.

Show that Eu ∈ Cm
0 (Rn) and that, moreover, for all q ∈ [1,∞] and all |β| ∈ [0,m]

‖DβEu‖q,Rn ≤ C‖Dβu‖q,Rn
+
.

Therefore, E can be extended to an operator E : Wm,q (Rn
+) → Wm,q(Rn), which is

an (m, q)-extension map for R
n
+.

6 Actually, Stein’s theorem applies to much more general domains (with bounded
or unbounded boundary) and precisely to those which are “minimally smooth,”
see Stein (1970, Chapter VI, §3.3).



II.3 The Sobolev Spaces Wm,q and Embedding Inequalities 59

Exercise II.3.11 Let u ∈Wm,q
0 (Ω) and set

eu(x) =

8
<
:
u(x) if x ∈ Ω

0 if x ∈ Ωc.

Show that eu ∈Wm,q (Rn).

On the strength of Theorem II.3.3 we thus have

Theorem II.3.4 Suppose Ω locally Lipschitz. Then all conclusions in The-
orem II.3.2 remain valid if we replace Wm,q

0 (Ω) with Wm,q(Ω) for some con-
stants ci = ci(m, q, r, n, Ω), i = 1, 2, 3.

We wish to remark that, by using alternative methods due to Gagliardo
(1958, 1959), one can show the results in Theorem II.3.4 under more general
assumptions on Ω (see also Miranda 1978, §58).

Exercise II.3.12 Assume Ω locally Lipschitz. Use Theorem II.3.3 to show that,
under the assumptions on r, q, and n stated in Lemma II.3.2 the following inequality
holds for u ∈W 1,q(Ω):

‖u‖r ≤ c ‖u‖1−λ
q ‖u‖λ

1,q , (II.3.19)

where c is independent of u and λ = n(r − q)/rq.

Exercise II.3.13 Let u : Ω → R
n and let e be a given unit vector. For h 6= 0 the

quantity

∆hu(x) ≡ u(x+ he) − u(x)

h

is called the difference quotient of u along e. (a) Show that, if Ω′ is any domain
with Ω′ ⊂ Ω, the following properties hold for all u ∈W 1,q (Ω):

(i) ∆hu(x) ∈ Lq(Ω′), for all h < dist(Ω′, Ω) ;
(ii) ‖∆hu(x)‖q,Ω′ ≤ ‖∇u‖q,Ω ;
(iii) If Ω ≡ R

n
+ and e is orthogonal to en:

‖∆hu(x)‖q,Rn
+
≤ ‖∇u‖q,Rn

+
.

Hint: For a smooth function u and e parallel to ei (say) it holds

∆hu(x) =
1

h

Z h

0

Diu(x1, . . . , xi + η, . . . , xn)dη.

(b) Conversely, assume u ∈ Lq(Ω) and that for all Ω′ with Ω′ ⊂ Ω and for all
h < dist(Ω′, Ω) it holds ‖∆hu‖q,Ω′ ≤ C, with a constant C independent of Ω′ and
h. Then if e is parallel to ei, show that

(iv) Diu exists;
(v) ‖Diu‖q,Ω ≤ C.
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We wish to end this section by recalling a useful characterization of the
normed dual space (Wm,q

0 (Ω))
′

of the space Wm,q
0 (Ω). An analogous result

can be given for Wm,q(Ω). A functional ` on Wm,q
0 (Ω) belongs to (Wm,q

0 (Ω))
′

if and only if
‖`‖(Wm,q

0 (Ω))
′ ≡ sup

‖u‖m,q=1

|`(u)| <∞.

Let us consider in (Wm,q
0 (Ω))

′
the subspace constituted by functionals F of

the form
F(u) = (f, u) , f ∈ Lq′

(Ω). (II.3.20)

Clearly, F ∈ (Wm,q
0 (Ω))

′
. Setting

‖f‖−m,q′ = sup
u∈Wm,q

0 (Ω);‖u‖m,q=1

|F(u)|, (II.3.21)

we easily recognize that (II.3.21) is a norm in Lq′
(Ω), and that the following

inequalities hold:
‖f‖−m,q′ ≤ ‖f‖q′

|F(u)| ≤ ‖f‖−m,q′‖u‖m,q.
(II.3.22)

Let us denote by W−m,q′

0 (Ω) the negative Sobolev space of order (−m, q′),
obtained by completing Lq′

(Ω) in the norm (II.3.21). The following result

due to Lax (1955, §2) ensures that for q ∈ (1,∞) the two spaces W−m,q′

0 (Ω)
and (Wm,q

0 (Ω))
′
can be identified (see also Miranda 1978, §57).

Theorem II.3.5 The spaces W−m,q′

0 (Ω) and (Wm,q
0 (Ω))

′
, 1 < q < ∞, are

isomorphic.

Throughout this book the value of a functional F ∈ W−m,q′

0 (Ω) at u ∈
Wm,q

0 (Ω) will be denoted by

〈F , u〉 (duality pairing).

If, in particular, F ∈ Lq′
(Ω), we have 〈F , u〉 = (F , u).

Remark II.3.3 A characterization completely similar to that of Theorem
II.3.5 can be given also for the space (Wm,q(Ω))′. Precisely, denoting by
W−m,q′

(Ω) the completion of Lq′
(Ω) in the norm

‖f‖∗−m,q′ = sup
u∈Wm,q(Ω);‖u‖m,q=1

|F(u)| ,

with F(u) defined in (II.3.20), one shows that W−m,q′
(Ω) and (Wm,q(Ω))

′
,

1 < q <∞, are isomorphic; see Miranda loc. cit. Notice that, obviously,

‖f‖−m,q′ ≤ ‖f‖∗−m,q′ .

�
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II.4 Boundary Inequalities and the Trace of Functions of
Wm,q

As a next problem, we wish to investigate if, analogously to what happens
for smooth functions, it is possible to ascribe a value at the boundary (the
trace) to functions in Wm,q(Ω). If Ω is sufficiently regular, the considerations
developed in the preceding section assure that this is certainly true if mq > n,
since, in such a case, every function from Wm,q(Ω) can be redefined on a
set of zero measure in such a way that it becomes (at least) continuous up to
the boundary. However, if mq ≤ n we can nevertheless prove some inequalities
relatingWm,q-norms of a smooth function with Lr-norms of the same function
at the boundary, which will allow us to define, in a suitable sense, the trace
of a function belonging to any Sobolev space of order (m, q), m ≥ 1. To this
end, given a sufficiently smooth domain with a bounded boundary (locally
Lipschitz, say) we denote by Lq(∂Ω), 1 ≤ q ≤ ∞ the space of (equivalence
classes of) real functions u defined on ∂Ω and such that

‖u‖q,∂Ω ≡
(∫

∂Ω

|u|qdσ
)1/q

<∞, 1 ≤ q <∞,

‖u‖∞,∂Ω ≡ ess sup
∂Ω

|u| <∞, q = ∞,

where σ denotes the Lebesgue (n−1)-dimensional measure.1 It can be proved
that the space Lq(∂Ω) enjoys all the relevant functional properties of the
spaces Lq(Ω). In particular, it is a Banach space with respect to the norm
‖ · ‖q,∂Ω, 1 ≤ q ≤ ∞, which is separable for 1 ≤ q < ∞ and reflexive for
1 < q <∞ (see Miranda 1978, §60).

In order to accomplish our objective, we need some preliminary consider-
ations and results that we shall next describe.

We shall often use the classical Gauss divergence theorem for smooth vec-
tor functions. It is well known that this theorem certainly holds if the domain
is (piecewise) of class C1. However, we need to consider more general sit-
uations and, in this respect, we quote the following result of Nečas (1967,
Chapitre 2, Lemme 4.2 and Chapitre 3, Théorème 1.1).

Lemma II.4.1 Let Ω be a bounded, locally Lipschitz domain in Rn. Then
the unit outer normal n exists almost everywhere on ∂Ω (see Lemma II.1.2)
and the following identity holds

∫

Ω

∇ · u =

∫

∂Ω

u ·n,

for all vector fields u with components in C1(Ω).

1 As usual, if no confusion arises, the infinitesimal surface element dσ in the integral
will be omitted.
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A generalization of this result to functions from W 1,q(Ω) will be considered
in Exercise II.4.3.

We are now in a position to perform a study on the traces of functions
from Wm,q. Let Ω′ be a locally Lipschitz, star-shaped domain (with respect to
the origin) and let u be an arbitrary function from C∞

0 (Ω′). From the identity

|u|rDjxj = Dj(xj |u|r) − xjDj |u|r, r ∈ [1,∞)

and Lemma II.4.1 we easily deduce

∫

∂Ω′
x ·n|u|r ≤ n‖u‖r

r,Ω′ + rδ(Ω′)

∫

∂Ω′
|u|r−1|∇u|. (II.4.1)

Using the Hölder inequality in the last integral in (II.4.1) and noting that

ess inf
x∈∂Ω′

(x · n(x)) ≡ c > 0

(see Exercise II.1.4), we obtain

‖u‖r
r,∂Ω′ ≤ (n/c)‖u‖r

r,Ω′ + (rδ(Ω′)/c)‖u‖r−1
q′(r−1),Ω′‖∇u‖q,Ω′. (II.4.2)

We now choose r ∈ [q, (n−1)q/(n−q)], if q < n, and arbitrary r ≥ q, if q ≥ n.
Observing that r ≤ q′(r − 1), in the light of Exercise II.3.12 (see (II.3.19)),
inequality (II.4.2) then furnishes for all u ∈ C∞

0 (Ω′)

‖u‖r,∂Ω′ ≤ C
(
‖u‖r(1−λ)

q,Ω′ ‖u‖rλ
1,q,Ω′ + ‖u‖(r−1)(1−λ)

q,Ω′ ‖u‖1+λ(r−1)
1,q,Ω′

)1/r

≤ 21/rC
(
‖u‖1−λ

q,Ω′‖u‖λ
1,q,Ω′ + ‖u‖(1−1

r )(1−λ)
q,Ω′ ‖u‖

1
r +λ(1− 1

r )
1,q,Ω′

) (II.4.3)

where λ = n(r − q)/q(r − 1), C = C(n, r, q, Ω′), and where we used (II.3.3).
Employing Lemma II.1.3 and Lemma II.1.4, we can now establish (II.4.3)

for an arbitrary locally Lipschitz domain Ω. In fact, let G = {G1, . . . , GN}
be the open covering of ∂Ω constructed in Lemma II.1.3 and let {ψi} be a
partition of unity in ∂Ω subordinate to G. SettingΩi = Ω∩Gi, for u ∈ C∞

0 (Ω),
we have

‖u‖r,∂Ω = ‖
N∑

i=1

ψiu‖r,∂Ω ≤
N∑

i=1

‖u‖r,∂Ω∩Gi ≤
N∑

i=1

‖u‖r,∂Ωi ,

and therefore, using in this inequality (II.4.3) with Ω′ ≡ Ωi, we deduce

‖u‖r,∂Ω ≤ 21/rNC
(
‖u‖(1−λ)

q,Ω ‖u‖λ
1,q,Ω + ‖u‖(1−1

r )(1−λ)

q,Ω ‖u‖
1
r +λ(1− 1

r )

1,q,Ω

)
.

(II.4.4)
Let now Ω be locally Lipschitz, and denote by γ the linear map which to

every function f ∈ C∞
0 (Ω) associates its value at the boundary γ(f) = f |∂Ω,
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and let u ∈ W 1,q(Ω). By Theorem II.3.1, there is a sequence {fk} ⊂ C∞
0 (Ω)

converging to u in W 1,q(Ω). On the other hand, by (II.4.4) this sequence will
also converge in Lr(∂Ω), for suitable r, to a function ũ ∈ Lr(∂Ω). Since, as can
be easily shown, ũ does not depend on the particular sequence, the map γ can
be uniquely extended, by continuity, to a map fromW 1,q(Ω) into Lr(∂Ω) that
ascribes, in a well-defined sense, to every function from W 1,q(Ω) a function
on the boundary which, for smooth functions u, reduces to the usual trace
u|∂Ω. This result can be fairly generalized to spaces Wm,q with m > 1. In fact,
from Theorem II.3.4 and an iterative argument based on (II.4.4), we obtain
the following result whose proof is left to the reader as an exercise.

Theorem II.4.1 Let Ω be locally Lipschitz. Assume

r ∈ [q, q(n− 1)/(n−mq)] , if mq < n,

r ∈ [q,∞) , if mq ≥ n.

Then there exists a unique, continuous linear map γ from Wm,q(Ω), 1 ≤ q <
∞ , m ≥ 1, into Lr(∂Ω) such that for all u ∈ C∞

0 (Ω) it is γ(u) = u |∂Ω .
Furthermore, for m = 1 the following inequality holds

‖γ(u)‖r,∂Ω ≤ C
(
‖u‖(1−λ)

q,Ω ‖u‖λ
1,q,Ω + ‖u‖(1−1

r )(1−λ)

q,Ω ‖u‖
1
r +λ(1− 1

r )

1,q,Ω

)
, (II.4.5)

where C = C(n, r, q, Ω) and λ = n(r − q)/q(r − 1).

Exercise II.4.1 Let Ω be locally Lipschitz. Starting from (II.4.5), show that for
any ε > 0, there exists C = C(n, r, q,Ω, ε) > 0 such that

‖γ(u)‖r,∂Ω ≤ C‖u‖q,Ω + ε‖∇u‖q,Ω ,

with the exponents q and r subject to the restrictions stated in Theorem II.4.1.

Hint: Use (II.2.5).

Theorem II.4.1 allows us to define, in a natural way, higher-order traces.
Actually, since for u ∈ Wm,q(Ω) we have Dαu ∈ Wm−`,q(Ω) for 0 ≤ |α| ≤
` < m, the trace of Dαu is well defined and, moreover, it belongs to Lr(∂Ω)
for suitable exponents r ≥ 1. In particular, if Ω is sufficiently regular, we can
give a precise meaning to the `th normal derivative on ∂Ω:

∂`u

∂n`
≡
∑

|α|=`

nαDαu, nα = nα1
1 nα2

2 . . . nαn
n ,

of every function u ∈Wm,q(Ω),m > ` ≥ 0. Thus, noticing that nα ∈ L∞(∂Ω),
we can construct a linear map

Γ(m) : Wm,q(Ω) → [Lr(∂Ω)]
m

(II.4.6)

with



64 II Basic Function Spaces and Related Inequalities

Γ(m)(u) =

(
u ≡ γ0(u),

∂u

∂n
≡ γ1(u), . . . ,

∂m−1u

∂nm−1
≡ γm−1(u)

)
. (II.4.7)

Obviously, if u ∈ Wm,q
0 (Ω), Γm(u) ≡ 0 a.e. on ∂Ω. The converse result also

holds and we have (see Nečas 1967, Chapitre 2, Théorème 4.10, 4.12, 4.13).

Theorem II.4.2 Let Ω be locally Lipschitz if m = 1, 2 and of class Cm,1 if
m ≥ 3. Assume

u ∈Wm,q(Ω), 1 ≤ q <∞, m ≥ 1,

with Γm(u) ≡ 0 a.e on ∂Ω. Then u ∈Wm,q
0 (Ω).

A more complicated study, which is nonetheless fundamental for solving
nonhomogeneous boundary-value problems, is that of determining to which
Banach space B ⊆ [Lr(∂Ω)]

m
a function w ≡ (w0, w1, . . . , wm−1) must belong

in order to be considered the trace, via the mapping Γ(m), of a function in
Wm,q(Ω), i.e., γ`(u) = w`, for some u ∈Wm,q(Ω), for all ` = 0, 1, . . . , m− 1.
A counterexample due to J. Hadamard shows that B is, in general, strictly
contained in [Lr(∂Ω)]

m
, whatever r ≥ 1 (Sobolev 1963a, Chapter 2, §5; De

Vito 1958). Here we shall only briefly describe the answer to the problem,
referring the reader to Gagliardo (1957) and Nečas (1967, Chapitre 2, §§4,5)
for a fully detailed description of it. Let us first consider the case m = 1.
Denote by W 1−1/q,q(∂Ω) the subspace of Lq(∂Ω) constituted by functions u
for which the following functional is finite:

‖u‖1−1/q,q(∂Ω) ≡ ‖u‖q,∂Ω + 〈〈u〉〉1−1/q,q, (II.4.8)

where

〈〈u〉〉1−1/q,q ≡
(∫

∂Ω

∫

∂Ω

|u(y) − u(y′)|q
|y− y′|n−2+q

dσydσy′

)1/q

. (II.4.9)

It can be proved (Miranda 1978, §61) that W 1−1/q,q(∂Ω) is a dense subset
of Lq(∂Ω) and that it is complete in the norm ‖u‖1−1/q,q(∂Ω). Furthermore,
it is separable for q ∈ [1,∞) and reflexive for q ∈ (1,∞), and, for Ω smooth
enough, the class of smooth functions on ∂Ω is dense in W 1−1/q,q(∂Ω). We
have the following theorem of Gagliardo (1957), which characterizes the trace
operator γ.

Theorem II.4.3 Let Ω be locally Lipschitz and let q ∈ (1,∞). If u ∈
W 1,q(Ω), then γ(u) ∈W 1−1/q,q(∂Ω) and

‖γ(u)‖1−1/q,q(∂Ω) ≤ c1‖u‖1,q,Ω. (II.4.10)

Conversely, given w ∈W 1−1/q,q(∂Ω), there exists u ∈W 1,q(Ω) with γ(u) = w
such that

‖u‖1,q,Ω ≤ c2‖γ(u)‖1−1/q,q(∂Ω). (II.4.11)

The constants ci, i = 1, 2, depend only on n, q, and Ω.
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Since, by Theorem II.4.2, we have, for Ω locally Lipschitz, u1, u2 ∈
W 1,q(Ω) with γ(u1) = γ(u2) then u1 − u2 ∈ W 1,q

0 (Ω), Gagliardo’s theorem
can be equivalently stated by saying: The trace operator γ is a linear bounded

bijective operator from the quotient space W 1,q(Ω)
/
W 1,q

0 (Ω) onto the space

W 1−1/q,q(∂Ω).

Remark II.4.1 Gagliardo proved this result by making a clever use of two
elementary inequalities due to G. H. Hardy and C. B. Morrey, respectively.
Though the proof of Theorem II.4.3 is well beyond the scope of this mono-
graph, we may wish nevertheless to sketch a demonstration of (II.4.10) in the
case when Ω is the square

S =
{
(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1

}
.2

We begin to notice that, in view of Theorem II.4.1, it suffices to show that
the double surface integral in (II.4.7) is bounded above by the norm of u in
W 1,q(S), i.e.,

∫ 1

0

∫ 1

0

∣∣∣∣
u(0, y) − u(0, y′)

y − y

′∣∣∣∣
q

dy dy′+

∫ 1

0

∫ 1

0

∣∣∣∣
u(1, y) − u(1, y′)

y − y′

∣∣∣∣
q

dy dy′

+

∫ 1

0

∫ 1

0

∣∣∣∣
u(x, 0)− u(x′, 0)

x− x′

∣∣∣∣
q

dxdx′+

∫ 1

0

∫ 1

0

∣∣∣∣
u(x, 1)− u(x′, 1)

x− x′

∣∣∣∣
q

dx dx′

≤ C ‖u‖q
1,q,S

(II.4.12)
with a constant C independent of u. By Theorem II.3.1, we can assume u ∈
C∞

0 (S). Consider the first integral on the left-hand side of (II.4.11) and denote
it by I. Making the change of variables

ξ = x+ y, η = y − x,

(a rotation of an angle π/4) we may write

I =

∫ 1

0

∫ 1

0

∣∣∣∣
U(η, η) − U(η, η′)

η − η′

∣∣∣∣
q

dηdη′,

where

U(ξ, η) ≡ u

(
ξ − η

2
,
ξ + η

2

)
.

Setting
φ(η) = U(η, η)

2 In fact, following Gagliardo, it is not difficult to prove that the case of a general
locally Lipschitz domain can be reduced to the present one.
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for 0 ≤ η′ < η ≤ 1 we have

|φ(η) − φ(η′)|
η − η′

≤ 1

η − η′

∫ η

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣ dλ+
1

η − η′

∫ η

η′

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣ dµ

and thus, by (II.3.3),

f(η, η′) ≡
∣∣∣∣
φ(η) − φ(η′)

η − η′

∣∣∣∣
q

≤ 2q−1

{[
1

|η − η′|

∫ η

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣ dλ
]q

+

[
1

|η − η′|

∫ η

η′

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣ dµ
]q}

.

(II.4.13)

We now recall the following inequalities due to G.H. Hardy (Hardy, Littlewood
and Polya 1934, p. 240):

∫ b

a

dx

∣∣∣∣
1

x− a

∫ x

a

f(t)dt

∣∣∣∣
q

≤
(

q

q − 1

)q ∫ b

a

|f(t)|qdt, x > a, q > 1

∫ b

a

dx

∣∣∣∣∣
1

b− x

∫ b

x

f(t)dt

∣∣∣∣∣

q

≤
(

q

q − 1

)q ∫ b

a

|f(t)|qdt, x < b, q > 1.

(II.4.14)

Integrating (II.4.13) first in η ∈ (η′, 1] and then in η′ ∈ [0, 1] and using (II.4.14)
we obtain

∫ 1

0

(∫ 1

η′
f(η, η′)dη

)
dη′ ≤ 2q−1

(
q

q − 1

)q [∫ 1

0

dη′
∫ 1

η′

∣∣∣∣
∂U

∂λ
(λ, η′)

∣∣∣∣
q

dλ

+

∫ 1

0

dη

∫ η

0

∣∣∣∣
∂U

∂µ
(η, µ)

∣∣∣∣
q

dµ

]

≤ c‖∇u‖q
q,S,

(II.4.15)
with c a suitable constant. Interchanging the roles of η and η′ in (II.4.15) and
noticing that f(η, η′) = f(η′, η) one also has

∫ 1

0

(∫ 1

η

f(η, η′)dη′
)
dη ≤ c‖∇u‖q

q,S. (II.4.16)

Adding (II.4.15) and (II.4.16) we find

I ≤ 2c‖∇u‖q
q,S.

Since the other integrals on the left-hand side of (II.4.12) can be analogously
increased, the proof of (II.4.12) is accomplished. �

Exercise II.4.2 According to the method just described, the case q = 1 of Theorem

II.4.3 is excluded because Hardy’s inequalities (II.4.14) hold if q > 1. Show, by means
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of a counterexample, that (II.4.14) does not hold when q = 1. Hint (Gagliardo 1957):

Take f(t) = (t − a)−1(log(t − a))−2. (For the characterization of the trace when

m = q = 1, see Gagliardo (1957, Teorema 1.II)).

The extension of Theorem II.4.3 to the space Wm,q(Ω), m ≥ 2, is for-
mally analogous, provided we introduce a suitable generalization of the space
W 1−1/q,q(∂Ω). To this end, assume Ω of class Cm−1,1 and let {Bk} and
{ζk}, k = 1, 2, . . . , s, be a family of open balls centered at xk ∈ ∂Ω with
∂Ω ⊂ Bk, and of functions of class Cm−1,1(Dk), respectively, defining the
Cm−1,1 − regularity of ∂Ω in the sense of Definition II.1.1. Assuming that

x(k)
n = ζk(x

(k)
1 , . . . , x

(k)
n−1), (x

(k)
1 , . . . , x

(k)
n−1) ∈ Dk

is the representation of ∂Ω ∩Bk, for a function u on ∂Ω we set

uk = u(x
(k)
1 , . . . , x

(k)
n−1, ζk(x

(k)
1 , . . . , x

(k)
n−1))

and define

‖u‖m−1/q,q(∂Ω) ≡
s∑

k=1

‖uk‖m−1/q,q,Dk
(II.4.17)

where

‖uk‖m−1/q,q,Dk
≡

∑

0≤|α|≤m−1

‖Dαuk‖q,Dk + 〈〈uk〉〉m−1/q,q

〈〈uk〉〉m−1/q,q ≡
∑

|α|=m−1

(∫

Dk

∫

Dk

|Dαu(y) −Dαu(y′)|q
|y − y′|n−2+q dydy′

)1/q

.

(II.4.18)
We next denote by Wm−1/q,q(∂Ω) the linear space of functions u for which
the functional defined by (II.4.17)–(II.4.18) is finite. It can be shown that
the definition of Wm−1/q,q(∂Ω) does not depend on the particular choice
of the local representation {Bk}, {ζk} of the boundary. In fact, if {B′

k′},
{ζ′k′} is another such a representation and ‖u‖′m−1/q,q(∂Ω) is the corresponding
functional associated to u, there exist constants c1, c2 > 0 such that

‖u‖m−1/q,q(∂Ω) ≤ c1‖u‖′m−1/q,q(∂Ω) ≤ c2‖u‖m−1/q,q(∂Ω)

(Nečas 1967, Chapitre 3, Lemme 1.1). As in the case of W 1−1/q,q(∂Ω), one
shows that the space Wm−1/q,q(∂Ω) is a dense subset of Lq(∂Ω), which is
complete in the norm (II.4.17)–(II.4.17), separable for q ∈ [1,∞) and reflexive
for q ∈ (1,∞) (Nečas 1967, Chapitre 2, Proposition 3.1).

Set

Wm,q(∂Ω) ≡Wm−1/q,q(∂Ω) ×Wm−1−1/q,q(∂Ω) × . . .×W 1−1/q,q(∂Ω).

We then have the following characterization of the trace operator Γ(m) defined
in (II.4.6)–(II.4.7) (Nečas 1967, Chapitre 2, Théorème 5.5, 5.8).
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Theorem II.4.4 Let Ω be of class Cm−1,1, m ≥ 2. If

u ∈Wm,q(Ω), 1 < q <∞,

then
Γ(m)(u) ∈ Wm,q(∂Ω)

and for all ` = 0, 1, . . . , m− 1 it is

‖γ`(u)‖m−`−1/q,q(∂Ω) ≤ c1‖u‖m,q,Ω. (II.4.19)

Conversely, if Ω is of class Cm,1, given

w ∈ Wm,q(∂Ω)

there exists u ∈Wm,q(Ω) with

Γ(m)(u) = w

and the following inequality holds

‖u‖m,q,Ω ≤ c2

m−1∑

`=0

‖γ`(u)‖m−`−1/q,q(∂Ω). (II.4.20)

The constants ci, i = 1, 2, depend only on n,m, q, and Ω.

As in the case of the operator γ, the operator Γ(m) can also be charac-
terized, in view of Theorem II.4.2 and Theorem II.4.4, as a bounded linear
bijection of Wm,q(Ω) /Wm,q

0 (Ω) onto Wm,q(∂Ω) (topologized in the obvious
way).

Remark II.4.2 If Ω is not globally smooth but has a smooth boundary
portion σ, we can still define the trace on σ of functions from Wm,q(Ω) and
the space Wm,q(σ). In particular, inequality (II.4.19) continues to hold with
σ in place of ∂Ω (see Nečas, loc. cit.). �

Remark II.4.3 Problems of trace on the plane {xn = 0} for functions de-
fined in Rn−1 will be considered in Section II.10. �

Exercise II.4.3 (Nečas 1967, Chapitre 3, Théorème 1.1). Let Ω be bounded and
locally Lipschitz. Show the following Gauss identity:

Z

Ω

Φ∇ · u =

Z

∂Ω

Φu · n −
Z

Ω

u · ∇Φ (II.4.21)

for all vectors u with components in W 1,q (Ω) and scalars Φ from W 1,r(Ω) where q
and r satisfy

(i) q−1 + r−1 ≤ (n+ 1)/n if 1 ≤ q < n, 1 ≤ r < n;
(ii) r > 1 if q ≥ n;
(iii) q > 1 if r ≥ n;

Hint: Use Lemma II.4.1 and Theorem II.3.3 and Theorem II.4.1.

Remark II.4.4 An extension of (II.4.21) to functions u with less regular-
ity than that required in Exercise II.4.3 will be given in Section III.2, see
(III.2.14). �
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II.5 Further Inequalities and Compactness Criteria in
Wm,q

We begin to prove some inequalities relating the Lq-norm of a function with
that of its first derivatives (Poincaré 1894, §III, and Friedrichs 1933). Through-
out this section we shall denote by Ld a layer of width d > 0, namely

Ld = {x ∈ Rn : −d/2 < xn < d/2} .

Theorem II.5.1 Assume Ω ⊂ Ld, for some d > 0. Then, for all u ∈ W 1,q
0 (Ω),

1 ≤ q ≤ ∞,
‖u‖q ≤ (d/2)‖∇u‖q. (II.5.1)

Proof. It is enough to show the theorem for u ∈ C∞
0 (Ω). For such functions

one has

|u(x1, . . . , xn)| =

∣∣∣∣∣

∫ xn

−d/2

∂u(x1, . . . , ξ)

∂ξ
dξ

∣∣∣∣∣ =

∣∣∣∣∣

∫ d/2

xn

∂u(x1, . . . , ξ)

∂ξ
dξ

∣∣∣∣∣ ,

which implies

|u(x)| ≤ (1/2)

∫ d/2

−d/2

|∇u| dxn . (II.5.2)

From this relation we at once recover (II.5.1) for q = ∞. If q ∈ [1,∞), em-
ploying the Hölder inequality in the right-hand side of (II.5.2) yields

|u(x)|q ≤ (dq−1/2q)

∫ d/2

−d/2

|∇u|qdxn

which, after integrating over Ld, proves (II.5.1). ut

Exercise II.5.1 Inequality (II.5.1) fails, in general, if Ω is not contained in some
layer Ld. Suppose, for instance, Ω ≡ R

n and consider the sequence

um = exp[−|x|/(m+ 1)], m ∈ N.

Show that
‖um‖q

‖∇um‖q
=
m+ 1

q
.

Modify this example to prove the invalidity of (II.5.1) for Ω an arbitrary exterior

domain or a half-space.

The special case q = 2 in (II.5.1) plays an important role in several applica-
tions. In particular, it is of great interest in uniqueness and stability questions
to determine the smallest constant µ such that
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‖u‖2
2 ≤ µ‖∇u‖2

2. (II.5.3)

The constant µ (sometimes called the Poincaré constant) depends on the
domain Ω, and when Ω is bounded one easily shows that µ = 1/λ1, where λ1

is the smallest eigenvalue of the problem

−∆u = λu in Ω , u = 0 at ∂Ω ; (II.5.4)

see Sobolev 1963a, Chapter II, §16. An estimate of λ1 comes from (II.5.1) and
one has

λ1 ≥ 4/[δ(Ω)]2.

However, a better estimate can be obtained as a consequence of the following
simple argument due to E. Picard (Picone 1946, §160).1 In fact, assume as
before Ω ⊂ Ld for some d > 0 and consider the function

U(x) =
u(x)

sin[π(xn + d/2)/d]
, u ∈ C∞

0 (Ω).

Since U(x) is bounded in Ld and vanishes at −d/2, d/2, integrating by parts
we find

0 ≤
∫ d/2

−d/2

{
∂u

∂xn
− π

d
u(x) cot

[
π(xn + d/2)

d

]}2

dxn =

∫ d/2

−d/2

(
∂u

∂xn

)2

dxn

−π
2

d2

∫ d/2

−d/2

u2

{
sin−2

[
π(xn + d/2)

d

]
− cot2

[
π(xn + d/2)

d

]}
dxn .

Hence ∫ d/2

−d/2

u2dxn ≤ (d/π)2
∫ d/2

−d/2

(
∂u

∂xn

)2

dxn,

which implies
‖u‖2 ≤ (d/π)‖∇u‖2.

Therefore, one deduces
µ ≤ d2/π2

and, if Ω is bounded,
µ ≤ [δ(Ω)/π]2.

Notice that these estimates are sharp in the sense that when n = 1 and
Ω = Ld we have from (II.5.4) µ−1 = λ1 = [π/δ(Ω)]2 = (π/d)2.

Generalizations of (II.5.1) and (II.5.3) are considered in the following ex-
ercises.

1 This proof was brought to my attention by Professor Luigi Pepe.
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Exercise II.5.2 Let Ω ⊂ {x ∈ R
n : −d/2 < xi < d/2, i = 1, . . . , n}. Use Picard’s

argument to show the following estimate for the Poincaré constant µ:

µ ≤ d2/nπ2.

Exercise II.5.3 Let Ω ⊂ Ld, for some d > 0. Show that

‖∇u‖2 ≤ (d/π)‖∆u‖2

for all u ∈ W 1,2
0 (Ω) ∩W 2,2(Ω). Thus, in particular,

‖u‖2 ≤ (d/π)2‖∆u‖2.

Hint: Consider the identity: (u,∆u) = −‖∇u‖2.

Exercise II.5.4 Let Ω be of finite measure and let u ∈W 1,q
0 (Ω), 1 ≤ q < ∞. Show

the inequality
‖u‖q ≤ β|Ω|1/n‖∇u‖q (II.5.5)

where

β =

8
>><
>>:

q(n− 1)
2(n− q)

√
n

if q < n

q
2
√
n

if q ≥ n .

Hint: Use (II.3.5) and the inequality

‖u‖q ≤ |Ω|(1/q)−(1/r)‖u‖r , r > q.

Exercise II.5.5 Let Ω be bounded and let u ∈W 1,q
0 (Ω), q > n. Show that, for all

q1 ∈ (n, q), the following inequality holds

‖u‖C ≤ c ‖u‖1−q/q1
q ‖∇u‖q/q1

q ,

with c = c(n, q, q1, Ω). Hint: From (II.3.18) and (II.5.1) we find ‖u‖C ≤ c ‖∇u‖q .

Exercise II.5.6 Let Ω be bounded and C1-smooth, and let u be a vector function
with components in W 1,q (Ω), 1 ≤ q < ∞, and u · n = 0 at ∂Ω (n being the outer
normal). Show the inequality

‖u‖q ≤ C ‖∇u‖q, C ≤ δ(Ω)(|q − 2| + n+ 1).

Hint (due to L.H. Payne): Integrate the identity:

nX

i,j=1

`
Di[uixjuj |u|q−2] − (Diui)xjuj |u|q−2 − |u|q − uixjDi[uj |u|q−2]

´
= 0.

An inequality of the type (II.5.1) continues to hold even though u is not
zero at the boundary, provided one replaces u with u− uΩ. We shall begin to
prove the following result which traces back to Poincaré (1894).
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Lemma II.5.1 For a > 0 let

C = {x ∈ Rn : 0 < xi < a} . (II.5.6)

Then, for all u ∈W 1,q(C), 1 ≤ q <∞,

‖u− uC‖q ≤ na‖∇u‖q. (II.5.7)

Proof. For simplicity, we shall give the proof in the case n = 3. Clearly, in
view of Theorem II.3.1, it is enough to show (II.5.6) for u ∈ C1(Ω). Consider
the identity

u(x1, x2, x3) − u(y1, y2, y3) =

∫ x1

y1

∂u

∂ξ
(ξ, x2, x3)dξ +

∫ x2

y2

∂u

∂η
(y1 , η, x3)dη

+

∫ x3

y3

∂u

∂ζ
(y1, y2, ζ)dζ.

Integrating over the y-variables and raising to the qth power, we deduce

|u(x1, x2, x3) − uC |q ≤ |C|−q

[
a3

∫ a

0

|∇u(ξ, x2, x3)|dξ

+a2

∫ a

0

∫ a

0

|∇u(y1, η, x3)|dy1dη +a

∫

C

|∇u|dC
]q
.

Employing in this relation the inequality (II.3.3) along with the Hölder in-
equality and integrating over the x-variables we obtain

∫

C

|u− uC |q ≤ 3qaq

∫

C

|∇u|q,

which completes the proof. ut

Remark II.5.1 An extension of (II.5.7) to arbitrary locally Lipschitz do-
mains will be given in Theorem II.5.4. Here, however, we wish to observe
that, unlike Theorem II.5.1, some regularity assumptions on Ω are strictly
necessary for inequalities of type (II.5.7) to hold, as shown by means of coun-
terexample in Courant & Hilbert (1937, Kapitel VII, §8.2); see also Fraenkel
(1979, and §2 in particular). �

Let us now analyze some consequences of Lemma II.5.1. Suppose Ω is a
cube of side a and subdivide it into N equal cubes Ci, each having sides of
length a/N1/n. Applying (II.5.7) to each cube Ci and using the Minkowski
inequality and (II.3.3) one recovers
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‖u‖q
q,Ω ≤

N∑

i=1

2q−1

(
a

N1/n

)n(1−q) ∣∣∣∣
∫

Ci

udCi

∣∣∣∣
q

+
(2na)q

2N q/n
‖∇u‖q

q,Ω.

Therefore, introducing the N independent functions

ψi(x) = 2(q−1)/q

(
a

N1/n

)n(1−q)/q

χi(x),

with χi characteristic function of the cube Ci, from the previous inequality
one has the following result due to Friedrichs (1933).

Lemma II.5.2 Let C be the cube (II.5.6) and let

u ∈ W 1,q(C), 1 ≤ q <∞.

Then, given an arbitrary positive integer N , there exist N independent func-
tions ψi ∈ L∞(C) depending only on C and N such that

‖u‖q
q,C ≤

N∑

i=1

∣∣∣∣
∫

C

ψiu

∣∣∣∣
q

+
(2na)q

2N q/n
‖∇u‖q

q,C. (II.5.8)

Inequality (II.5.8) is very useful in proving compactness results, as we are
about to show. In fact, let Ω be bounded and let {um} ⊂W 1,q

0 (Ω), 1 ≤ q <∞,
be uniformly bounded in the norm ‖·‖1,q. Extending um by zero outsideΩ and
denoting again by um such an extension, we thus have that {um} is uniformly
bounded in W 1,q(C), for some cube C (see Exercise II.3.11), and therefore,
by Lemma II.5.2, Theorem II.2.4(ii) and Theorem II.3.2, it is not difficult to
show the existence of a subsequence {um′} that is Cauchy in Lq(C) and, as
a consequence, converges strongly in Lq(Ω). On the other hand, by Lemma
II.3.2 and by Exercise II.5.5, it follows that {um′} converges also in Lr(Ω), for
all r ∈ [1, nq/(n−q)), if q < n, for all r ∈ [1,∞) if q = n, while it converges in
C(Ω) if q > n. We have proved the following compact embedding result (see
Rellich 1930).

Theorem II.5.2 Assume Ω bounded, and let q ∈ [1,∞). Then

W 1,q
0 (Ω) ↪→↪→ Lr(Ω) ,

with arbitrary r ∈ [1, nq/(n− q)), if q < n, and arbitrary r ∈ [1,∞), if q = n.
Finally, if q > n, then W 1,q

0 (Ω) ↪→↪→ C(Ω)

In Theorem II.5.2, when q < n, the exponent q∗ = nq/(n− q) is excluded.
Actually one proves by means of counterexamples that the strong convergence
is, in general, ruled out in this case. For, in the ball B1 consider the sequence
of functions

um(x) =




m(n−q)/q(1 −m|x|) if |x| < 1/m

0 if |x| ≥ 1/m
m = 1, 2, . . .
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with q < n. One has

‖∇um‖q = C1, ‖um‖q∗ = C2,

with C1 and C2 independent of m. Since

lim
m→∞

um(x) = 0 a.e. in B1

it follows that no subsequence can converge strongly in Lq∗(B1).

Theorem II.5.2 admits the following counterpart in negative Sobolev
spaces.

Theorem II.5.3 Let Ω be bounded. Then Lq(Ω) ↪→↪→ W−1,q
0 (Ω), for any

1 < q < ∞. Precisely, if {um} ⊂ Lq(Ω) is uniformly bounded, there exists a
subsequence {um′} and u ∈ Lq(Ω) such that

lim
m′→∞

‖u− um′‖−1,q = 0 .

Proof. In view of inequality (II.5.1), we may endow W 1,q
0 (Ω) with the equiv-

alent norm ‖∇(·)‖q. We observe next that, by assumption and by Theorem
II.2.4(iii), there are u ∈ Lq(Ω) and a subsequence {um′} such that um′

w→ u.
Set Um′ = u− um′ . By Theorem II.3.5 and Theorem II.1.4, for each m′ ∈ N,

we can find wm′ ∈W 1,q′

0 (Ω) such that

‖Um′‖−1,q = |(Um′ , wm′)| , ‖∇wm′‖q′ = 1 . (II.5.9)

Then, by Theorem II.5.2 and Theorem II.1.3(ii), there exist a subsequence

{wm′′} and w ∈ W 1,q′

0 (Ω) such that wm′′ → w in Lq′
(Ω), and so (II.5.9)

delivers

‖Um′′‖−1,q ≤ |(Um′′ , w)|+‖Um′′‖q‖wm′′ −w‖q′ ≤ |(Um′′ , w)|+C ‖wm′′ −w‖q′ ,

which, in turn, gives the desired result since Um′′
w→ 0 in Lq(Ω) and wm′′ → w

in Lq′
(Ω). ut

Some generalizations of Theorem II.5.2 are proposed to the reader in the
following exercises.

Exercise II.5.7 Assume Ω bounded and let q ∈ [1,∞), m ≥ 1. Show that

Wm,q
0 (Ω) ↪→↪→ Lr(Ω)

with arbitrary r ∈ [1, nq/(n − mq)) if mq < n and all r ∈ [1,∞) if mq = n.

Finally, show that if mq > n, then Wm,q
0 (Ω) ↪→↪→ Ck(Ω), for all k ∈ N such that

0 ≤ k < 1 −mq/n.
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Exercise II.5.8 Prove that, when Ω is bounded and locally Lipschitz, Theorem

II.5.2 and Exercise II.5.7 continue to hold if Wm,q
0 (Ω) is replaced by Wm,q(Ω).

Hint: Use Theorem II.3.3 and (II.3.19).

We want now to obtain further inequalities as a consequence of the com-
pactness results just derived. The following theorem extends the Poincaré
inequality (II.5.7) to more general domains.

Theorem II.5.4 Let Ω be bounded and locally Lipschitz. Then, for all u ∈
W 1,q(Ω), 1 ≤ q <∞, we have

‖u− uΩ‖q ≤ c‖∇u‖q, (II.5.10)

where c = c(n, q, Ω).

Proof. To simplify notation, we omit the subscript Ω. If (II.5.10) were not
true, a sequence {um} ⊂W 1,q(Ω) would exist such that for all m ∈ N

um = 0, ‖um‖q = 1, ‖∇um‖q ≤ 1/m. (II.5.11)

Therefore, from (II.5.11)2,3 and Exercise II.5.8 there is a subsequence con-
verging in the norm of W 1,q(Ω) to some u ∈ W 1,q(Ω) which, by (II.5.11),
should have ∇u = 0, u = 0, namely, u ≡ 0 a.e. in Ω and ‖u‖q = 1. This gives
a contradiction that proves the theorem. ut

Theorem II.5.4 admits several interesting consequences, some of which are
left to the reader in the following exercises.

Exercise II.5.9 Let Ω be an arbitrary domain and let u ∈ W 1,1
loc (Ω). Show that, if

Du = 0, then there is u0 ∈ R such that u = u0 a.e. in Ω. Using this result, show

that, more generally, if u ∈Wm,1
loc (Ω) with Dαu = 0, |α| = m, then u = P a.e in Ω,

where P is a polynomial of degree ≤ m− 1. Hint: Use Lemma II.1.1.

Exercise II.5.10 Assume Ω bounded and locally Lipschitz and let u ∈ W 1,q(Ω).
If q ∈ [1, n), prove the following Poincaré-Sobolev inequality :

‖u− uΩ‖r ≤ c‖∇u‖q, (II.5.12)

where r = nq/(n−q) and c = c(n, q, Ω). Moreover, show that, if q > n, the following
inequality holds

‖u− uΩ‖C ≤ c1‖∇u‖q . (II.5.13)

Hint: Use Theorem II.5.4 and (II.3.16)1,3.

Exercise II.5.11 Let u ∈W 1,q (Br(x0)), q > n. Show that the following inequality
holds

max
x∈Br(x0)

|u(x)− u(x0)| ≤ c r1−n/q‖∇u‖q,Br(x0) ,

with c = c(n, q). Hint: Use (II.5.13) on the unit ball and then rescale the result for

a ball of radius r.
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Another consequence of Theorem II.5.4 furnishes an interesting generaliza-
tion of the Wirtinger inequality (Hardy, Littlewood, and Polya 1934, p. 185),
which we are going to show. Denote by ∇∗u the projection of ∇u on the unit
sphere Sn−1 in Rn, n ≥ 2. We have

|∇∗u|2 = r2

[
|∇u|2 −

∣∣∣∣
∂u

∂r

∣∣∣∣
2
]
, r = |x|. (II.5.14)

For a function f defined on Sn−1 we may write

‖f − f‖q
q,Sn−1 ≤ 2nn

2n − 1
‖f − f‖q

q,Ω, (II.5.15)

where

f = |Sn−1|−1

∫

Sn−1

fdSn−1 (II.5.16)

and Ω is the spherical shell of radii 1/2 and 1. Noting that

f = |Ω|−1

∫

Ω

f,

we may employ Theorem II.5.4 to obtain

‖f − f‖q
q,Ω ≤ cq‖∇f‖q

q,Ω = c1‖∇∗f‖q
q,Sn−1 .

Thus, combining (II.5.15) with the latter inequality, we deduce the desired
Wirtinger inequality:

‖f − f‖q,Sn−1 ≤ c2‖∇∗f‖q,Sn−1 , 1 ≤ q <∞, (II.5.17)

with f defined in (II.5.16), and c2 = c2(n, q).

Exercise II.5.12 (Finn and Gilbarg 1957). Show that, for q = 2, the smallest

constant c2 for which (II.5.17) holds is c2 = (n−1)−1/2. Hint: Consider the associated

eigenvalue problem ∆∗u+ λu = 0, where ∆∗ denotes the Laplace operator on the

unit sphere.

In the exercises that follow, we propose to the reader the proof of some
useful inequalities, easily obtainable by using the same compactness argument
adopted in the proof of Theorem II.5.4.

Exercise II.5.13 Let Ω be bounded and locally Lipschitz and let Σ be an arbitrary
portion of ∂Ω of positive ((n − 1)-dimensional) measure. Show that for all u ∈
W 1,q(Ω), 1 ≤ q < ∞, the following inequality holds

‖u‖q ≤ c

„
‖∇u‖q +

˛̨
˛̨
Z

Σ

u

˛̨
˛̨
«

(II.5.18)

with c = c(n, q,Ω,Σ).
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Exercise II.5.14 Let Ω be bounded and locally Lipschitz, and let u ∈ Wm,q(Ω).
Then, there exists c = c(n, q, Ω,ω) such that

‖u‖m,q ≤ c

0
@ X

|α|=m

‖Dαu‖q +

Z

ω

|u|

1
A (II.5.19)

where ω is an arbitrary subdomain of Ω of positive (n-dimensional) measure. Hint:

Use Exercise II.5.9 .

Exercise II.5.15 Let Ω be bounded and locally Lipschitz and let u be a vector
function in Ω with components from W 1,q (Ω), 1 ≤ q < ∞. Assuming u · n = 0 at
∂Ω, show that there exists a constant c = c(n, q, Ω) such that

‖u‖q ≤ c‖∇u‖q.

Hint: Use Exercise II.5.8.

Exercise II.5.16 (Ehrling inequality) Let Ω be bounded and locally Lipschitz.
Show that for any ε > 0 there is c = c(ε,n, q,Ω) > 0 such that

‖∇u‖q ≤ c‖u‖q + ε‖D2u‖q, (II.5.20)

for all u ∈W 2,q (Ω), 1 ≤ q < ∞. The regularity assumption on Ω can be removed if

u ∈ W 2,q
0 (Ω). Hint: Use Exercise II.5.8 and Theorem II.5.2.

Remark II.5.2 Inequalities of the type given in Exercise II.5.13 and Exercise
II.5.14 are relevant in the context of the equivalence of norms in the spaces
Wm,q. A general theorem, that contains these inequalities as a particular case,
can be found in Smirnov (1964, §114, Theorem 3). �

We end this section by giving another significant application of the
contradiction-compactness argument used in the proof of Theorem II.5.4, that
generalizes the result given in Galdi (2007, Lemma 5.4). To this end, we set

o

W
1,q(Ω) = {u ∈ W 1,q(Ω) : u|Σ = 0} , (II.5.21)

where Σ is an arbitrarily fixed locally Lipschitz boundary portion of ∂Ω. It

is easily shown that
o

W1,q(Ω) is a closed subspace of W 1,q (Exercise II.5.17).
Moreover, in view of Exercise II.5.13, we find that a norm equivalent to ‖(·)‖1,q

is given by ‖∇(·)‖q, and we shall endow
o

W1,q(Ω) with this latter.
We recall that a sequence of of linear functionals, {`i}, on a Banach space

X, is called complete if

`i(u) = 0 , for all i ∈ N, implies u = 0 in X .

We have the following result.
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Lemma II.5.3 Let Ω be locally Lipschitz, and let {li} be a complete se-

quence of linear functionals on
o

W1,q(Ω), 1 < q <∞. Then, given ε > 0 there
exist N ∈ N and a positive constant C such that

‖u‖ ≤ ε‖∇u‖q +C
N∑

i=1

|li(u)| ,

where ‖u‖ ≡ ‖u‖r with r ∈ [1, nq/(n− q)), if q < n, and r ∈ [1,∞), if q = n,
while ‖u‖ ≡ ‖u‖C if q > n . The numbers N and C depend on Ω, ε, q, and
also on r if q ≤ n.

Proof. We give a proof in the case q < n, the other two cases being treated in
a completely analogous way, with the help of Theorem II.5.2. Thus, assume,
by contradiction, that there is ε > 0 such that, for all C > 0 and all N ∈ N

we can find at least one u = u(C,N) ∈
o

W1,q(Ω) such that

‖u‖r ≥ ε‖∇u‖q +C

N∑

i=1

|li(u)| .

We then fix N = N1 and find a sequence {um}, possibly depending on N1,
such that

‖um‖r ≥ ε‖∇um‖q +m

N1∑

i=1

|li(um)| .

Setting wm = um/‖∇um‖q,
2 from the preceding inequality we find

‖wm‖r ≥ ε+m

N1∑

i=1

|li(wm)| , ‖∇wm‖q = 1, m ∈ N. (II.5.22)

From (II.5.22) we then deduce that

‖wm‖1,q ≤ C1 (II.5.23)

with C1 = C1(Ω,Σ, q) > 0. So, by Theorem II.5.2 and by the weak com-
pactness property of the unit closed ball (see Remark II.3.1), there exist a

subsequence, again denoted by {wm}, and w(1) ∈
o

W1,q(Ω) such that

wm → w(1) in Lr(Ω)

wm
w→ w(1) in

o

W1,q(Ω) .
(II.5.24)

Using these latter properties along with (II.5.22) we infer, on the one hand,

2 Of course, we may assume, without loss of generality, that ‖∇um‖q 6= 0, for all
m ∈ N.
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N1∑

i=1

|li(w(1))| = 0 ,

and, on the other hand,
‖w(1)‖r ≥ ε .

Moreover, from (II.5.22)2, (II.5.23), and (II.5.24) we obtain

‖w(1)‖r + ‖w(1)|1,q ≤ C2

with C2 = C2(D, S, r, q). We next fix N = N2 > N1 and, by the same pro-

cedure, we can find another w(2) ∈
o

W1,q(Ω) satisfying the same properties as
w(1). By iteration, we can thus construct two sequences, {Nk} and {w(k)},
with {Nk} increasing and unbounded, such that

Nk∑

i=1

|li(w(k))| = 0 ,

‖w(k)‖r + ‖w(k)‖1,q ≤ C2

‖w(k)‖r ≥ ε ,

(II.5.25)

for all k ∈ N. By (II.5.25)2 and again by Theorem II.5.2, it follows that there
are a subsequence of {w(k)}, which we continue to denote by {w(k)}, and a

function w(0) ∈
o

W1,q(Ω) such that

w(k) → w(0) in Lq(Ω)

w(k) w→ w(0) in
o

W1,q(Ω) .
(II.5.26)

In view of (II.5.25)3 and of (II.5.26)1, we must have

‖w(0)‖q ≥ ε . (II.5.27)

We now claim that w(0) ≡ 0, contradicting (II.5.27). In fact, if w(0) 6≡ 0, by
the completeness of the family of functionals {li}, we must have, for at least
one member of the family, li, that

li(w
(0)) 6= 0 . (II.5.28)

By (II.5.26)2, it is
lim

k→∞
li(w

(k)) = li(w
(0)) , (II.5.29)

while from (II.5.25)1 evaluated at all Nk > i, we find

li(w
(k)) = 0 , for all sufficiently large k .

However, in view of (II.5.29), this condition contradicts (II.5.28). Thus, w(0) =
0 and the lemma is proved. ut
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Exercise II.5.17 Show that the space defined in (II.5.21) is a closed subspace of

W 1,q(Ω).

Exercise II.5.18 Prove the following abstract formulation of Lemma II.5.3. Let
X,Y be Banach spaces with norm ‖ · ‖X and ‖ · ‖Y , respectively. Suppose that X is
reflexive and compactly embedded in Y . Moreover, let {`i} be a complete sequence
of functionals in X . Show that, given ε > 0 there exist N = N(ε) ∈ N and a constant
C = C(ε) such that

‖u‖Y ≤ ε‖u‖X +C
NX

i=1

|`i(u)| , for all u ∈ X .

II.6 The Homogeneous Sobolev Spaces Dm,q and
Embedding Inequalities

In dealing with boundary-value problems in unbounded domains it can happen
that, even for very smooth and rapidly decaying data, the associated solution
u does not belong to any space of the type Wm,q . This is because the behavior
at large distances can be different for each derivative of u of a given order and,
as a consequence, the corresponding summability properties can be different.
As a simple example, consider the Dirichlet problem

∆u = 0 in Ω ≡ R3 − B1 , u = 1 at ∂Ω,

lim
|x|→∞

u(x) = 0 .

The solution is u(x) = 1/|x| and we have

D2u ∈ Lr(Ω), 1 < r <∞,

∇u ∈ Ls(Ω), 3/2 < s <∞,

u ∈ Lt(Ω), 3 < t <∞.

Thus, to formulate boundary-value problems of the above type, one finds it
more convenient to introduce spaces more “natural” than the Sobolev spaces
Wm,q, and which, unlike the latter, involve only the derivatives of order m.
These classes of functions will be called homogeneous Sobolev spaces, and we
shall devote this and the next few sections to the study of their relevant
properties.

For m ∈ N and 1 ≤ q < ∞ we define the following linear space (without
topology)

Dm,q = Dm,q(Ω) =
{
u ∈ L1

loc(Ω) : D`u ∈ Lq(Ω), |`| = m
}
.

In order to investigate some preliminary properties of Dm,q , we introduce
the following notation. If u satisfies



II.6 The Homogeneous Sobolev Spaces Dm,q and Embedding Inequalities 81

D`u ∈ Lq(Ω′), 0 ≤ |`| ≤ m, for all bounded Ω′ with Ω′ ⊂ Ω,

we shall write
u ∈Wm,q

loc (Ω).

Likewise, if

D`u ∈ Lq(Ω′), 0 ≤ |`| ≤m, for all bounded Ω′ ⊂ Ω

we shall write
u ∈Wm,q

loc (Ω) .

We have the following.

Lemma II.6.1 Let Ω be an arbitrary domain of Rn, n ≥ 2, and let u ∈
Dm,q(Ω), m ≥ 0, q ∈ (1,∞). Then u ∈Wm,q

loc (Ω) and the following inequality
holds

‖u‖m,q,ω ≤ c


∑

|`|=m

‖D`u‖q,ω + ‖u‖1,ω


 (II.6.1)

where ω is an arbitrary bounded locally Lipschitz domain with ω ⊂ Ω . If, in
addition, Ω is locally Lipschitz, then u ∈Wm,q

loc (Ω) , and (II.6.1) holds for all
bounded and locally Lipschitz domains ω ⊂ Ω.

Proof. Clearly, proving that u ∈ Wm,q(ω), for any ω satisfying the prop-
erties stated in the first part of the lemma, implies u ∈ Wm,q

loc (Ω). Let
d = dist (∂ω, ∂Ω) (> 0), and extend u by zero outside Ω. For d > 1/k > 0,
k ∈ N, we denote by uk the regularizer of u corresponding to ε = 1/k. Obvi-
ously, uk ∈Wm,q(ω); moreover, by Exercise II.3.2, we have

(D`u)k(x) = (D`uk)(x), for all ` with |`| = m, and all x ∈ ω.

We may thus use (II.5.19) to find, for any k, k′ ∈ N,

‖uk − uk′‖m,q,ω ≤ C


 ∑

|`|=m

‖(D`u)k − (D`u)k′)‖q,ω + ‖uk − uk′‖1,ω


 ,

for some C = C(N, q, ω). Observing that, by (II.2.9)2, (D`u)k, |`| = m, and uk

converge (strongly) in Lq(ω) and L1(ω) to D`u and u, respectively, as k → ∞,
from the previous inequality we deduce that {uk} is Cauchy in Wm,q(ω), as
well as the validity of (II.6.1) . The first part of the lemma is thus proved. In
order to show the second part, we begin to observe that, by Exercise II.1.5,
we can find a finite number of locally Lipschitz and star-shaped domains Ωi,
i = 1, . . . , r, satisfying the following condition

ω ⊆
r⋃

i=1

Ωi ⊆ Ω .
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If we thus show that u ∈ Wm,q(Ωi) for each i = 1, . . . , r, the stated property
follows with the help of Exercise II.5.14. For a fixed i, we extend u|Ωi to
zero outside Ωi, and continue to denote by u this extension. By means of
a translation in Rn, we may take the point xi, with respect to which Ωi is
star-shaped, to be the origin of the coordinates. Then, the domains

Ω
(k)
i = {x ∈ Rn : (1 − 1/k)x ∈ Ωi} , k ∈ N ≡ {m ∈ N : m ≥ 2} ,

satisfy Ω
(k)
i ⊃ Ωi, for all k ∈ N; see Exercise II.1.3. Setting

uk = uk(x) ≡ u((1 − 1/k)x) , x ∈ Ω
(k)
i ,

and h0 = maxx∈∂Ωi |x|, we find that the mollifier, (uk)ε, of uk belongs to
Wm,q(Ωi), if we choose (for example) ε = h0/(2k−2). With the aid of (II.2.9)1,
we deduce

‖u−(uk)ε‖1,Ωi ≤ ‖u−uε‖1,Ωi +‖uε−(uk)ε‖1,Ωi ≤ ‖u−uε‖1,Ωi +‖u−uk‖1,Ωi ,

which, in turn, by (II.2.9)2 and by Exercise II.2.8, implies

lim
k→∞

‖u− (uk)ε‖1,Ωi = 0 . (II.6.2)

We next set χ(x) = D`u(x), |`| = m. Observing that, by Exercise II.3.2 and
Exercise II.3.3, it is

D`(uk)ε = (1 − 1/k)m[χ((1 − 1/k)x)]ε x ∈ Ωi ,

we may repeat an argument similar to that leading to (II.6.2) to show

lim
k→∞

‖D`u−D`(uk)ε‖q,Ωi = 0 . (II.6.3)

Now, with the help of (II.6.2) and (II.6.3), we can use the same procedure used
in the proof of the first part of the lemma with ω ≡ Ωi, to show the statement
contained in the second part. The lemma is thus completely proved. ut
Remark II.6.1 From Lemma II.6.1 it follows, in particular, that if Ω is
bounded and locally Lipschitz, then u ∈ Dm,q(Ω) implies u ∈ Wm,q(Ω),
so that Dm,q(Ω) = Wm,q(Ω) algebraically, and, in fact, also topologically,
if we endow the space Dm,q(Ω) with the norm

∑
|`|=m ‖D`u‖q + ‖u‖1. On

the other hand, if Ω is unbounded in all directions, these latter properties
no longer hold, since a priori one loses information on global summability of
derivatives of order less than m, and one can only state local properties in the
sense specified in Lemma II.6.1. �

Exercise II.6.1 Let u ∈ Dm,q(Rn), n ≥ 2, m ≥ 0, q ∈ (1,∞). Show that u ∈
Wm,q(BR), for all R > 0, and there exists a constant C = C(R) such that

‖u‖m,q,BR ≤ C

 X

`=m

‖D`u‖q,Rn + ‖u‖1,B1

!
.

Hint: Adapt the arguments used in the proof of the first part of Lemma II.6.1
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In Dm,q we introduce the seminorm

|u|m,q ≡


∑

|`|=m

∫

Ω

|D`u|q



1/q

. (II.6.4)

Let Pm be the class of all polynomials of degree ≤ m − 1 and, for u ∈ Dm,q ,
set

[u]m = {w ∈ Dm,q : w = u+ P, for some P ∈ Pm}.
Denoting by Ḋm,q = Ḋm,q(Ω) the space of all (equivalence classes) [u]m,
u ∈ Dm,q , we see at once that (II.6.4) induces the following norm in Ḋm,q :

|[u]m|m,q ≡ |u|m,q , u ∈ [u]m . (II.6.5)

We shall now show that Ḋm,q equipped with the norm (II.6.5) is a Banach
space.

Lemma II.6.2 Let Ω be an arbitrary domain of Rn, n ≥ 2. Then Ḋm,q(Ω)
is a Banach space. In particular, if q = 2, it is a Hilbert space with the scalar
product

[[u]m, [v]m]m =
∑

|`|=m

∫

Ω

D`uD`v , u ∈ [u]m , v ∈ [v]m .

Proof. It is enough to show the first part of the lemma, the second follows
easily. We shall consider the case m = 1, leaving the more general case as an
exercise. We also set [u]1 ≡ [u]. Let {[us]} be a Cauchy sequence in Ḋ1,q(Ω);
we have to show the following statements:

(i) For any {vs} with vs ∈ [us], s ∈ N, there exists u ∈ D1,q(Ω) such that

lim
s→∞

‖Divs −Diu‖q = 0 , i = 1, . . . , n ;

(ii)For any {vs}, {v′s}, with vs, v
′
s ∈ [us], s ∈ N, and with u, u′ corresponding

limits, we have u′ ∈ [u].

It is seen that (ii) easily follows from (i). In fact, since vs, v
′
s ∈ [us], from (i)

we have
(Diu, ϕ) = (Diu

′, ϕ), for all ϕ ∈ C∞
0 (Ω),

which, in view of Exercise II.5.9, implies (ii). Let us show (i). By the com-
pleteness of Lq, we find Vi ∈ Lq(Ω), i = 1, . . . , n, with

Divs → Vi in Lq(Ω). (II.6.6)

Let O be the open covering ofΩ indicated in Lemma II.1.1 and let B0 ∈ O. By
the Poincaré inequality and (II.6.6) we deduce the existence of u(0) ∈ Lq(B0)
such that
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vs − vsB0
→ u(0) in Lq(B0).

Since for all ϕ ∈ C∞
0 (B0) it is

∫

B0

Viϕ = lim
s→∞

∫

B0

Divsϕ = lim
s→∞

∫

B0

(vs − vsB0
)Diϕ = −

∫

B0

u(0)Diϕ,

by definition of the weak derivative, it follows

Vi = Diu
(0) a.e. in B0. (II.6.7)

By the property (ii) of O, we can find B1 ∈ (O− B0) with B1∩B0 ≡ B1,2 6=
∅. As before, we show the existence of u(1) ∈ Lq(B1) such that

Vi = Diu
(1) a.e. in B1. (II.6.8)

Thus, u(1) = u(0) + c a.e. in B1,2, for some c ∈ R. Therefore, we may modify
u(1) by the addition of a constant in such a way that u(1) and u(0) agree a.e.
in B1,2. Continue to denote by u(1) the modified function and define a new
function u(0,1) that is equal to u(0) in B0 and is equal to u(1) in B1. By (II.6.6)–
(II.6.8) we deduce that u(0,1), Diu

(0,1) ∈ Lq(B0 ∪B1), with Vi = Diu
(0,1) a.e.

in B0 ∪ B1. In view of the property (iii) of the covering O, we can repeat
this procedure to show, by a simple inductive argument, the existence of
u ∈ Lq

loc(Ω) satisfying the statement (i) of the lemma, which is thus completely
proved. ut

Notation. Sometime, and unless confusion arises, the elements of Ḋm,q(Ω) will
be denoted simply by u, instead of [u]m, with u a representative of the class
[u]m.

The functional (II.6.4) defines a norm in the space C∞
0 (Ω). We then in-

troduce the Banach space Dm,q
0 = Dm,q

0 (Ω) as the (Cantor) completion of the
normed space {C∞

0 (Ω), | · |m,q}.
Remark II.6.2 Since C∞

0 (Ω) can be viewed as a subspace of Ḋm,q(Ω) via
the natural map

i : u ∈ C∞
0 (Ω) → i(u) = [u]m ∈ Ḋm,q(Ω),

it follows that, for any domain Ω, Dm,q
0 (Ω) is isomorphic to a closed subspace

of Ḋm,q(Ω). More specifically, [u]m ∈ Ḋm,q(Ω) belongs to Dm,q
0 (Ω) if and only

if there is u ∈ [u]m and corresponding {uk} ⊂ C∞
0 (Ω) such that limk→∞ |uk−

u|m,q = 0. Other characterizations of the spaces Dm,q
0 will be given in Section

II.7. We finally observe that (see Exercise II.2.6)

D0,q
0 (Ω) = D0,q(Ω) = Lq(Ω), q ≥ 1.

�
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Remark II.6.3 If Ω is contained in a layer, then by means of inequality
(II.5.1) and Lemma II.6.1 one can easily show that ‖ · ‖m,q is equivalent to
| · |m,q + ‖ · ‖q and to | · |m,q. Therefore, if we endow Wm,q

0 (Ω) with this latter
norm, we find that Dm,q

0 (Ω) and Wm,q
0 (Ω) are isomorphic. �

Exercise II.6.2 Show that Ḋm,q and Dm,q
0 are separable for 1 ≤ q < ∞ and

reflexive for 1 < q < ∞. Thus, for q ∈ (1,∞) these spaces are weakly complete and
the unit closed ball is weakly compact (see Theorem II.1.3(ii)). Hint (for m = 1):
Let

W =


w ∈ [Lq]n : w =

„
∂u

∂x1
, . . . ,

∂u

∂xn

«
, for some u ∈ Ḋ1,q

ff
.

W is isomorphic to Ḋ1,q , and, since Ḋ1,q is complete, W is a closed subspace of

[Lq]n. Therefore, W is separable for 1 ≤ q < ∞ and reflexive for 1 < q < ∞ (see

Theorem II.2.5, Theorem II.1.1 and Theorem II.1.2), which, in turn, gives the stated

properties for Ḋ1,q. Since D1,q
0 is isomorphic to a closed subspace of Ḋ1,q, the same

properties are true for D1,q
0 ; see also Simader and Sohr (1997, Theorem I.2.2).

Our next goal will be to investigate global properties of functions from
Dm,q(Ω), including their behavior at large distances, when Ω is either an
exterior domain or a half-space.

Remark II.6.4 It will be clear from the context that, in fact, most of the
results we shall prove continue to hold for a much larger class of domains. This
class certainly includes domains Ω for which any function from D1,q(Ω) can
be extended to one from D1,q(Rn) with preservation of the seminorm | · |1,q.
For the existence of such extensions, we refer the reader to the classical paper
of Besov (1967); see also Burenkov (1976). �

Our following objective is to prove some embedding inequalities that en-
sure that derivatives of u of order less than m belong to suitable Lebesgue or
weighted-Lebesgue spaces. Such estimates, unlike the bounded-domain case,
where they give information on the “regularity” of u, furnish information on
the behavior of u at large distances. We begin to derive these inequalities for
the case m = 1 (see Theorem II.6.1, Theorem II.6.3), the general case m ≥ 1
being treated by a simple iterative argument (see Theorem II.6.4).

We recall that, if q ∈ [1, n) every u ∈ C∞
0 (Ω), satisfies the Sobolev in-

equality (II.3.7), that we rewrite below for reader’s convenience:

‖u‖s ≤ q(n − 1)

2(n− q)
√
n
|u|1,q , for all q ∈ [1, n) , s = nq/(n− q). (II.6.9)

We shall next consider certain weighted inequalities that (in a less general
form) were first considered by Leray (1933, p. 47; 1934, §6) and Hardy (Hardy,
Littlewood, and Polya 1934, §7.3). Specifically, if u ∈ C∞

0 (Ω), we have

‖u|x− x0|−1‖q ≤ q

(n− q)
|u|1,q, for all q ∈ [1, n). (II.6.10)
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In fact, consider the identity

∇ · (g|u|q) = |u|q∇ · g + g · ∇|u|q (II.6.11)

with
g = (x− x0) /|x− x0|q. (II.6.12)

Since
∇ · g = (n− q)/|x− x0|q,

integrating (II.6.11) and using the Hölder inequality proves (II.6.10). Notice
that if q > n and

Ωc ⊃ Ba(x0), some a > 0,

then by the same token one shows the validity of the following inequality:

‖u|x− x0|−1‖q ≤ q

(q − n)
|u|1,q, for all q > n ; (II.6.13)

see also Exercise II.6.7. In case q = n (6= 1) and if

Ωc ⊃ Ba(x0), some a > 0,

we have instead

‖u [|x− x0| ln(|x− x0|/a)]−1 ‖n ≤ n

a (n− 1)
|u|1,n. (II.6.14)

To show this latter, we use again identity (II.6.11) with

g = − (x− x0)

|x− x0|n[ln(|x− x0|/a)]n−1 .

Since

∇ · g =
a (n− 1)

[|x− x0| ln(|x− x0|/a)]n
,

substituting into (II.6.11), integrating over Ω, and applying the Hölder in-
equality to the last term on the right-hand side of (II.6.11) proves (II.6.14).

We shall next analyze if and to what extent inequalities similar to (II.6.9),
(II.6.10), (II.6.13), and (II.6.14) continue to hold for functions from D1,q(Ω),
where the domain Ω can be either an exterior domain or a half-space.1 In
order to perform this study, we need to know more about the behavior at
large distances of functions of D1,q(Ω). In this respect we have

Lemma II.6.3 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let

u ∈ D1,q(Ω), 1 ≤ q < n.

Then, there exists a unique u0 ∈ R such that, for all R > δ(Ωc),
∫

Sn−1

|u(R, ω) − u0|qdω ≤ γ0R
q−n

∫

ΩR

|∇u|q,

where γ0 = [(q − 1)/(n− q)]q−1 if q > 1 and γ0 = 1 if q = 1.

1 See Remark II.6.4.
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Proof. Let r > R > δ(Ωc), and consider first the case q > 1. For a smooth u,
by the Hölder inequality we have

∫ r

R

∫

Sn−1

∣∣∣∣
∂u

∂ρ

∣∣∣∣
q

ρn−1dρdSn−1 =

∫

Sn−1

[∫ r

R

∣∣∣∣
∂u

∂ρ

∣∣∣∣
q

ρn−1dρ

]
dSn−1

≥
∫

Sn−1




∣∣∣∣
∫ r

R

∂u

∂ρ
dρ

∣∣∣∣
q

(∫ r

R

ρ(1−n)/(q−1)dρ

)q−1


 = γ−1

0 Rn−q

∫

Sn−1

|u(r) − u(R)|q,

(II.6.15)
while, by the Wirtinger inequality (II.5.17), it follows that

∫ r

R

ρn−q−1

(∫

Sn−1

|∇∗u|qdSn−1

)
dρ

≥ c−q
1

∫ r

R

(∫

Sn−1

|u− u|qdSn−1

)
ρn−q−1dρ,

where

f = (nωn)−1

∫

Sn−1

f.

Therefore, setting

Dr(R) =

∫

ΩR,r

|∇u|q,

and taking into account that, by (II.5.14), |∂u/∂r|q, (|∇∗u|/r)q ≤ |∇u|q, we
find

Dr(R) ≥ γ−1
0 Rn−q

∫

Sn−1

|u(r) − u(R)|q

Dr(R) ≥ c−q
1

∫ r

R

(∫

Sn−1

|u− u|qdSn−1

)
ρn−q−1dρ.

(II.6.16)

In view of Lemma II.6.1, and with the help of Theorem II.3.1, one shows that
(II.6.16) continues to hold for all functions merely satisfying the assumption
of the lemma. Letting R, r → ∞, into (II.6.16)1, we deduce that u converges
(strongly) in Lq(Sn−1) to some function u∗. Set

u0 = u∗, w = u− u0.

Obviously,

lim
|x|→∞

∫

Sn−1

w(x) = 0. (II.6.17)

Rewriting (II.6.16) with w instead of u, we recover the existence of a sequence
{rm} ⊂ R+, with limm→∞ rm = ∞ such that
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lim
m→∞

∫

Sn−1

|w(rm) −w(rm)|q = 0,

which, because of (II.6.17), furnishes

lim
m→∞

∫

Sn−1

|w(rm)|q = 0.

Inserting this information into (II.6.16)1 written with w in place of u and
letting r → ∞ completes the proof of the lemma when q > 1. If q = 1, we
easily show that

∫ r

R

∫

Sn−1

∣∣∣∣
∂u

∂ρ

∣∣∣∣ρn−1dρdSn−1 ≥ Rn−1

∫

Sn−1

|u(r) − u(R)| .

Therefore, replacing (II.6.15) with this latter relation and arguing exactly as
before, we show the result also when q = 1 ut
Exercise II.6.3 The previous lemma describes the precise way in which a function
u, having first derivatives in Lq(Ω), 1 ≤ q < n, Ω an exterior domain, must tend
to a (finite) limit at large spatial distances. Show by a counterexample that the
condition q < n is indeed necessary for the validity of the result. Moreover, prove
that if q ≥ n the following estimate holds, for all r ≥ r0 > max{1, δ(Ωc)}:

Z

Sn−1

|u(r, ω)|qdω ≤ 2q−1

„Z

Sn−1

|u(r0, ω)|qdω + h(r)|u|q1,q,Ωr0,r

«
, (II.6.18)

where

h(r) =

8
<
:

(log r)n−1 if q = n

[(q − 1)/(q − n)]q−1 rq−n if q > n.

Finally, using (II.6.18), show

lim
r→∞

(h(r))−1

Z

Sn−1

|u(r, ω)|qdω = 0.

(For pointwise estimates, see Section II.9.) Hint: To show (II.6.18), start with the
identity

u(r, ω) = u(r0, ω) +

Z r

r0

(∂u/∂ρ)dρ,

and apply the Hölder inequality.

This preliminary result allows us to prove the following, which answers
the question raised previously; see also Finn (1965a), Galdi and Maremonti
(1986).

Theorem II.6.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain, and let

u ∈ D1,q(Ω), 1 ≤ q <∞ .

The following properties hold.



II.6 The Homogeneous Sobolev Spaces Dm,q and Embedding Inequalities 89

(i) If q ∈ [1, n), set
w = u− u0

with u0 defined in Lemma II.6.3. Then, for any x0 ∈ Rn, we have

w|x− x0|−1 ∈ Lq(ΩR(x0)),

where
Ωa(x0) ≡ Ω −Ba(x0), Ba(x0) ⊃ Ωc,

and the following inequality holds:

(∫

ΩR(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ q

(n− q)
|w|1,q,ΩR(x0). (II.6.19)

If |x0| = αR, for some α ≥ α0 > 1 and some R > δ(Ωc), we have

(∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ c|w|1,q,ΩR, (II.6.20)

where c = c(n, q, α0). Furthermore, if Ω is locally Lipschitz, then

w ∈ Ls(Ω), s = nq/(n− q), (II.6.21)

and for some γ1 independent of u

‖w‖s ≤ γ1|w|1,q. (II.6.22)

(ii) If q ∈ [n,∞), assume Ω locally Lipschitz with Ωc ⊃ Ba(x0), for some
a > 0, and set

w =

{ |x− x0|−1 if q > n

(|x− x0| ln(|x− x0|/a))−1 if q = n .
(II.6.23)

Then, if u has zero trace at ∂Ω, we have wu ∈ Lq(Ω), and the following
inequality holds, for all R > δ(Ωc),

‖wu‖q,ΩR(x0) ≤ Cq |u|1,q,ΩR(x0) , (II.6.24)

where ΩR(x0) ≡ Ω ∩ BR(x0), and Cq = q/(q − n), if q > n, while Cq =
n/[a (n− 1)], if q = n.

Proof. As in the proof of Lemma II.6.3, it will be enough to consider smooth
functions only. We begin to prove part (i). Let us integrate identity (II.6.11),
with w in place of u and g given by (II.6.12), over the spherical shell:

ΩR,r(x0) ≡ Ω ∩ (Br(x0) − BR(x0)) , r > R.
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We have

(n− q)

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤
∫

∂BR(x0)

g · n|w|q + r1−q

∫

∂Br(x0)

|w|q

+q

∫

ΩR,r(x0)

|g||w|q−1|∇w|,

where n is the unit normal to ∂BR(x0) pointing toward x0. This yields that
the first term on the right-hand side of this latter equation is non-positive.
Thus, estimating the integral over ∂Br(x0) with the help of Lemma II.6.3, we
deduce

(n − q)

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ c1

∫

Ωr(x0)

|∇w|q + q

∫

ΩR,r(x0)

|g||w|q−1|∇w|,

where c1 = c1(n, q). Now, if q = 1 the result follows by letting r → ∞
into this relation; otherwise, employing Young’s inequality (II.2.5) with ε =
[(q− 1)/λ(n− q)]q−1, 0 < λ < 1, in the last integral at the right-hand side we
obtain

∫

ΩR,r(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ c1
(n− q)(1 − λ)

∫

Ωr(x0)

|∇w|q

+
(q − 1)q−1

(1 − λ)λq−1(n− q)q

∫

ΩR,r(x0)

|∇w|q.

We now let r → ∞ into this relation and minimize over λ, thus completing the
proof of the first part of the lemma. To show the second part, for r > (α+2)R
we set

ΩR,r ≡ Ω ∩ (Br(x0) − BR),

and so, operating as before, we derive

(n− q)

∫

ΩR,r

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤
∫

∂BR

g · n|w|q + r1−q

∫

∂Br(x0)

|w|q

+q

∫

ΩR,r(x0)

|g||w|q−1|∇w|.

If q > 1, we use Young’s inequality in the last integral, then Lemma II.6.3
to estimate the surface integral over ∂Br(x0). Letting r → ∞ we may then
conclude, as in the proof of the first part of the lemma, the validity of the
following inequality:

∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx ≤ 1

(n− q)(1 − λ)

∫

∂BR

g · n|w|q

+
(q − 1)q−1

(1 − λ)λq−1(n − q)q

∫

ΩR

|∇w|q
(II.6.25)
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for all λ ∈ (0, 1). Now, if x ∈ ∂BR it is

|x− x0| ≥ |x0| − |x| ≥ (α0 − 1)R,

and so
|g(x)| ≤ |x− x0|1−q ≤ [(α0 − 1)R]1−q, x ∈ ∂BR.

From this inequality and Lemma II.6.3 we obtain the following:

∫

∂BR

g · n|w|q ≤ Rn−q

(α0 − 1)q−1

∫

Sn−1

|w|q ≤ γ0

(α0 − 1)q−1

∫

ΩR

|∇w|q,

which, once replaced into (II.6.25), proves (II.6.20) for q > 1. The proof for
q = 1 is similar and therefore is left to the reader. To complete the proof of
part (i), it remains to show the last statement. To this end, let ϕ ∈ C1(R) be
a nondecreasing function such that ϕ(ξ) = 0 if |ξ| ≤ 1 and ϕ(ξ) = 1 if |ξ| ≥ 2.
We set for r > 2R > δ(Ωc)

ϕR(x) = ϕ(|x|/R),

χr(x) = 1 − ϕr(x),

w#(x) = ϕR(x)χr(x)w(x).

Notice that
|∇χr(x)| ≤ c/r, c = c(ϕ).

Evidently, w# ∈ W 1,q
0 (Ω), and we may apply Sobolev inequality (II.3.7) to

deduce
‖w#‖s ≤ γ|w#|1,q, s = nq/(n− q),

which, by the properties of ϕR and χr, in turn implies

‖w#‖s ≤ c1
(
|w|1,q + ‖w‖q,ΩR,2R + ‖w|x|−1‖q,Ωr,2r

)
,

with c1 = c1(R, ϕ, n, q). We now let r → ∞ into this relation. By inequality
(II.6.19) the last term on the right-hand side must tend to zero. Using this
fact along with the monotone convergence theorem, we recover

‖w‖s,Ω2R ≤ c1
(
|w|1,q + ‖w‖q,ΩR,2R

)
. (II.6.26)

We next apply the inequality (II.5.18) to the integral over ΩR,2R to deduce

‖w‖s,Ω2R ≤ c2

(
|w|1,q +

(∫

∂BR∪∂B2R

|w|q
)1/q

)
.

Using Lemma II.6.3 in this inequality, we finally obtain

‖w‖s,Ω2R ≤ c3|w|1,q. (II.6.27)
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We now want to estimate w “near” ∂Ω. We set

ζR(x) = 1 − ϕ(|x|/2R)

and notice that
ζRw ∈ W 1,q(Ω).

Employing the embedding Theorem II.3.4, we obtain

‖w‖s,Ω2R ≤ c4
(
|w|1,q + ‖w‖q,Ω2R,4R

)
.

We may now bound the last term on the right-hand side of this relation by
|w|1,q, in the same way as we did for the analogous term in (II.6.26), thus
deducing

‖w‖s,Ω2R ≤ c5|w|1,q.

The last claim in part (i) of the lemma then follows from this latter inequality
and from (II.6.27). We shall prove the claim in part (ii) when q > n, the
case q = n being treated in exactly the same way. We integrate (II.6.11) over
ΩR(x0), with arbitrary R > δ(Ωc). Recalling that u has zero trace at ∂Ω, we
find

(q − n)

∫

ΩR(x0)

|u|q
|x− x0|q

= −
∫

∂BR(x0)

g ·n|u|q −
∫

ΩR(x0)

g · ∇|u|q .

The surface integral in this relation is non positive, so that, proceeding as in
the proof of (II.6.13) we obtain

∫

ΩR(x0)

|u|q
|x− x0|q

≤ q

(q − n)

∫

ΩR(x0)

|∇u|q , (II.6.28)

which, in turn, by the arbitrarity of R proves the claim. ut

Exercise II.6.4 Let Lq
w(Ω), q ≥ n ≥ 2, be the class of (measurable) functions v

such that w v ∈ Lq(Ω), with w defined in (II.6.24). Show that Lq
w(Ω) endowed with

the norm ‖w(·)‖q is a Banach space.

Exercise II.6.5 Let u ∈ D1,q(BR), q ∈ [1, n). Show that u satisfies (II.6.21), with

Ω ≡ BR, with a constant γ1 independent of R.

Exercise II.6.6 Let u ∈ D1,q(BR(x0)), n ≥ 2, q > n, R > 0. Show that the
following inequality holds

‖(u− u(x0))/|x− x0|‖q,BR(x0) ≤ q/(q − n)|u|1,q,BR (x0) .

Hint: Integrate (II.6.11) over BR(x0) − Bε(x0), ε < R. Then, use the results of

Exercise II.5.11 and let ε→ 0. (Notice that u(x0) is well defined, because, for q > n,

D1,q(Ω) ⊂ W 1,q(BR(x0)) ⊂ C(BR(x0)); see Lemma II.6.1 and Theorem II.3.4.)
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Exercise II.6.7 Let Ω be an exterior, locally Lipschitz domain, and assume that
u ∈ D1,q(Ω), q > n, with zero trace at ∂Ω. Show that, for all R > δ(Ωc) and all
x0 ∈ ΩR,

‖w(u− u(x0))‖q,ΩR ≤ q

q − n
|u|1,q,ΩR ,

where w is defined in (II.6.23)1. Hint: Integrate (II.6.11) over ΩR − Bε(x0), for

sufficiently small ε. Then use the results of Exercise II.5.11 and let ε → 0.

Exercise II.6.8 Let Ω be an exterior domain of R
n, n ≥ 2, and let u ∈ D1,q(Ω),

q ∈ [1,∞), satisfy the following generalized version of “vanishing of the trace” at
∂Ω:

ψ u ∈ W 1,q
0 (Ω) , for all ψ ∈ C∞

0 (Rn) . (II.6.29)

(a) Assume q ≥ n and that Ωc ⊃ Ba(x0), for some x0 ∈ R
n and a > 0. Show

that u satisfy (II.6.24)
(b) Assume q ∈ [1, n), and that the constant u0 associated to u by Lemma II.6.3

is zero. Show that u ∈ Lnq/(n−q)(Ω) and that there exists C = C(n, q, Ω) such that

‖u‖nq/(n−q) ≤ C |u|1,q .

Theorem II.6.1 ensures, in particular, that, for Ω an exterior locally Lip-
schitz domain and for q ∈ [1, n), every function from D1,q(Ω), possibly mod-
ified by the addition of a uniquely determined constant, obeys the Sobolev
inequality (II.6.22), even though its trace at the boundary need not be zero.
Our next goal is to perform a similar analysis, more generally, for Troisi in-
equality (II.3.8). Specifically, assuming that the seminorms of u appearing on
the right-hand side of (II.3.8) are finite, we wish to investigate if u ∈ Lr(Ω)
and if (II.3.8) holds. To this end, we will use a special “anisotropic cut-off”
function whose existence is proved in the next lemma; see Galdi & Silvestre
(2007a) and Galdi (2007). The lemma will also include properties of this func-
tion which are not immediately needed, but that will be very useful for future
purposes; see, e.g., Chapter VIII.

Lemma II.6.4 For any α,R > 0, there exists a function ψα,R ∈ C∞
0 (Rn)

such that 0 ≤ ψα,R(x) ≤ 1, for all x ∈ Rn and satisfying the following
properties

lim
R→∞

ψα,R(x) = 1 uniformly pointwise, for all α > 0 ,

∣∣∣∣
∂ψα,R

∂x1
(x)

∣∣∣∣ ≤
C1

Rα ,

∣∣∣∣
∂ψα,R

∂xi
(x)

∣∣∣∣ ≤
C1

R
, i = 2, . . . , n ,

|∆ψα,R(x)| ≤ C2

R2
,

(e1 × x) · ∇ψα,R(x) = 0 for all x ∈ R3 ,

(II.6.30)

where C1, C2 are independent of x and R.Moreover, the support of ∂ψα,R/∂xj,

j = 1, . . . , n, is contained in the cylindrical shell SR = S(1)
R ∩ S(2)

R where
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S(1)
R =

{
x ∈ Rn :

R√
2
< r <

√
2R,

}
,

S(2)
R =

{
x ∈ Rn :

Rα

√
2
< |x1| <

√
2Rα

}
∪
{
x ∈ Rn : −R

α

√
2
≤ x1 ≤ Rα

√
2

}
,

(II.6.31)
and where r = (x2

2 + · · ·x2
n)1/2. In addition, the following properties hold for

all α > 0

∂ψα,R

∂x1
∈ Lq(R3) , for all q ≥ n−1

α + 1 ,

∥∥∥∥
∂ψα,R

∂x1

∥∥∥∥
q

≤ C3 ,

‖(u− u0) |∇ψα,R| ‖s ≤ C4 |u|
1,s,Ω

Rβ√
2

, for all u ∈ D1,s(Rn) , 1 ≤ s < n ,

(II.6.32)
where u0 is the constant associated to u by Lemma II.6.3, β = min{1, α}, and
C3, C4 are independent of R.

Proof. Let ψ = ψ(t) be a C∞, non-increasing real function, such that ψ(t) = 1,
t ∈ [0, 1] and ψ(t) = 0, t ≥ 2. We set

ψα,R(x) = ψ

(√
x2

1

R2α
+
r2

R2

)
, x ∈ Rn ,

so that we find

ψα,R(x) =





1 if
x2

1

R2α
+
r2

R2
≤ 1

0 if
x2

1

R2α
+
r2

R2
≥ 4 .

(II.6.33)

The first property in (II.6.30) then follows at once. Moreover, since

∂ψα,R

∂x1
(x) =

x1

Rα
√
x2

1 + R2α−2r2
ψ′
(√

x2
1

R2α
+
r2

R2

)
,

∂ψα,R

∂xi
(x) =

xi

R
√
R2−2αx2

1 + r2
ψ′
(√

x2
1

R2α
+
r2

R2

)
, i = 2, . . . n,

the uniform bounds for the first derivatives hold with C := maxt≥0 |ψ′(t)|.
The estimate for the Laplacean of ψα,R is easily obtained with C2 depending
on C1 and maxt≥0 |ψ′′(t)|. Moreover, the orthogonality relation (II.6.30)4 is
immediate if we take account the above components of ∇ψα,R and the fact
that e1 × x = −x3e2 + x2e3. Denote next by Σ the support of ∇ψα,R. From
(II.6.33) we deduce that

Σ ⊂
{
x ∈ Rn : 1 <

x2
1

R2α
+
r2

R2
< 4

}
≡ Σ1 .
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Consider the following sets

S1 =

{
x ∈ Rn :

x2
1

R2α
<

1

2
and

r2

R2
<

1

2

}
,

S2 =

{
x ∈ Rn :

x2
1

R2α
> 2 and

r2

R2
> 2

}
.

Clearly, Σ1
c ⊃ S1 ∪ S2. Therefore, by de Morgan’s law, we get Σ1 ⊂ Sc

1 ∩ Sc
2

and we conclude, from (II.6.31), that Σ1 ⊂ S, since Sc
1 ∩ Sc

2 = S. It remains
to prove (II.6.32). The first property follows at once from the estimate for
∂ψα,R/∂x1 given in (II.6.30) and the fact that the measure of the support of
∂ψα,R/∂x1 is bounded by a constant times Rα+n−1. Furthermore, we observe

that, for all x ∈ SR, it is |x| ≤ C
√

(R2α +R2), with C a positive constant
independent of R. Thus, from (II.6.30) we find, with w ≡ u− u0,

‖w |∇ψα,R|‖s,Ω = ‖w |∇ψα,R|‖s,SR ≤ C2 ‖w/|x|‖s,SR ≤ C2‖w/|x|‖
s,B

Rβ√
2

,

with C2 a positive constant independent of R and w. The second property in
(II.6.32) then follows from this latter inequality and from (II.6.19). The proof
of the lemma is complete. ut

We are now in a position to prove the following result.

Theorem II.6.2 Let Ω ⊆ Rn, n ≥ 3, be an exterior locally Lipschitz domain.
Assume u ∈ D1,2(Ω) and

∂u

∂x1
∈ Lq1 (Ω), 1 < q1 < 2.

Then, denoting by u0 the uniquely determined constant associated to u by
Lemma II.6.3, we have

w = u− u0 ∈ Lr(Ω), r =
2nq1

2 + (n− 3)q1
,

and

‖w‖n
r ≤ C

(∥∥∥∥
∂u

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diu‖2 + |u|n1,2

)
, (II.6.34)

with C = C(q1, n, Ω).

Proof. Let φρ = φρ(x) be a smooth “cut-off” function that is 1 for x ∈ Ωρ, it is
0 for x ∈ Ω2ρ, and that satisfies maxx∈Ω |∇φρ(x)| ≤M , with M independent
of x. We thus have w = φρw + (1 − φρ)w ≡ w1 + w2. We begin to show the
following property: D1w2 and Diw2, i = 2, . . . , n, can be approximated, in
Lq1∩L2 and L2, respectively, by a sequence of functions from C∞

0 (Rn). To this
end, we set w̃2,k = ψα,Rkw2, where ψα,R the function constructed in Lemma
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II.6.4 with a choice of α that we specify later in the proof, and where {Rk} is an
unbounded sequence of positive numbers with R0 sufficiently large. We thus
have that the support of w̃2,k is compact in Rn. Therefore, its regularizer,
(w̃2,k)ε is in C∞

0 (Rn). Observing that Dj(w̃2,k)ε = (Djw̃2,k)ε, j = 1, . . . , n
(see Exercise II.3.2), in view of (II.2.9) we may choose a vanishing sequence
{εk} such that

lim
k→∞

‖Djw̃2,k −Djw2,k‖sj = 0 , (II.6.35)

where w2,k = (w̃2,k)εk , s1 ∈ {q1, 2}, and sj = 2 for j = 2, . . . , n. By the
Minkowski inequality, we also obtain

‖Djw2 −Djw2,k‖sj ≤ ‖Djw2 −Djw̃2,k‖sj + ‖Djw̃2,k −Djw2,k‖sj , (II.6.36)

so that, in view of (II.6.35), to show the stated property we have to show that
the first term on the right-hand side of (II.6.36) tends to 0 as k → ∞. We
now observe that

‖Djw2 −Djw̃2,k‖sj ≤ ‖(1 − ψα,Rk)Djw2‖sj + ‖Djψα,Rkw2‖sj , (II.6.37)

and so, in view of (II.6.30)1, the property follows if we prove that the second
term on the right-hand side of (II.6.37) vanishes as k → ∞. Take j = 1 and
sj = q1 first. Since

‖D1ψα,Rkw2‖q1 ≤ ‖D1ψα,Rk‖ 2nq1
2n−(n−2)q1

‖w2‖ 2n
n−2 ,ΩRk/

√
2 ,

and, by Theorem II.6.1, w2 ∈ L2n/(n−2)(Ω), we take α ≥ (n − 1)[2n − (n −
2)q1]/[3nq1 − 2(n+ q1)] to deduce, from the properties of ψα,R,

lim
k→∞

‖D1w2 −D1w̃2,k‖q1 = 0 . (II.6.38)

We next choose sj = 2, j = 1, . . . , n, and obtain, with the help of (II.6.32),

‖Djψα,Rkw2‖2 ≤ C ‖w2/|x|‖2,ΩRk/
√

2 ,

which, by (II.6.19) and (II.6.37) implies

lim
k→∞

‖Djw2 −Djw̃2,k‖2 = 0 . (II.6.39)

From (II.6.35), (II.6.36), (II.6.38), and (II.6.39) it then follows

lim
k→∞

‖Djw2 −Djw2,k‖sj = 0 , j = 1, . . . , n , (II.6.40)

which proves the desired property. Notice that, by Theorem II.6.1, (II.6.40)
yields

lim
k→∞

‖w2 − w2,k‖2n/(n−2) = 0 . (II.6.41)

We next observe that each function w2,k obeys, in particular, Troisi inequality
(II.3.8) with s = r, q1 = q1 and q2 = · · · = qn = 2. In fact, this inequality
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shows also that {w2,k} is Cauchy in Lr(Ω) and thus it converges there to some
w. In view of (II.6.40) and (II.6.41), it is simple to show that w = w2, a.e. in
Ω, and that the inequality continues to hold also for the function w2:

‖w2‖n
r ≤ c

∥∥∥∥
∂w2

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw2‖2 . (II.6.42)

Furthermore, by the fact that w ∈ L2n/(n−2)(Ω), it follows w1 ∈ Lr(Ω), and
since w = w1+w2, we deduce w ∈ Lr(Ω). It thus remains to prove the validity
of (II.6.34) when Ω 6= Rn. Recalling that w2 = φρw, we readily obtain

‖w2‖n
r ≤ c1

∥∥∥∥
∂w

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw‖2

+c2
[
(‖w‖q1,σ + |w|1,2)‖w‖n−1

2,σ + ‖w‖q1,σ|w|n−1
1,2

]
,

(II.6.43)

where σ is the (bounded) support of ∇φρ. We now suitably apply the Hölder
inequality in the σ-terms in square brackets and then use (II.6.22) with q = 2.
Consequently, (II.6.43) furnishes

‖w2‖n
r ≤ c1

∥∥∥∥
∂w

∂x1

∥∥∥∥
q1

n∏

i=2

‖Diw‖2 + c3 |w|n1,2 . (II.6.44)

Finally, from Exercise II.3.12, we readily find that

‖w1‖r ≤ c4 ( ‖w‖2,σ′ + |w|1,2) ,

with σ′ the (bounded) support of φρ. Then, inequality (II.6.34) follows from
this latter inequality, from (II.6.22) with q = 2 and (II.6.44). ut

Exercise II.6.9 Show that if Ω = R
n, the last term on the right-hand side of

(II.6.34) can be omitted.

We would like now to extend the results of Theorem II.6.1 to the case
when Ω is a half-space (see Remark II.6.4).2 We begin to observe that, given
u ∈ D1,q(Rn

+), 1 ≤ q < ∞, we may extend it to a function u′ ∈ D1,q(Rn)
satisfying (see Exercise II.3.10)

u(x) = u′(x), x ∈ Rn
+ ,

|u′|1,q,Rn ≤ c|u|1,q,Rn
+
≤ c|u′|1,q,Rn .

(II.6.45)

If 1 ≤ q < n, by Lemma II.6.3, there is a uniquely determined u0 ∈ R such
that (u′ − u0) ∈ Ls(Rn), s = nq/(n− q), and, moreover,

2 As a matter of fact, also Theorem II.6.2 can be extended to Ω = R
n
+. However,

for our purposes, this extension would be irrelevant.
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‖u′ − u0‖s,Rn ≤ γ1|u′|1,q,Rn .

This relation, together with (II.6.45), then delivers

‖u− u0‖s,Rn
+
≤ γ3|u|1,q,Rn

+
,

which is what we wanted to show. It is interesting to observe that if u has
zero trace at the boundary xn = 0 then u0 = 0.3 Actually, denoting by û the
function obtained by setting u ≡ 0 outside Rn

+, one easily shows

û ∈ D1,q(Rn)

|û|1,q,Rn ≤ |u|1,q,Rn
+

(see Exercise II.6.10). Setting Sn−1
− = Sn−1∩Rn

−, by Lemma II.6.3 we deduce

|u0|q|Sn−1
− | ≤

∫

Sn−1

|û(R, ω) − u0|qdω ≤ γ0R
q−n|û|1,q,ΩR ,

for all R > 0, which furnishes u0 = 0. By the same token, we can show
weighted inequalities of the type (II.6.19) and (II.6.20). Next, if q ≥ n, we
notice that, if u has zero trace at the plane xn = 0, we may apply the results
of part (ii) in Theorem II.6.1 to the extension û, to show that the same results
continue to hold for Ω = Rn

+ , and with an arbitrary x0 ∈ Rn
−. Actually, we can

prove a somewhat stronger weighted inequality, holding for any u ∈ D1,q(Rn
+),

q ∈ (1,∞), that vanishes at xn = 0. We start with the identity (valid for
smooth u)

∂

∂xn

[ |u|q
(1 + xn)q−1

]
=

1

(1 + xn)q−1

∂|u|q
∂xn

+ (1 − q)
|u|q

(1 + xn)q .

Integrating this inequality over the parallelepiped Pa,b = {x ∈ Rn
+ : |x′| <

b , xn ∈ (0, a)}, x′ ≡ (x1, · · · , xn−1) , and using the fact that u vanishes at
xn = 0 along with the Hölder inequality, we deduce

‖u/(1 + xn)‖q,Pa,b ≤ q

q − 1
|u|1,q,Pa,b .

Since D1,q(Rn
+) ⊂ W 1,q(Pa,b), by a density argument we can extend this

latter inequality to functions merely belonging to D1,q(Rn
+) having zero trace

at xn = 0. Thus, in particular, letting b→ ∞, we find, for all a > 0,

‖u/(1 + xn)‖q,La ≤ q

q − 1
|u|1,q,La . (II.6.46)

where
La = {x ∈ Rn

+ : xn ∈ (0, a)} . (II.6.47)

We may summarize the above considerations in the following.

3 Notice that since u ∈W 1,q (C) for every cube C of R
n
+ with a side at xn = 0, the

trace of u at xn = 0 is well defined. A more general result for u0 to be zero is
furnished in Exercise II.7.5 and Section II.10.
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Theorem II.6.3 Let n ≥ 2 and assume

u ∈ D1,q(Rn
+), 1 ≤ q <∞.

(i) If q ∈ [1, n), there exists a uniquely determined u0 ∈ R such that the
function

w = u− u0

enjoys the following properties. For any x0 ∈ Rn, it is

w|x− x0|−1 ∈ Lq(ΩR(x0)),

where
ΩR(x0) ≡ Rn

+ −BR(x0)

and the following inequality holds:

(∫

ΩR(x0)

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ q/(n− q)|w|1,q,ΩR(x0). (II.6.48)

Furthermore, if x0 ∈ Rn
+, |x0| = αR, for some α ≥ α0 > 1 and some R > 0,

we have (∫

ΩR

∣∣∣∣
w(x)

x− x0

∣∣∣∣
q

dx

)1/q

≤ c|w|1,q,ΩR

with ΩR = Rn
+ −BR and c = c(n, q, α0). In addition,

w ∈ Ls(Rn
+), s = nq/(n− q) (II.6.49)

and for some γ2 independent of u

‖w‖s ≤ γ2|w|1,q.

If the trace of u is zero at xn = 0 , then u0 = 0.
(ii) If q ≥ n, and u has zero trace at xn = 0 then wu ∈ Lq(Rn

+) and inequality
(II.6.24) holds with any x0 ∈ Rn

−.4

(iii) If q ∈ (1,∞) and u has zero trace at xn = 0, then u/(1 + xn) ∈ Lq(Rn
+)

and inequality (II.6.46) holds for all a > 0.

By means of a simple procedure based on the iterative use of (II.6.22) and
(II.6.49) one can show the following general embedding theorem for functions
in Dm,q(Ω), whose proof is left to the reader as an exercise.

Theorem II.6.4 Let Ω ⊂ Rn, n ≥ 2, be either a locally Lipschitz exterior
domain or Ω = Rn

+, and let u ∈ Dm,q(Ω), m ≥ 1, 1 ≤ q <∞.

4 So that (II.6.24) holds with ΩR(x0) ≡ R
n
+.
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(a) If q ∈ [1, n), let ` ∈ {1, . . . , m} be the largest integer such that `q < n.
Then there are ` uniquely determined homogeneous polynomials Mm−r ,
r = 1, . . . , `, of degree ≤ m− r such that, setting

um−k =

k∑

r=1

Mm−r , k ∈ {1, . . . , `} ,

we have
(i) (u− um−k) ∈ Dm−k,qk (Ω) ,

(ii)
∑̀

k=1

|u− um−k|m−k,qk ≤ c|u|m,q ,

where qk = nq/(n− kq) .
(b) If q ≥ n, Ω 6= Rn, and the trace of Dαu, |α| = m− 1, is zero at ∂Ω, then

wDαu ∈ Lq(ΩR(x0)), with w and ΩR(x0) given in part (ii) of Theorem
II.6.1 and Theorem II.6.3, and (II.6.24) holds with u ≡ Dαu.

(c) If u ∈ Dm,q(Rn
+), q ∈ (1,∞), and the trace of Dαu, |α| = m − 1, is zero

at xn = 0, then Dαu/(1 + xn) ∈ Lq(Rn
+) and inequality (II.6.46), with

u ≡ Dαu, holds for all a > 0.

Our final objective is to establish embedding inequalities for functions from
Dm,q(Ω) that vanish at ∂Ω. We wish to prove these results without assuming
any regularity on ∂Ω, and so we introduce the following generalized version
of “vanishing of traces at the boundary” for u ∈ Dm,q(Ω) (see Simader and
Sohr 1997, Chapter I)

ψu ∈ Wm,q
0 (Ω) , for all ψ ∈ C∞

0 (Rn) . (II.6.50)

Remark II.6.5 In view of Theorem II.4.2, we find at once that, if Ω has the
regularity specified in that theorem, condition (II.6.50) is equivalent to the
condition Γm(u) = 0 at ∂Ω. �

Theorem II.6.5 Let Ω be an exterior domain of Rn, n ≥ 2, and let u ∈
Dm,q(Ω), m ≥ 1, q ∈ [1,∞), satisfy (II.6.50).

(i) Assume Ωc ⊃ Ba, for some a > 0. Then, the following inequality holds
for all R > δ(Ωc)

‖u‖m−1,q,ΩR ≤mC |u|m,q,ΩR ,

where C = n−1/qR1+(n−1)/qa(1−n)/q.
(ii) Assume q ∈ [1, n) and let ` ∈ {1, . . . , m} be the largest integer such

that `q < n. Then, if the homogeneous polynomials Mm−r , r = 1, . . . , `,
defined in Theorem II.6.4(a) are all zero, the properties (i) and (ii) of that
theorem hold.

Proof. For any given R > δ(Ωc), let ψ ∈ C∞
0 (Rn) to be 1 in Ω2R and 0 in

Ω3R. By (II.6.50), we know that there is {us} ⊂Wm,q
0 (Ω) converging to ψu.
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Thus, it is enough to show the statement in (i) for u ∈ C∞
0 (Ω) and for m = 1.

If we extend u to 0 in Ωc, we find

u(x) =

∫ |x|

a

∂u

∂r
(r x/|x|)dr .

By using the Hölder inequality in this identity, we derive

|u(x)|q ≤ Rq−1a1−n

∫ R

a

|∇u|qrn−1dr .

Therefore, by multiplying both sides of this inequality by rn−1, and by inte-
grating the resulting relations over r ∈ [a, R] and again over the unit sphere,
we obtain the desired inequality. Under the stated assumptions in part (ii),
from Theorem II.6.4(a) we find

∑̀

k=1

|u|m−k,nq/(n−kq),ΩR ≤ C |u|m,q , (II.6.51)

while, by a repeated use of (II.6.9), it follows that

∑̀

k=1

|us|m−k,nq/(n−kq),ΩR
≤ C |us|m,q .

Passing to the limit s→ ∞ in this relation, and recalling the properties of ψ,
we deduce

∑̀

k=1

|u|m−k, nq
n−kq ,ΩR

≤ C

(∑̀

k=1

|u|m−k,q,Ω2R,3R +

m∑

k=`+1

|u|m−k,q,Ω2R,3R + |u|m,q

)
.

Combining this inequality with (II.6.51), we find

∑̀

k=1

|u|m−k,nq/(n−kq) ≤ C
(
‖u‖m−`−1,q,Ω2R,3R + |u|m,q

)
, (II.6.52)

and the result follows from (II.6.52) and part (i). ut

Exercise II.6.10 Let u ∈ D1,q(Ω), 1 ≤ q < ∞. Assume Ω ∩ Br(x0) locally Lip-

schitz for every x0 ∈ ∂Ω and some r > 0. Show that if u has zero trace at ∂Ω,

then its extension bu to R
n, obtained by setting u ≡ 0 in Ωc, is in D1,q(Rn). Hint:

Take ϕ arbitrary from C∞
0 (Rn). and let B be an open ball with B ⊃ supp (ϕ). Then

ϕu ∈ W 1,q
0 (Ω ∩B), and one can argue as in Exercise II.3.11.
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II.7 Approximation of Functions from Dm,q by Smooth
Functions and Characterization of the Space Dm,q

0

In the preceding section, we have defined the space Dm,q
0 (Ω) as the (Cantor)

completion of the normed space {C∞
0 (Ω) , |·|m,q}. As such, the generic element

of Dm,q
0 (Ω) is an equivalence class of Cauchy sequences. Our main objective

in this section is to furnish a “concrete” representation of Dm,q
0 (Ω), up to an

isomorphism, when Ω is either an exterior domain or a half-space.
In order to reach this objective, it is of the utmost importance to inves-

tigate the conditions under which an element from Dm,q(Ω) can be approx-
imated by functions from C∞

0 (Ω) in the seminorm (II.6.4) (see Galdi and
Simader 1990, and Remark II.6.4). As a by-product, we shall also find condi-
tions ensuring the validity of this approximation by functions from C∞

0 (Ω).
Like we did previously in analogous circumstances, we shall consider the case
m = 1, leaving the case m > 1 to the reader (see Theorem II.7.3 through
Theorem II.7.8).

Theorem II.7.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain, and let u ∈
D1,q(Ω), 1 ≤ q <∞. Then, u can be approximated in the seminorm | · |1,q by
functions from C∞

0 (Ω) under the following assumptions.

(i) If q ∈ [1, n), u satisfies (II.6.50) with m = 1, and u0 = 0, where u0 is the
constant of Lemma II.6.3 ;

(ii) If q ∈ [n,∞), u satisfies (II.6.50) with m = 1, .

Proof. We shall follow the ideas of Sobolev (1963b), combined with the argu-
ments used in the proof of Theorem II.6.2. Let ψ ∈ C∞

0 (R) be nonincreasing
with ψ(ξ) = 1 if |ξ| ≤ 1/2 and ψ(ξ) = 0 if |ξ| ≥ 1 and set, for R large enough,

ψR(x) = ψ

(
ln ln |x|
ln lnR

)
. (II.7.1)

Notice that, for a suitable constant c > 0 independent of R,

|DαψR(x)| ≤ c

ln lnR

1

|x|m ln |x| , |α| = m ≥ 1 (II.7.2)

and DαψR(x) 6≡ 0, |α| ≥ 1, only if x ∈ Ω̃R, where

Ω̃R =
{
x ∈ Ω : exp

√
lnR < |x| < R

}
. (II.7.3)

Next, let u ∈ D1,q(Ω), q ∈ [1,∞), satisfying (II.6.50) with m = 1, and with
u0 = 0 if q ∈ [1, n). We write u = (1−ψR)u+ψRu. By (II.6.50) we then have

ψRu ∈W 1,q
0 (Ω) (II.7.4)

for all R > δ(Ωc). So, given ε > 0 we may find a sufficiently large R and a
function uR,ε ∈ C∞

0 (Ω) such that
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|uR,ε − ψRu|1,q < ε,

and

|u− uR,ε|1,q≤‖(1 − ψR)∇u‖q + ‖∇ψRu‖q + |uR,ε − ψRu|1,q< 2ε+ ‖∇ψRu‖q.

The lemma will then follow from this inequality, provided we show that the
last term on its right-hand side tends to zero as R→ ∞. Setting

`(R) ≡ ‖∇ψRu‖q, (II.7.5)

in view of (II.7.2) and (II.7.3) we can find a constant c1 > 0 such that

`(R)q ≤ c1
(ln lnR)q

∫ R

exp
√

ln R

∫

Sn−1

|u(r, ω)|q
(ln r)q rn−q−1dωdr.

Now, by Lemma II.6.3 and Exercise II.6.3, recalling that u0 = 0 if q ∈ [1, n),
we have ∫

Sn−1

|u(r, ω)|q ≤ c2g(r),

where, in particular,

g(r) =





(ln r)n−1 if q = n

rq−n if q 6= n , q 6= 1

r1−n|u|1,1,Ωr if q = 1.

Therefore, if q = n we obtain

`(R)n ≤ c2
(ln lnR)n

∫ R

exp
√

ln R

(r ln r)−1dr ≤ c2(ln lnR)1−n; (II.7.6)

and if q 6= n, q 6= 1,

`(R)q ≤ c2
(ln lnR)q

∫ R

exp
√

ln R

(ln r)−qr−1dr ≤ c2
(ln lnR)q

(lnR)(1−q)/2

(q − 1)
.

(II.7.7)
Finally, if q = 1, we have

`(R) ≤ c2
(ln lnR)

∫ R

exp
√

ln R

(ln r)−1r−1|u|1,1,Ωrdr ≤ c2
2
|u|1,1,Ωexp

√
ln R .

(II.7.8)
So, for all q ∈ [1,∞), we recover

lim
R→∞

`(R) = 0,

which completes the proof of the theorem. ut
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Remark II.7.1 If the trace of u does not vanish at the boundary, that is,
if u does not satisfy (II.6.50), Theorem II.7.1 should be suitably modified. In
fact, on the one hand, the function ψRu does not satisfy the condition (II.7.4)
but, rather, it verifies the following one:

ψRu ∈ W 1,q(Ω), for all R > δ(Ωc).

So, from Theorem II.3.1 it follows that, if Ω is locally Lipschitz, given ε > 0,
we may find a sufficiently large R and a function uR,ε ∈ C∞

0 (Ω) such that

|uR,ε − ψRu|1,q < ε

and, as in the proof of Theorem II.7.1, we can prove that any u ∈ D1,q(Ω)
can be approximated in the seminorm | · |1,q by functions from C∞

0 (Ω) for
q ≥ n. However, the same result continues to hold also when 1 ≤ q < n. In
fact, it suffices to notice that, for any u ∈ D1,q(Ω) with u0 6= 0, the function
ψR(u − u0), with u0 defined in Lemma II.6.3, is of bounded support in Ω,
belongs to W 1,q(Ω) and approaches u in the seminorm | · |1,q. We thus have
the following.

Theorem II.7.2 Let Ω be locally Lipschitz, and let u ∈ D1,q(Ω). Then, u
can be approximated in the norm | · |1,q by functions from C∞

0 (Ω).

�

Exercise II.7.1 Let Ω be locally Lipschitz. Show that C∞
0 (Ω) is dense in Ḋ1,q(Ω).

The technique employed in the proof of Theorem II.7.1 and Theorem II.7.2,
along with the results of Theorem II.6.4, allow us to generalize the previous
results to the space Dm,q(Ω), m ≥ 1, in the following theorems, whose proofs
we leave to the reader as an exercise.

Theorem II.7.3 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let u ∈
Dm,q(Ω), 1 ≤ q <∞, m ≥ 1 . Then u ∈ Dm,q(Ω) can be approximated in the
norm | · |m,q by functions from C∞

0 (Ω) under the following assumptions.

(i) If q ∈ [1, n), u satisfies (II.6.50) and the following conditions hold:

um−` ≡ 0 , (II.7.9)

where ` ∈ {1, . . . , m} is the largest integers such that `q < n and the
polynomials um−` are defined in Theorem II.6.4.

(ii) If q ∈ [n,∞), u satisfies (II.6.50)

Theorem II.7.4 Let Ω be a locally Lipschitz, exterior domain of Rn, n ≥ 2.
Then, every u ∈ Dm,q(Ω) can be approximated in the seminorm | · |m,q by
functions from C∞

0 (Ω).
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We are now in the position to prove a characterization of the space
Dm,q

0 (Ω). For the sake of argument, we shall first consider the case m = 1.

Set

D̃1,q
0 (Ω) =





{u ∈ D1,q(Ω) : ‖u‖ nq
n−q

<∞ , u satisfies (II.6.50) with m = 1} ,
if q ∈ [1, n)

{u ∈ D1,q(Ω) : u satisfies (II.6.50) with m = 1} , if q ∈ [n,∞)
(II.7.10)

where, if q ≥ n, we assume Ωc ⊃ Ba, for some a > 0.
With the help of Exercise II.6.8, it is not difficult to show that D̃1,q

0 (Ω),
1 ≤ q < ∞, endowed with the norm | · |1,q is a Banach space, and that this
norm is equivalent to the following one

| · |1,q + ‖ · ‖nq/(n−q) if q ∈ [1, n)

| · |1,q + ‖w(·)‖q if q ∈ [n,∞) .
(II.7.11)

where w is defined in (II.6.23).

Theorem II.7.5 Let Ω be an exterior domain of Rn, n ≥ 2. Then D1,q
0 (Ω),

q ∈ [1,∞), is isomorphic to D̃1,q
0 (Ω), where Ω 6= Rn, if q ≥ n. If q ≥ n and

Ω = Rn, then D1,q
0 (Rn) is isomorphic to Ḋ1,q(Rn).

Proof. We first consider the two cases: either (i) q ∈ [1, n), or (ii) q ∈ [n,∞)

and Ω 6= Rn, and begin to construct a suitable map T : D1,q
0 (Ω) → D̃1,q

0 (Ω).
Let ũ be a generic element in D1,q

0 (Ω), that is, an equivalence class of Cauchy
sequences, and let {uk} ∈ ũ. Then {Djuk}, j = 1, . . . , n, are Cauchy sequences
in Lq(Ω) and, therefore, there exist corresponding Vj ∈ Lq(Ω), such that

lim
k→∞

‖Djuk − Vj‖q = 0 , j = 1, . . . , n . (II.7.12)

Moreover, in view of Exercise II.6.4, {uk} is a Cauchy sequence also in
Lnq/(n−q)(Ω), if q ∈ [1, n), and in Lq

w(Ω), if q ≥ n and Ω 6= Rn. Thus,
there is u ∈ Lnq/(n−q)(Ω), if q ∈ [1, n), or u ∈ Lq

w(Ω), if q ≥ n and Ω 6= Rn,
such that

lim
k→∞

‖uk − u‖nq/(n−q) = 0 , if q ∈ [1, n)

lim
k→∞

‖w(uk − u)‖q = 0 , if q ≥ n, Ω 6= Rn .
(II.7.13)

From the definition of weak derivative and from (II.7.12)–(II.7.13), it imme-
diately follows that Vj = Dju. Next, let ψ ∈ C∞

0 (Rn). We have to show that
ψu can be approximated, in W 1,q(Ω)–norm, by a sequence {vk} ⊂ C∞

0 (Ω).
Take vk = ψuk. From (II.7.13) it is clear that ‖ψu − vk‖q → 0 as k → ∞.
Moreover,

|ψu− vk|1,q ≤ C ( |u− uk|1,q + ‖u− uk‖q,K)
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with K the support of ψ, so that, from this inequality and (II.7.12), (II.7.13),
we find |ψu− vk|1,q → 0 as k → ∞, which concludes the proof of the desired

property. We may thus infer u ∈ D̃1,q
0 (Ω). Since, as it is readily checked, the

function u does not depend on the particular sequence {uk} ∈ ũ, we may

define a map, T, that to each ũ ∈ D1,q
0 (Ω) assigns the function u ∈ D̃1,q

0 (Ω)
determined in the way described above. Of course, T is linear and it is also
an isometry, and, in addition,

|ũ|1,q ≡ lim
k→∞

|uk|1,q = |u|1,q ≡ |T(ũ)|1,q.

It remains to show that the range of T coincides with D̃1,q
0 (Ω). This amounts

to say that, for each u ∈ D̃1,q
0 (Ω) we can find {uk} ⊂ C∞

0 (Ω) such that
|uk−u|1,q → 0 as k → ∞. However, the validity of this property is assured by
Theorem II.7.1. Finally, the case Ω = Rn and q ≥ n. In view of Remark II.6.2,
we only have to show that the natural map i is surjective, namely, that for any
[u] ≡ [u]1 ∈ Ḋ1,q

0 (Rn), we can find {uk} ⊂ C∞
0 (Ω) such that |uk − v|1,q → 0,

as k → ∞, v ∈ [u]. This property follows from Theorem II.7.1, and the proof
of the theorem is complete. ut

We may thus summarize the above theorem with the following represen-
tation of the spaces D1,q

0 (Ω) (up to an isomorphism).

If q ∈ [1, n):

D1,q
0 (Ω) = {u ∈ D1,q(Ω) : ‖u‖nq/(n−q) <∞ , u satisfies (II.6.50) with m = 1} ,

(II.7.14)
with equivalent norm given in (II.7.11)1 .

If q ≥ n, and Ωc ⊃ Ba, for some a > 0:

D1,q
0 (Ω) = {u ∈ D1,q(Ω) : u satisfies (II.6.50) with m = 1} , (II.7.15)

with equivalent norm given in (II.7.11)2 .

If q ≥ n and Ω = Rn:

D1,q
0 (Rn) = {[u] : u ∈ D1,q(Rn)} , (II.7.16)

where
[u] = {v ∈ D1,q(Rn) such that v = u+ c , c ∈ R} .

By combining Theorem II.7.3 with the arguments used in showing Theo-
rem II.7.5, one is now able to furnish the following representation (up to an
isomorphism) of the space Dm,q

0 (Ω), for arbitrary m ≥ 1.

Theorem II.7.6 Let Ω be an exterior domain of Rn, n ≥ 2. The following
representations hold.
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(i) If q < n, let ` ∈ {1, . . . , m} be the largest integer such that `q < n. If
` < m, we assume Ωc ⊃ Ba for some a > 0. Then:

Dm,q
0 (Ω) =

{
u ∈ Dm,q(Ω) :

∑̀

k=1

|u|m−k, nq
n−kq

<∞ , u satisfies (II.6.50)

}
,

(II.7.17)
with equivalent norm

‖u‖m−1,q,ΩR0
+
∑̀

k=1

|u|m−k,nq/(n−kq) + |u|m,q ,

where R0 is a fixed number strictly greater than δ(Ωc) .
(ii) If q ≥ n, assume Ωc ⊃ Ba for some a > 0. Then:

Dm,q
0 (Ω) = {u ∈ Dm,q(Ω) : u satisfies (II.6.50)} , (II.7.18)

with equivalent norm

‖u‖m−1,q,ΩR0
+ |u|m,q ,

where R0 is a fixed number strictly greater than δ(Ωc) .
(iii) If q < n, mq ≥ n, and Ω = Rn:

Dm,q
0 (Rn) =

{
[u]m−` , u ∈ Dm,q(Ω) :

∑̀

k=1

|u|m−k, nq
n−kq

<∞
}

(II.7.19)

where ` (< m) is the largest integer such that `q < n, and where, we recall,

[u]m−` = {v ∈ Dm,q(Rn) : v = u+ Pm−`−1} ,

with Pm−`−1 polynomial of degree ≤ m− `− 1 .
(iv) If q ≥ n and Ω = Rn:

Dm,q
0 (Rn) = {[u]m , u ∈ Dm,q(Ω)} (II.7.20)

The proof of the above theorem is quite straightforward. In fact, it is
obtained by combining the procedure used in Theorem II.7.5, with the results
of Theorem II.7.3 and Theorem II.6.5. We leave the details to the reader.

Exercise II.7.2 Show that the space defined on the right-hand side of (II.7.19) is

a Banach space with respect to the norm |[u]|m,q ≡ |u|m,q, u ∈ [u]m−`. Hint. Follow

the arguments of the proof of Theorem II.7.1.

Remark II.7.2 From Theorem II.7.6 we deduce that, unless mq < n, the
space Dm,q

0 (Rn) is a Banach space whose elements are equivalence classes of
functions that differ by polynomials of suitable degree. In particular, if q ≥ n,
then Dm,q

0 (Rn) = Ḋm,q(Rn). In this respect, see also the following exercise.
�
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Exercise II.7.3 Let {uk} be a Cauchy sequence in Dm,q
0 (Rn), where mq ≥ n, and

let [u]m ∈ Ḋm,q(Rn) be such that |uk − u|m,q → 0 as k → ∞, u ∈ [u]m. Show, by
means of an example, that even though u ∈ Ls(BR), for all s ∈ [1, q] and all R > 0,
we may have ‖uk‖1,BR → ∞ as k → ∞, for all sufficiently large R. Hint (Deny &
Lions 1954, §4): Take m = 1, q = n = 2 and choose

uk(x) = −
Z ∞

|x|

(t ln t)−1ak(t) dt ,

where ak = ak(t), k ∈ N, is a smooth, non-negative function of C∞
0 (R) which is 0

for t ≤ 2 and for t ≥ k + 4, and it is 1 for t ∈ [5/2, 3 + k]. Then |uk − u|1,2 → 0
as k → ∞, where u(x) = (

p
|x| lnx)−1a(x), with a(x) = 0 for |x| ≤ 2 and = 1 for

|x| ≥ 5/2, while

lim
k→∞

Z

BR

|uk(x)| = ∞ , for all R > 5/2 .

Exercise II.7.4 Let Ω be an exterior domain and let u ∈ D2,2
0 (Ω). Show that

|D2u|2,2 = ‖∆u‖2 .

Hint: It is enough to show the identity for u ∈ C∞
0 (Ω).

Results similar to those of Theorem II.7.3 and Theorem II.7.4 can be
proved in the case when Ω = Rn

+. In fact, as we already noticed, every function
u ∈ Dm,q(Rn

+) can be extended to the whole of Rn to a function u′ satisfying
(II.6.45). In particular, if the trace Γm(u) on every (bounded) portion of the
plane xn = 0 is identically zero, we may take u′ as the function obtained by
setting u ≡ 0 outside Rn

+. With this and Theorem II.6.4(c) in mind, one can
show the following theorems, whose proofs are left to the reader.

Theorem II.7.7 The following representation holds, for all m ≥ 0, q ∈
[1,∞).

Dm,q
0 (Rn

+) = {u ∈ Dm,q(Rn
+) : Γm(u) = 0 on S} ,

with S arbitrary bounded domain in the plane xn = 0 , with equivalent norm

|u|m,q + ‖u‖m−1,q,La0
,

where La is defined in (II.6.47) and a0 is a fixed positive number.

Theorem II.7.8 Let u ∈ Dm,q(Rn
+), m ≥ 0, q ∈ [1,∞). Then, u can be

approximated in the seminorm | · |m,q by functions from C∞
0 (R

n

+).

Remark II.7.3 Unlike the case Ω exterior, Theorem II.7.7 does not explicitly
impose any restriction at large distances on the behavior of u when 1 ≤ q < n,
such as the vanishing condition (II.7.9) on the polynomials um−`. Actually by
means of an argument completely analogous to that preceding Theorem II.6.3,
one can show that the polynomials um−` are identically zero as a consequence
of the vanishing of the trace Γm(u). �
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Exercise II.7.5 (Coscia and Patria 1992, Lemma 5) Let u ∈ D1,q(Rn
+), 1 ≤ q < n.

By Theorem II.6.3 there is u0 ∈ R such that u − u0 ∈ Ls(Rn
+), s = nq/(n − q).

Show that if the trace γ(u) at Σ = {x ∈ R
n : xn = 0} belongs to Lr(Σ), for

some r ∈ [1,∞), then u0 = 0. This fact, together with Theorem II.7.8, implies that

every such function can be approximated in the seminorm | · |1,q by functions from

C∞
0 (R

n
+).

II.8 The Normed Dual of Dm,q
0 (Ω). The Spaces D−m,q

0

We begin to furnish a characterization of the normed dual space (Dm,q
0 (Ω))′

of Dm,q
0 (Ω), when Ω is either an exterior domain or Ω = Rn or Ω = Rn

+,
analogous to the one we described at the end of Section II.3 for the space
Wm,q

0 (Ω). A (bounded) linear functional F belongs to (Dm,q
0 (Ω))′ if and only

if
‖F‖(Dm,q

0 (Ω))′ ≡ sup
u∈Dm,q

0 (Ω) , |u|m,q=1

|F(u)| <∞ .

Let us first take Ω exterior, Ω 6= Rn and satisfying the assumptions of Theo-
rem II.7.6, or Ω = Rn

+. Consider the functional

F(u) = (f, u), f ∈ C∞
0 (Ω), all u ∈ Dm,q

0 (Ω). (II.8.1)

Applying the Hölder inequality in (II.8.1) we obtain

|F(u)| ≤ ‖f‖q′‖u‖q,Ω0, (II.8.2)

where Ω0 = supp (f). Then, by Theorem II.7.6 and Theorem II.6.5(i), if Ω is
exterior, and by Theorem II.7.7, if Ω = Rn

+, we find that inequality (II.8.2)
implies

|F(u)| ≤ c ‖f‖q′ |u|m,q

with c = c(Ω0). We now set

|f |−m,q′ = sup
u∈Dm,q

0 (Ω) , |u|m,q=1

|F(u)|. (II.8.3)

Evidently, (II.8.3) is a norm in C∞
0 (Ω). Denote by D−m,q′

0 (Ω) the completion
of C∞

0 (Ω) in this norm. The following result holds.

Lemma II.8.1 Let Ω be an exterior domain (6= Rn) satisfying the assump-
tions of Theorem II.7.6, or Ω = Rn

+. Then, for any q ∈ (1,∞), functionals of

the form (II.8.1) are dense in (Dm,q
0 (Ω))′, and (Dm,q

0 (Ω))′ and D−m,q′

0 (Ω) are
isomorphic.

Proof. Let

S = {F ∈ (Dm,q
0 (Ω))′ : F(u) = (f, u) for some f ∈ C∞

0 (Ω)} .
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Clearly, S is a subspace of (Dm,q
0 (Ω))′. Let us prove that S is dense in

(Dm,q
0 (Ω))′. In fact, assuming by contradiction that S 6= (Dm,q

0 (Ω))′, by the
Hahn–Banach theorem (see Theorem II.1.7(b)) there exists a nonzero element
Z ∈ (Dm,q

0 (Ω))′′ such that

Z(F) = 0, for all F ∈ S.

Since Dm,q
0 (Ω) is reflexive for q ∈ (1,∞) (cf. Exercise II.6.2), the preceding

condition implies that there exists a nonzero z ∈ Dm,q
0 (Ω) such that

F(z) = 0, for all F ∈ S,

that is
(f, z) = 0, for all f ∈ C∞

0 (Ω),

that is, z = 0, which leads to a contradiction. Following Lax (1955, §2), it is

now readily seen that (Dm,q
0 (Ω))′ and D−m,q′

0 (Ω), 1 < q <∞, are isomorphic.
To this end, let L ∈ (Dm,q

0 (Ω))′ and let {fk} ⊂ C∞
0 (Ω) be such that the

sequence Fk ≡ (fk, u), k ∈ N, u ∈ Dm,q
0 (Ω), converges to L in the norm

| · |(Dm,q
0 (Ω))′ of (Dm,q

0 (Ω))′. Since

|Fk|(Dm,q
0 (Ω))′ = |fk|−m,q′ , (II.8.4)

{fk} is a Cauchy sequence in D−m,q′

0 (Ω) converging to some F ∈ D−m,q′

0 (Ω).
Clearly, F depends only on L and not on the particular sequence {fk} and,

in addition, it is uniquely determined. Likewise, to each F ∈ D−m,q′

0 (Ω) we
may uniquely associate an L ∈ (Dm,q

0 (Ω))′, thus establishing the existence

of a linear bijection, L , between (Dm,q
0 (Ω))′ and D−m,q′

0 (Ω). However, from
(II.8.4), it follows that L is an isomorphism, and the proof of the lemma is
complete. ut

Let us now consider the case Ω = Rn. For mq < n, we employ, in (II.8.1),
the Hölder inequality and make use m times of the Sobolev inequality (II.3.7)
to deduce

|F(u)| ≤ ‖f‖nq′/(n+q′)‖u‖nq/(n−mq) ≤ c‖f‖nq′/(n+q′)|u|m,q. (II.8.5)

Ifmq ≥ n, by Theorem II.7.6 we know that elements fromDm,q
0 (Rn) are equiv-

alence classes [u]s determined by functions that may differ by polynomials Ps

of degree ≤ s− 1, where

{
s = m, if q ≥ n,

s = m− `, if q < n and ` (< m) is the largest integersuch that `q < n.
(II.8.6)

Thus, if mq ≥ n, functionals of the type (II.8.1) must satisfy F(u1) = F(u2)
whenever u1, u2 belong to the same class [u]s. This is equivalent to the fol-
lowing condition on f :
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∫

Rn

f Ps = 0, (II.8.7)

where Ps is an arbitrary polynomial of degree ≤ s−1, with s satisfying (II.8.6).
As a consequence, from (II.8.7), for u ∈ [u]s we have (with BR ⊃ supp (f))

|F(u)| =
∣∣∣∣
∫

BR

fu

∣∣∣∣ =
∣∣∣∣
∫

BR

f(u + Ps)

∣∣∣∣ ≤ ‖f‖q′,Rn‖u+ Ps‖q,BR . (II.8.8)

We may choose Ps in such a way that, setting

us = u− Ps,

it follows
1

|BR|

∫

BR

Dαus = 0, 0 ≤ |α| ≤ s.

In view of these latter conditions, by a repeated use of the Poincaré inequality
(II.5.10) in the last term on the right-hand side of (II.8.8), we obtain

|F(u)| ≤ c1‖f‖q′,Rn |u|s+1,q,BR.

Now, if q ≥ n, from (II.8.6) it is s = m− 1 and so

|u|s+1,q,BR ≤ |u|m,q,Rn.

If q < n, again from (II.8.6), the Hölder inequality and (II.7.17) of Remark
II.7.2, we deduce

|u|s+1,q,BR = |u|m−`,q,BR ≤ |u|m−`,nq/(n−`q),Rn ≤ c|u|m,q,Rn .

Thus, in all cases, we deduce

|F(u)| ≤ c2‖f‖q′,Rn |u|m,q,Rn . (II.8.9)

Once (II.8.9) has been established, we may again use the arguments of Lemma

II.8.1 to show that the spaces (Dm,q
0 (Rn))′ and D−m,q′

0 (Rn), 1 < q < ∞, are
isomorphic.

Thus, for q ∈ (1,∞), let us define Fq,m(Ω) as the class of functionals
(II.8.1), which, if Ω = Rn and n ≤ mq <∞, verify, in addition, (II.8.7) for an
arbitrary polynomialPs of degree ≤ s−1, with s satisfying (II.8.6). The results
just discussed along with those of Lemma II.8.1 can be then summarized in
the following.

Theorem II.8.1 Let Ω ⊆ Rn be either an exterior, locally Lipschitz domain,

or Ω = Rn
+ or Ω = Rn. The completion, D−m,q′

0 (Ω), of Fq,m(Ω) in the norm
(II.8.3) is isomorphic to (Dm,q

0 (Ω))′.
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Remark II.8.1 If m = 1, a restriction of the type (II.8.7) occurs if and only
if q ≥ n. In such a case, Ps reduces to an arbitrary constant so that condition
(II.8.7) becomes ∫

Rn

f = 0. (II.8.10)

�

Hereafter, the value of F ∈ D−1,q′

0 (Ω) at u ∈ D1,q
0 (Ω) (duality pairing)

will be denoted by
[F , u].

Notice that if, in particular, F ∈ C∞
0 (Ω), we have

[F , u] = (F , u).

By an obvious continuity argument, the same relation holds, more generally,

for all F ∈ Ls(Ω) ∩D−1,q′

0 (Ω), s ∈ [1,∞) .
Our next goal is to provide a useful representation of functionals on

D1,q
0 (Ω), valid for an arbitrary domain Ω, as well as another characterization

of the space (D1,q
0 (Ω))′. Taking into account that D1,q

0 (Ω) is a closed subspace
of Ḋ1,q(Ω) (see Remark II.6.2), this representation becomes a particular case
of the following important general result.

Theorem II.8.2 Let Ω be a domain in Rn. Then, for any given F ∈
(Ḋ1,q(Ω))′, q ∈ (1,∞), there exists f ∈ [Lq′

(Ω)]n such that, for all u ∈
Ḋ1,q(Ω),

F(u) = (f ,∇u) . (II.8.11)

Moreover,
‖F‖(Ḋ1,q(Ω))′ = ‖f‖q′ . (II.8.12)

Proof. We recall that, for any q ∈ (1,∞), Ḋ1,q(Ω) can be viewed as a subspace
of [Lq(Ω)]n, via the map

M : u ∈ Ḋ1,q(Ω) → h ≡ ∇u ∈ [Lq(Ω)]n . (II.8.13)

Therefore, given F ∈ (Ḋ1,q(Ω))′, by the Hahn–Banach theorem (see Theorem
II.1.7) there exists a (not necessarily unique) functional L ∈ [[Lq(Ω)]n]′, such
that

L(h) = F(u) , u ∈ Ḋ1,q(Ω) , (II.8.14)

and that, moreover, satisfies

‖L‖[[Lq(Ω)]n]′ = ‖F‖(Ḋ1,q(Ω))′ . (II.8.15)

However, by Theorem II.2.6, we have that, corresponding to the functional L,
there exists a uniquely determined f ∈ [Lq′

(Ω)]n such that L(w) = (f ,w) for
all w ∈ [Lq(Ω)]n, with ‖f‖q′ = ‖L‖[[Lq(Ω)]n]′ . Therefore, the theorem follows
from this latter consideration, and from (II.8.14) and (II.8.15). ut
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We would like to analyze some significant consequences of this result for
the space D1,q

0 (Ω). We begin to observe that, since D1,q
0 (Ω) ⊂ Ḋ1,q(Ω), by

Theorem II.8.2 the generic linear functional on D1,q
0 (Ω) can be represented

as in (II.8.11), for all u ∈ D1,q
0 (Ω), where the function f ∈ [Lq′

(Ω)]n is
determined up to a function f0 such that

(f0,∇u) = 0 , for all u ∈ D1,q
0 (Ω) . (II.8.16)

Let L̃q′
(Ω) be the subspace of [Lq′

(Ω)]n constituted by all those functions

satisfying (II.8.16). It is immediately verified that L̃q′
(Ω) is closed. Moreover,

setting G0,q′(Ω) = M(D1,q′

0 (Ω)), with M defined in (II.8.13), we can readily

show that G0,q′(Ω) is also a closed subspace of [Lq′
(Ω)]n; see Exercise II.8.1.

Now, let f ∈ [Lq′
(Ω)]n and consider the problem:

Find w ∈ D1,q′

0 (Ω) such that (∇w − f ,∇u) = 0 , for all u ∈ D1,q
0 (Ω).

(II.8.17)
IfΩ and f are sufficiently smooth, we can show that this problem is equivalent
to the following classical Dirichlet problem

∆w = ∇ · f in Ω , w = 0 at ∂Ω , w ∈ D1,q′

0 (Ω) .

Lemma II.8.2 Assume that, for any given f ∈ [Lq′
(Ω)]n, problem (II.8.17)

has one and only one solution w ∈ D1,q′

0 (Ω). Then, the following decomposi-
tion holds

[Lq′
(Ω)]n = L̃q′

(Ω) ⊕G0,q′(Ω) . (II.8.18)

Conversely, if (II.8.18) holds, then, for any f ∈ [Lq′
(Ω)]n, problem (II.8.17)

is uniquely solvable. Finally, the linear operator Πq′ : f ∈ [Lq′
(Ω)]n → f1 ∈

G0,q′(Ω) is a projection (that is, Π2
q′ = Πq′) and is continuous.

Proof. The last statement in the lemma is a consequence of (II.8.18); see
Rudin (1973, Theorem 5.16(b)). Since both Lq′

(Ω) and G0,q′(Ω) are closed,
in order to prove (II.8.18), under the given assumption, we have to show

that (a) Lq′
(Ω) ∩ G0,q′(Ω) = {0}, and that (b) f = f0 + f1, f0 ∈ L̃q′

(Ω),

f1 ∈ G0,q′(Ω). Suppose there are l ∈ L̃q′
(Ω) and g = ∇g ∈ G0,q′(Ω), for

some g ∈ D1,q′

0 (Ω), such that l = g. This means, by definition of L̃q′
(Ω)

that (∇g,∇u) = 0 for all u ∈ D1,q
0 (Ω), which, in turn, by the uniqueness

assumption on problem (II.8.17), implies ∇g = l = 0. Thus, (a) is proved.
Next, for the given f , let w ∈ D1,q

0 (Ω) be the corresponding solution to

(II.8.17) and set f0 = f − ∇w (∈ L̃q′
(Ω)), and f1 = ∇w (∈ G0,q′). Then,

f = f0 + f1 which proves (b). The converse claim, namely, that (II.8.18)
implies the unique solvability of (II.8.17), is almost obvious and, therefore, it
is left to the reader as an exercise ut
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With the help of Theorem II.8.2 and Lemma II.8.2, we can now show the
following result.

Theorem II.8.3 Assume the hypothesis of Lemma II.8.2 is satisfied and q′ ∈
(1,∞). Then D1,q′

0 (Ω) and (D1,q
0 (Ω))′ are homeomorphic. Specifically, the

linear map

M : w ∈ D1,q′

0 (Ω) → M(w) ∈ (D1,q
0 (Ω))′ , (II.8.19)

where
[M(w), u] = (∇w,∇u) , for all u ∈ D1,q

0 (Ω) , (II.8.20)

is a bijection and, moreover, for some c = c(q, n, Ω) > 0,

c |w|1,q′ ≤ ‖M(w)‖(D1,q
0 (Ω))′ ≤ |w|1,q′ . (II.8.21)

Proof. By assumption, we find that M is injective, and, by Theorem II.8.2
((II.8.11), in particular) and Lemma II.8.2, that M is surjective, so that M

is a bijection. Furthermore, the inequality on the right-hand side of (II.8.21)
is an obvious consequence of the Hölder inequality, while the one on the left-
hand side follows from the continuity of the projection operator Πq′ and from
(II.8.12). ut

In view of the results of Theorem II.8.3, it is of great interest to investigate
under what conditions problem (II.8.17) has, for a given f ∈ [Lq′

(Ω)]n, a
unique corresponding solution w. As a matter of fact, such unique solvability
depends, in general, on the domain Ω and on the exponent q′. In particular,
we have the following.

Theorem II.8.4 Let Ω be either Rn, or Rn
+, or a bounded domain with

a boundary of class C2. Then, for all q ∈ (1,∞), the spaces D1,q′

0 (Ω) and
(D1,q

0 (Ω))′ are homeomorphic, in the sense specified in Theorem II.8.3. If Ω
is an exterior domain of class C2 (with ∂Ω 6= ∅) the same conclusion holds if
and only if q′ ∈ (n/(n− 1), n), if n ≥ 3, and q′ = 2, if n = 2.

We shall not give a proof of this theorem, mainly, because a completely
analogous analysis of unique solvability will be carried out in Chapters IV and
V, in the more complicated context of the Stokes problem. Here we shall limit
ourselves to observe that the restriction on the exponent q′, in the case of the
exterior domain, comes from the fact that the Dirichlet problem (II.8.17) for
n ≥ 3 looses existence if 1 < q′ ≤ n/(n − 1) (q′ ∈ (1, 2) if n = 2), while it
lacks of uniqueness if q′ ≥ n, n ≥ 3 (q′ > 2, if n = 2). For further details, we
refer the interested reader to the Notes at the end of this chapter.

Exercise II.8.1 Show that G0,q(Ω), q ∈ [1,∞), is a closed subspace of Lq(Ω).

Exercise II.8.2 Show that the subspace S of (Ḋ1,q(Ω))′, q ∈ (1,∞), defined as
follows
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S = {u ∈ C∞
0 (Ω) : u = ∇ ·ψ , for some ψ ∈ C∞

0 (Ω)}
is dense in (Ḋ1,q(Ω))′. This result generalizes the one proved by Kozono & Sohr

(1991, Corollary 2.3). Hint: Use Theorem II.8.2.

II.9 Pointwise behavior at Large Distances of Functions
from D1,q

We begin to give two classical results of potential theory, in a form suitable
to our purposes.

Lemma II.9.1 Let A be a bounded, locally Lipschitz domain of Rn, n ≥ 2,
and let w ∈ C2(A). The following identity holds for all x ∈ A:

w(x) =
1

nωn

∫

A

∂w(y)

∂yi

(xi − yi)

|x− y|n dy −
1

nωn

∫

∂A

w(y)
(xi − yi)

|x − y|n Ni(y)dσy

where N ≡ (Ni) is the outer unit normal to ∂A.

Proof. Denote by E(x− y) the fundamental solution of Laplace’s equation:

E(x− y) =





(2π)−1 log |x− y| if n = 2

[n(2 − n)ωn]
−1 |x− y|2−n if n ≥ 3.

(II.9.1)

Employing the (second) Green’s identity1

∫

Aε

(v∆u− u∆v) =

∫

∂Aε

(v
∂u

∂N
− u

∂v

∂N
)

with v(y) ≡ w(y), u(y) = E(x− y), Aε = A−Bε(x) and integrating by parts
we deduce

∫

Aε

∂E(x− y)

∂yi

∂w(y)

∂yi
=

∫

∂Bε

w(y)
∂E(x − y)

∂yi
Ni(y)dσy

+

∫

∂A

w(y)
∂E(x − y)

∂yi
Ni(y)dσy

which, in turn, by the properties of E and a standard procedure, proves the
result in the limit ε→ 0. ut

Lemma II.9.2 Let

1 As is well known, this identity is obtained by means of the Gauss divergence
theorem which, by Lemma II.4.1, holds for locally Lipschitz domains and smooth
functions u, v.
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I1(x) =

∫

Rn

dy

|x− y|λ|y|µ , λ < n, µ < n.

Then, if λ + µ > n, there exists a constant c = c(λ, µ, n) such that

|I1(x)| ≤ c|x|−(λ+µ−n).

Moreover, let

I2(x) =

∫

A(x)−B1(x)

dy

|x− y|n log |y| ,

with

A(x) = {y ∈ Rn : κ1|x| < |y| < κ2|x|} , κ1 ∈ (0, 1), κ2 ∈ (1,∞)

and x satisfying

|x| > 2/κ, κ = min{1− κ1, κ2 − 1, κ2
1}.

Then, there exist positive constants c1, c2 depending only on κ1, κ2, and n
such that

I2(x) ≤ c1 + c2(log |x|)−1.

Proof. Setting

x′ =
x

|x| , y′ =
y

|x| ,

it follows that

|I1(x)| ≤ c|x|−(λ+µ−n)

∫

Rn

dy′

|x′ − y′|λ|y′|µ ≡ c|x|−(λ+µ−n)I.

To estimate I, we rotate the coordinates in such a way that x′ goes into
x0 = (1, 0, . . .0) so that

I =

∫

Rn

dy′

|x0 − y′|λ|y′|µ
.

Thus, I is convergent, since λ < n, µ < n and λ+µ > n, and it is independent
of x. The first estimate is therefore proved. To show the second one, we put
|x| = R and perform into I2 the same change of coordinates operated before
to obtain

I2(x) =

∫

A′−B1/R(x0)

dy′

|x0 − y′|n log(R|y′|) ,

where
A′ = {y′ ∈ Rn : κ1 < |y′| < κ2} .

Being R1/2|y′| ≥ κ1/κ
1/2 > 1, we have log(R|y′|) ≥ (logR)/2 and so
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I2(x) ≤ 2(log |x|)−1{I1 + I2},

with

I1 =

∫

1/R≤|x0−y′|≤3κ/4

|x0 − y′|−ndy′

I2 =

∫

A′−B3κ/4(x0)

dy′

|x0 − y′|n .

Clearly,
I2 = b

and, since κ < 1,
I1 ≤ a log |x|,

where a and b are independent of x. The lemma is thus completely proved.
ut

The result just shown will be used in the proof of the following one; see
also Padula (1990, Lemma 2.6).

Theorem II.9.1 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain and let

u ∈ D1,r(Ω) ∩D1,q(Ω), for some r ∈ [1,∞) and some q ∈ (n,∞). (II.9.2)

Then, if r < n, there exists u0 ∈ R such that

lim
|x|→∞

|u(x)− u0| = 0 uniformly. (II.9.3)

The same conclusion holds if (II.9.2) is replaced by the following one: there
exists u0 ∈ R such that

(u− u0) ∈ Ls(Ω) ∩D1,q(Ω), for some s ∈ [1,∞) and some q ∈ (n,∞).
(II.9.4)

Moreover, under the assumption (II.9.2), with r = n, we find that

lim
|x|→∞

|u(x)|/(log |x|)(n−1)/n = 0 , uniformly. (II.9.5)

Finally, if
u ∈ D1,q(Ω), for some q ∈ (n,∞) ,

we have that
lim

|x|→∞
|u(x)|/|x|(q−n)/q = 0 , uniformly. (II.9.6)
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Proof. We begin to observe that, by density, (II.3.12) continues to hold for
all u ∈ W 1,q(B(x)), q > n, and consequently, by Lemma II.6.1, for all u ∈
D1,q(Ω), q > n. Thus, we find

|v(x)| ≤ c
(
‖v‖1,B1(x) + |v|1,q,B1(x)

)
, for all v ∈ D1,q(Ω), q > n , (II.9.7)

for some c independent of x. Now, under the assumption (II.9.2), by Theorem
II.6.1 there exists u0 ∈ R such that

‖u− u0‖nr/(n−r) <∞. (II.9.8)

Relation (II.9.3) then follows with the help of (II.9.8), by setting v = u−u0 in
(II.9.7), and then by letting |x| → ∞. Under the assumption (II.9.4), we again
use (II.9.7) with v = u − u0, and let |x| → ∞ in the resulting inequality. Let
us next prove relation (II.9.6). We take R so large that exp

√
lnR > 2δ(Ωc)

and set
u(1) = (1 − ψR)u,

where ψR is given in (II.7.1). Putting

Ωρ = Ω − Bρ, ρ = exp
√

lnR,

by the properties of the function ψR (see (II.7.5), (II.7.7)), it follows for suf-
ficiently large R that

|u(1)|1,q,Ωρ ≤ |u|1,q,Ωρ + c(ln lnR)−1. (II.9.9)

Moreover, u(1) ∈ D1,q(Ωρ) and, since u(1) vanishes at ∂Ωρ, by Theorem II.7.1
there exists a sequence {us}s∈N ⊂ C∞

0 (Ωρ) converging to u(1) in the norm
| · |1,q. For fixed s, s′ ∈ N, we apply Lemma II.9.1 to the function w(x) ≡
h(x)|x|−γ, where h(x) = us(x) − us′(x) and A ⊃ supp (w). We thus have

|h(x)||x|−γ ≤
∫

Ωρ

|∇h(y)||y|−γ |x− y|1−ndy

+γ

∫

Ωρ

|h(y)||y|−1−γ |x− y|1−ndy.

Employing the Hölder inequality and (II.6.13) with x0 = 0, there follows

|h(x)||x|−γ ≤ c|h|1,q,Ωρ

(∫

Rn

|y|−γq′ |x− y|(1−n)q′
dy

)1/q′

,

where q′ = q/(q− 1) and c = c(n, q). Taking γ ∈ (1− n/q, n− n/q) and since
q > n, we may estimate the integral over Rn by means of Lemma II.9.2 to
deduce

|h(x)||x|−γ ≤ c|h|1,q,Ωρ|x|−γ+(q−n)/q.
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Recalling the definition of the function h and letting s, s′ → ∞, from this
latter inequality we obtain

|u(1)(x)| ≤ c|u(1)|1,q,Ωρ|x|(q−n)/q, for all x ∈ Ωρ

and so, by the properties of ψR and by (II.9.9), it follows that

|u(x)| ≤ c1
(
|u|1,q,Ωρ + (ln lnR)−1

)
|x|(q−n)/q, for all x ∈ Ωρ,

which proves (II.9.6). It remains to show (II.9.5). To this end, let x ∈ Ω with
|x| = R, R > 2δ(Ωc) and sufficiently large. Since

u ∈W 1,q(ΩR/2,2R) ∩W 1,n(ΩR/2,2R),

we may use the density Theorem II.3.1 together with Theorem II.3.4 and
Theorem II.4.1 to prove the validity of the identity in the statement of Lemma
II.9.1 with A ≡ ΩR/2,2R and w(y) ≡ u(y)/(log |y|)(n−1)/n. We thus obtain for
all x ∈ Ω with |x| = R

|u(x)|/(log |x|)(n−1)/n ≤ c(I1 + I2 + I3 + I4 + I5 + I6), (II.9.10)

where c = c(n) and

I1 =

∫

ΩR/2,2R−B1(x)

|∇u(y)|[(log |y|)1/n|x− y|]1−ndy,

I2 =

∫

B1(x)

|∇u(y)|[(log |y|)1/n|x− y|]1−ndy,

I3 =

∫

ΩR/2,2R−B1(x)

|u(y)||y|−1(log |y|)1/n−2|x− y|1−ndy,

I4 =

∫

B1(x)

|u(y)||y|−1(log |y|)1/n−2|x− y|1−ndy,

I5 =

∫

∂BR/2

|u(y)|(log |y|)(1−n)/n|x− y|−1dσy,

I6 =

∫

∂B2R

|u(y)|(log |y|)(1−n)/n|x− y|−1dσy.

Set

I(x) ≡
(∫

ΩR/2,2R−B1(x)

dy

|x− y|n log |y|

)(n−1)/n

.

The following estimates are a simple consequence of the Hölder inequality:
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I1 ≤ I(x)|u|1,n,ΩR/2,2R
,

I2 ≤ c1(logR)(1−n)/n|u|1,q,B1(x),

I3 ≤ I(x)

(∫

ΩR/2,2R

|u(y)|n
(|y| log |y|)n dy

)1/n

,

I4 ≤ c2(logR)(1−2n)/n

(∫

B1(x)

|u(y)|q
|y|q dy

)1/q

.

Moreover, since

|x− y| ≥
{
R/2 for y ∈ ∂BR/2

R for y ∈ ∂B2R

,

it follows that

I5 + I6 ≤ c3(logR)(1−n)/n

{(∫

Sn−1

|u(R/2, ω)|ndω
)1/n

+

(∫

Sn−1

|u(2R, ω)|ndω
)1/n

}
.

By Lemma II.9.2, we have

I(x) ≤ c4 + c5(log |x|)−1 (II.9.11)

while, by Exercise II.6.3, given ε > 0 there is a sufficiently large R such that
for all R > R it holds that

∫

Sn−1

|u(R/2, ω)|ndω +

∫

Sn−1

|u(2R, ω)|ndω ≤ c6 ε (logR)n−1, (II.9.12)

and

∫

ΩR/2,2R

|u(y)|n
(|y| log |y|)n dy ≤ c7ε

∫ 2R

R/2

(r log r)−1dr ≤ c8 ε. (II.9.13)

In addition, from (II.9.6), we find

∫

B1(x)

|u(y)|q
|y|q dy ≤ c9R

−n. (II.9.14)

Since, clearly, as R → ∞,

|u|1,n,ΩR/2,2R
, |u|1,q,B1 = o(1), (II.9.15)

in view of (II.9.11)–(II.9.15) we deduce in the limit R→ ∞
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6∑

i=1

Ii = o(1) (II.9.16)

and (II.9.5) follows from (II.9.10) and (II.9.16). The theorem is therefore com-
pletely proved. ut

Remark II.9.1 The result just shown applies, with no change to domains
Ω that possess an extension property of the type specified in Remark II.6.4,
such as a half-space. �

II.10 Boundary Trace of Functions from Dm,q(Rn
+
)

Our next objective is to investigate the trace space at the boundary of a
function u ∈ Dm,q(Ω), for Ω ≡ Rn

+. Actually, if Ω is an exterior domain,
there is nothing to add to what was said in Section II.4, since, as shown in
Lemma II.6.1, ifΩ is locally Lipschitz then u ∈Wm,q(ΩR). On the other hand,
if u ∈ Dm,q(Rn

+) then u ∈ Wm,q(C), for any cube C ⊂ Rn
+, and therefore,

by the results of Section II.4, u possesses a well-defined trace Γ(m)(u) at the
plane Σ = {x ∈ Rn : xn = 0} that belongs to the trace space Wm,q(Σ

′), for
every bounded portion Σ′ of Σ. However, from those results we cannot draw
any conclusion concerning the finiteness of the norms of Γm(u) on the whole
of Σ. Nevertheless, such global information is of primary importance in the
resolution of nonhomogeneous boundary-value problems.

A detailed investigation of the properties of the traces on Σ of functions
belonging to the spaces Dm,q(Rn

+) has been performed by Kudrjavcev (1966a,
1966b). Here we shall describe some of his results in the case where m =
1, since this is the only case we need to consider in the applications. The
interested reader is referred to Remark II.10.2 and to the work of Kudrjavcev
(1966b, Theorems 2.4′ and 2.7) for generalizations to the case where m > 1.

For a function u ∈ D1,q(Rn
+), we shall denote throughout by u its trace at

Σ. From Theorem II.4.1 we derive, in particular, for any bounded (measur-
able) Σ′ ⊂ Σ,

‖u‖q,Σ′ ≤ c
(
|u|1,q,Rn

+
+ ‖u‖q,B

)
, (II.10.1)

where c = c(Σ′, n, q, B) and B any bounded, locally Lipschitz domain of Rn
+

with B ⊃ Σ′. Let σ be a non-negative, measurable function in Σ. By the
symbol

Lq(Σ, σ), 1 ≤ q ≤ ∞,

we denote the space of (equivalence classes of) real functions w on Σ that are
Lq-summable in with the “weight” σ, namely,

‖σw‖q <∞.

We have
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Theorem II.10.1 Let Σ = {x ∈ Rn : xn = 0} and x′ = (x1, . . . , xn−1).
Then, for any u ∈ D1,q(Rn

+) the trace u of u at Σ satisfies

u ∈ Lq(Σ, σ1), σ1 = (1 + |x′|)(1−n)/q−ε1,

where ε1 is an arbitrary positive number, and the following inequality holds:

‖σ1u‖q,Σ ≤ c1

(
|u|1,q,Rn

+
+ ‖u‖q,B+

)
,

with c1 = c1(n, q, ε1) and B+ = B1 ∩ Rn
+. Moreover, if 1 ≤ q < n, we have

u− u0 ∈ Lq(Σ, σ2), σ2 = (1 + |x′|)(1−q)/q−ε2,

where u0 is the constant associated to u by Theorem II.6.3 and ε2 is an
arbitrary positive number, and the following inequality holds:

‖σ2(u− u0)‖q,Σ ≤ c2|u|1,q,Rn
+
,

with c2 = c2(n, q, ε2).

Proof. The proof of the first part of the theorem is found in Kudrjavcev
(1966b, Theorem 2.3′) and it will be omitted here. The second part can be
obtained by coupling Kudrjavcev’s technique with the results of Theorem
II.6.3, as we are going to show. For simplicity, we shall consider the case
where n = 2, leaving to the reader the simple task of establishing the result
for n ≥ 3. Setting

w = u− u0,

we have to prove the following inequality:

∫ ∞

−∞
σ2(x1)

q |w(x1)|qdx1 ≤ cq2|u|q1,q,R2
+
, σ2(x1) = (1 + |x1|)(1−q)/q−ε2 .

(II.10.2)
Since, by Theorem II.6.3,

(u− u0) ∈ L2q/(2−q)(R2
+),

‖u− u0‖2q/(2−q) ≤ γ2|u|1,q,R2
+
,

(II.10.3)

from (II.10.1) we find

∫ 1

−1

σ2(x1)
q |w(x1)|qdx1 ≤ cq|u|q

1,q,R2
+
,

and so to show (II.10.2) it suffices to show

∫ ∞

1

σ2(x1)
q |w(x1)|qdx1,

∫ −1

−∞
σ2(x1)

q|w(x1)|qdx1 ≤ c3|u|q1,q,R2
+
. (II.10.4)
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Let us consider the first integral in (II.10.4). In R2
+ we introduce a polar

coordinate system ρ ∈ (0,∞), θ ∈ [0, π] with θ the angle formed by ρ with
the positive x1-axis. Since

x1 = ρ cos θ,

x2 = ρ sin θ,

we have
∫ ∞

1

σ2(x1)
q|w(x1)|qdx1 =

∫ ∞

1

σ2(ρ)
q |w(ρ, 0)|qdρ. (II.10.5)

Setting
w = u− u0,

for x1 ≥ 1,

w(x1) ≡ w(ρ, 0) = w(ρ, θ) −
∫ θ

0

∂u

∂τ
(ρ, τ )dτ.

Taking the modulus of both sides of this identity, raising them to the qth
power, using (II.3.3) and the Hölder inequality, we find

|w(ρ, 0)|q ≤ c1

(
|w(ρ, θ)|q +

∫ θ

0

∣∣∣∣
∂u

∂τ
(ρ, τ )

∣∣∣∣
q

dτ

)
. (II.10.6)

Observing that ∣∣∣∣
∂u

∂θ
(ρ, θ)

∣∣∣∣ ≤ ρ|∇u|,

from (II.10.6) we derive, for all α ≥ 0,
∫ ∞

1

|w(ρ, 0)|q
ραq dρ ≤ c2

(∫ ∞

1

∫ π

0

|w(ρ, θ)|q
ραq+1 ρ dρ dθ

+

∫ ∞

1

∫ π

0

|∇u(ρ, θ)|q
ρq(α−1)+1

ρ dρ dθ

)
.

(II.10.7)

Taking
α > 1 − 1/q, (II.10.8)

we have for ρ ≥ 1
ρq(α−1)+1 ≥ 1. (II.10.9)

Further, from (II.10.3) and (II.10.8)

∫ ∞

1

∫ π

0

|w(ρ, θ)|q
ραq+1 ρdρdθ ≤

(
π

∫ ∞

1

ρ1−2(αq+1)/qdρ

)q/2

×
(∫

R2
+

|w|2q/(2−q)

)(2−q)/q

≤ c5 |u|q1,q,R2
+

.

(II.10.10)
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Therefore, the first relation in (II.10.4) follows from (II.10.5), (II.10.7),
(II.10.9), and (II.10.10). To recover the second one, it is enough to observe
that, for x1 ≤ −1,

w(x1) ≡ w(ρ, π) = w(ρ, θ) +

∫ π

θ

∂u(ρ, τ )

∂τ
dτ,

and to proceed as in the previous case. The theorem is thus completely proved.
ut

Remark II.10.1 Theorem II.10.1 tells us, in particular, that if 1 ≤ q < n, u
must tend to the constant u0 at large distances on Σ, in the sense that for at
least a sequence of radii {Rm},

lim
Rm→∞

∫

Sn−2

|u(Rm, ω) − u0|dω = 0,

where (R, ω) denotes a system of polar coordinate on Σ. On the other hand,
if q ≥ n, u may even grow at large distance on Σ. �

Remark II.10.2 We notice, in passing, that Theorem II.10.1 admits of an
obvious extension to the case where m > 1, in the sense that it selects the
weighted Lq-space to which the trace uα ≡ Dαu at Σ, |α| = m − 1, of
u ∈ Dm,q(Rn

+) must belong. In particular, if mq < n, in the light of Theorem
II.6.4, u can be modified by the addition of a suitable polynomial P in such
a way that u ≡ u−P and all derivatives of u up to the order m− 1 included
tend to zero on Σ in the way specified in Remark II.10.1. �

A weighted space of the type Lq(Σ, σ), however, does not coincide with
the “trace space” of functions from D1,q(Rn

+). This latter is, in fact, more
restricted. To characterize such a space we set, as in the case of a bounded
domain,

〈〈u〉〉1−1/q,q ≡
(∫

Σ

∫

Σ

|u(x) − u(y)|q
|x− y|n−2+q dxdy

)1/q

(II.10.11)

and denote by D1−1/q,q(Σ) the space of (equivalence classes of) real functions
for which the functional (II.10.11) is finite. As in Section II.4, one can show
that, provided we identify two functions if they differ by a constant, (II.10.11)
defines a norm in D1−1/q,q(Σ) and that D1−1/q,q(Σ) is complete in this norm.

Exercise II.10.1 (Miranda 1978, Teorema 59.II). Show that

u ∈ W 1,q(Σ), implies u ∈ D1−1/q,q(Σ).

The following theorem holds, (Kudrjavcev 1966b, Theorems 2.4′ and 2.7
and Corollary 1).
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Theorem II.10.2 Let Σ be as in Theorem II.10.1 and let u ∈ D1,q(Rn
+),

1 < q <∞. Then the trace u of u at Σ belongs to D1−1/q,q(Σ) and, further,

〈〈u〉〉1−1/q,q ≤ c1|u|1,q

with c1 = c1(n, q). Conversely, given u ∈ D1−1/q,q(Σ), 1 < q < ∞, there
exists u ∈ D1,q(Rn

+) such that u is the trace of u at Σ and, further,

|u|1,q ≤ c2 〈〈u〉〉1−1/q,q,

with c2 = c2(n, q).

II.11 Some Integral Transforms and Related Inequalities

By integral transform with kernel K of a function f , we mean the function Ψ
defined by

Ψ(x) =

∫

Ω

K(x, y)f(y)dy. (II.11.1)

Our objective in this section is to present some basic inequalities relating Ψ
and f , under different assumptions on the kernel. We shall first consider the
situation in which

K(x, y) = K(x− y),

where K(ξ) is defined in the whole of Rn. In this case, the transform (II.11.1)
with Ω ≡ Rn is called a convolution, and it is also denoted by K ∗ f . An
example of convolution is the regularizer of f , which we already introduced
in Section II.2. For these transforms we have the following classical result due
to Young (see, e.g., Miranda 1978, Teorema 10.I).

Theorem II.11.1 Let

K ∈ Ls(Rn), 1 ≤ s <∞.

If
f ∈ Lq(Rn), 1 ≤ q ≤ ∞, 1/q ≥ 1 − 1/s,

then
K ∗ f ∈ Lr(Rn), 1/r = 1/s+ 1/q − 1,

and the following inequality holds:

‖K ∗ f‖r ≤ ‖K‖s‖f‖q . (II.11.2)

Exercise II.11.1 Prove inequality (II.11.2) for the case q = 1. Hint: Use the gen-

eralized Minkowski inequality (II.2.8).
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Another class of transforms that will be frequently considered is that de-
fined by kernels K of the form

K(x, y) =
k(x, y)

|y|λ , λ > 0, y ∈ Ω, (II.11.3)

where k(x, y) is a given regular function. If 0 < λ < n and k(x, y) ≡ 1, the
kernel (II.11.3) is referred to as weakly singular and the corresponding trans-
form (II.11.1) is called the Riesz potential. If λ = n and k(x, y) is suitable
(see (II.11.15)–(II.11.17)), the kernel and the associated transform are called
singular. The study in Lebesgue spaces Ls of Riesz potentials finds a funda-
mental contribution in the celebrated paper of Sobolev (1938) (see Theorem
II.11.3), while that related to (multidimensional) singular kernels traces back
to the work of Calderón and Zygmund (1956) (see Theorem II.11.4).

When Ω is bounded and K is weakly singular one can easily show elemen-
tary estimates for Ψ = K ∗ f in terms of f . For example, if

λ < n(1 − 1/q)

one has the inequality
sup
x∈Ω

|Ψ(x)| ≤ c‖f‖q (II.11.4)

with

c =

(
1

n− λq′

)1/q′

ω1/q′
n δ(Ω)n/q′−λ. (II.11.5)

To show this, it suffices to observe that for all r > 0 and λr < n,

(∫

|x−y|≤R

|x− y|−λrdy

)1/r

≤
(

1

n− λr

)1/r

ω1/r
n Rn/r−λ. (II.11.6)

Thus, (II.11.4) and (II.11.5) follow from (II.11.1), (II.11.3), (II.11.6), and
the Hölder inequality. Actually, one can prove an estimate stronger than
(II.11.4) under the same assumption on λ, n, and q. In fact, from (II.11.3)
with k(x, y) = 1, by the mean value theorem it follows that

|K(x− y) −K(z − y)| ≤ λ|x− z|d(y)−(λ+1),

where d(y) is the distance of y from the segment s with endpoints x and z.
Setting σ = |x−z| and employing this last inequality, from (II.11.1) we deduce

|Ψ(x) − Ψ(z)| ≤
∫

|x−y|<2σ

|f(y)||x− y|−λdy +

∫

|z−y|<2σ

|f(y)||z − y|−λdy

+λσ

∫

Ω∩{|x0−y|>σ}
|f(y)|d(y)−(λ+1)dy

(II.11.7)
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with x0 the midpoint of s. Since d ≥ σ/2, by Carnot’s theorem it easily follows
that 2d ≥ |x − x0|. Therefore, assuming λ < n(1 − 1/q) and employing the
Hölder inequality, the last term in (II.11.7) can be increased by

C1

(
σ + σn(1−1/q)−λ

)
‖f‖q , (II.11.8)

where C1 = C1(δ(Ω), n, q, λ). On the other hand, by an easy calculation that
makes use of (II.11.6) and the Hölder inequality, we show that the first two
integrals in (II.11.7) can be dominated by

C2 σ
n(1−1/q)−λ‖f‖q ,

where C2 = C2(n, λ). Thus, this latter relation along with (II.11.7) and
(II.11.8) furnishes

|Ψ(x) − Ψ(z)| ≤ C
(
σ + σn(1−1/q)−λ

)
‖f‖q ,

where C = 2 max(C1, C2). Still retaining the assumption that Ω is bounded,
we shall now discuss the case where λ = n(1 − 1/q). We set

K̃(x− y) =

{ |x− y|−λ if x, y ∈ Ω

0 if x, y 6∈ Ω .

Clearly,

Ψ(x) =

∫

Ω

|x− y|−λf(y)dy =

∫

Rn

K̃(x− y)f(y)dy,

and so, by noticing that

K̃ ∈ Ls(Rn), for all s < n/λ, (II.11.9)

from Young’s Theorem II.11.1 it follows that if f ∈ Lq(Ω) then

Ψ ∈ Lr(Ω), 1/r = 1/s+ 1/q− 1 (II.11.10)

and that the following inequality holds:

‖Ψ‖r ≤ c‖f‖q .

Taking into account (II.11.9) and that λ = n(1 − 1/q), from (II.11.10) we
conclude that

Ψ ∈ Lr(Ω), for all r ∈ [1,∞).

The results established so far are collected in

Theorem II.11.2 Assume Ω bounded, K weakly singular, and f ∈ Lq(Ω),
1 < q < ∞. Then if λ < n(1 − 1/q), the integral transform Ψ defined by
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(II.11.1) belongs to C0,µ(Ω) where µ = min{1, n(1−1/q)−λ} and the following
estimate holds:

‖Ψ‖C0,µ ≤ C1‖f‖q , (II.11.11)

with C1 = C1(δ(Ω), n, q, λ). Moreover, if λ = n(1 − 1/q), then Ψ ∈ Lr(Ω) for
all r ∈ [1,∞), and the following estimate holds:

‖Ψ‖r ≤ C2‖f‖q, (II.11.12)

with C2 = C2(δ(Ω), n, q, λ).

The complementary situation λ > n(1− 1/q) is considered in Sobolev’s theo-
rem which, in addition, does not require the boundedness of Ω. Precisely, we
have (Sobolev 1938; for a simpler proof see Stein 1970, Chapter V)

Theorem II.11.3 Assume f ∈ Lq(Rn), 1 < q <∞, and K weakly singular.
Then, if λ > n(1 − 1/q), the integral transform Ψ defined by (II.11.1) with
Ω ≡ Rn belongs to Ls(Rn), where 1/s = λ/n+ 1/q − 1. Moreover, we have

‖Ψ‖s ≤ C‖f‖q (II.11.13)

with C = C(q, n, λ).

Remark II.11.1 By means of simple counterexamples one shows that the
Sobolev theorem fails either when q = 1 or when s = ∞ (see Stein 1970,
p.119).

Some interesting observations and consequences related to Theorem II.5.1-
Theorem II.5.4 are left to the reader in the following exercises. �

Exercise II.11.2 Show that if (II.11.13) holds, necessarily 1/s = λ/n + 1/q − 1.

Hint: Use the homogeneity of the Riesz potential.

Exercise II.11.3 For f ∈ C∞
0 (Rn), set u(x) = (E ∗ f)(x) where E is the funda-

mental solution of Laplace’s equation (see (II.9.1)). Verify that u is a C∞ solution
of the Poisson equation ∆u = f in R

n. Moreover, use the Sobolev theorem to show

‖∇u‖nq/(n−q) ≤ c‖f‖q, 1 < q < n.

Exercise II.11.4 Assume u ∈ W 1,q
0 (Rn), 1 < q < ∞. Starting from the represen-

tation given in Lemma II.9.1, prove the following assertions:

(i) If q < n, then u ∈ Lnq/(n−q)(Rn) and ‖u‖nq/(n−q) ≤ γ‖∇u‖q ;

Hint: Use Theorem II.11.3. Notice that, without using the Sobolev theorem, (i) is
obtained directly from Lemma II.3.2 in a much more elementary way (see (2.6))
and with the following advantages: (a) the case q = 1 is included; (b) an explicit
estimate of the constant γ can be given.

(ii) If q = n, then u ∈ Lr(Ω), for all r ∈ [n,∞) and for any compact domain Ω.
Hint: Use Theorem II.11.2.
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(iii) If q > n, then u ∈ C0,µ(Ω), µ = 1− n/q, for any compact domain Ω. Hint: Use
Theorem II.11.2.

Exercise II.11.5 Let Ω be bounded. Show that every function from W 1,q
0 (Ω), q >

n, satisfies the inequality

‖u‖C ≤ c[δ(Ω)]1−n/q‖∇u‖q , (II.11.14)

with c = c(n, q). Hint: Use the representation formula of Lemma II.9.1 together with

relations (II.11.4) and (II.11.5).

We shall now consider the case of singular kernels. We say that a kernel
of the form (II.11.3) with x ∈ Ω, y ∈ Rn − {0} and λ = n is singular if and
only if

(i) For any admissible x, y and every α > 0

k(x, y) = k(x, αy); (II.11.15)

(ii)For every x ∈ Ω , k(x, y) is integrable on the sphere |y| = 1 and

∫

|y|=1

k(x, y)dy = 0; (II.11.16)

(iii) There exists C > 0, such that1

ess sup
x∈Ω;|y|=1

|k(x, y)| ≤ C . (II.11.17)

Exercise II.11.6 Show that (II.11.16) is equivalent to the following:

Z

r1≤|y|≤r2

K(x, y)dy = 0, (II.11.18)

for every x and r2 > r1 > 0.

Condition (II.11.18) allows us to recognize a noteworthy class of singular
kernels. Precisely, we have the following simple but useful result, due to L.
Bers and M. Schechter, which we state in the form of a lemma (see Bers, John,
& Schechter 1964, p. 223).

Lemma II.11.1 Let M(x, y) be a function on Ω× (Rn − {0}), differentiable
in y and homogeneous of order 1 − n with respect to y, that is,

M(x, αy) = α1−nM(x, y), α > 0.

1 This assumption can be weakened; see Calderón & Zygmund (1956, Theorem
2(ii)). However, a weaker assumption would be irrelevant to our purposes.
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Assume further that Mi(x, y) ≡ ∂M(x, y)/∂yi satisfies, with some C > 0,
independent of x,

ess sup
|y|=1

|Mi(x, y)| ≤ C .

Then Mi(x, y) is a singular kernel.

Proof. For all x ∈ Ω we have

∫

r1≤|y|≤r2

Mi(x, y)dy =

∫

|η|=r2

M(x, η)(ηi/r2)dση

−
∫

|η|=r1

M(x, η)(ηi/r1)dση,

so that (II.11.18) follows by homogeneity. Therefore, setting

k(x, y) = Mi(x, y)|y|n,

by assumption and Exercise II.11.6 we conclude that Mi(x, y) = k(x, y)|y|−n

is a singular kernel. ut

Exercise II.11.7 Let E be the fundamental solution to Laplace’s equation. Show

that DijE(x) is a singular kernel.

For integral transforms defined by singular kernels we have the following
fundamental result due to Calderón & Zygmund (1956, Theorem 2).

Theorem II.11.4 Assume K(x, y) is a singular kernel and let

N(x, y) ≡ K(x, x− y).

Then, if
f ∈ Lq(Rn), 1 < q <∞,

the P.V. convolution integral

Ψ(x) = lim
ε→0

∫

|x−y|≥ε

N(x, y)f(y)dy (II.11.19)

exists for almost all x ∈ Ω. Moreover,

Ψ ∈ Lq(Rn)

and the following inequality holds:

‖Ψ‖q ≤ c‖f‖q . (II.11.20)
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Exercise II.11.8 Assume K given by (II.11.3), with k(x, y) bounded and λ = n.
Show that, if f ∈ C1

0 (Rn), the limit (II.11.19) exists if and only if k(x, y) satisfies
condition (II.11.16). Hint: Use the identity (a > ε > 0)

Z

|x−y|≥ε

N(x, y)f(y)dy =

Z

|x−y|≥a

N(x, y)f(y)

+

Z

ε<|x−y|<a

[f(y) − f(x)]N(x, y)dy

+f(x)

Z

ε<|x−y|<a

N(x, y)dy.

Remark II.11.2 Sometimes it is useful to know more about the constant c
in (II.11.19) and, particularly, about the way in which it depends on q and k.
Here we recall some estimate due to Stein (1970, Chapter II) and to Calderón
and Zygmund (1957, §5). Specifically, as far as the dependence on q, one can
show:

c ≤
{
c1/(q − 1) if 1 < q ≤ 2

c1q if q ≥ 2,

with c1 = c1(k). Likewise, if A > 0 is a constant such that

sup
x∈Ω, |y|=1

|k(x, y)| ≤ A,

then one has
c ≤ c2 A, c2 = c2(q).

�

Two important consequences of the Calderón–Zygmund theorem will be
considered. The first one is due to Stein (1957) and is contained in the follow-
ing.

Theorem II.11.5 Let the assumptions of Theorem II.11.4 be satisfied, and
suppose, in addition

f(x)|x|β ∈ Lq(Rn), β ∈ (−n/q, n(1− 1/q)) ,

and that |k(x, y)| ≤ C, for some C independent of x and y. Then,

Ψ(x)|x|β ∈ Lq(Rn)

and the following inequality holds

‖Ψ(x)|x|β‖q ≤ c1C‖f(x)|x|β‖q, (II.11.21)

where c1 = c1(n, q, β).
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The second consequence is a well-known result of Agmon, Douglis, &
Nirenberg (1959, Theorem 3.3), which we are now going to state.

Theorem II.11.6 Let

K(x′, xn) =
ω̃(x′/|x|, xn/|x|)

|x|n−1
x′ = (x1, . . . , xn−1).

Assume that DiK, i = 1, . . . , n, and D2
nK are continuous in Rn

+ and bounded
in Rn

+ ∩ Sn−1 by a positive constant κ. Assume further

∫

|x′|=1

ω̃(x′, 0)dx′ = 0. (II.11.22)

Then, setting Σ = {x ∈ Rn : xn = 0}, given

φ ∈ Lq(Σ), with 〈〈φ〉〉1−1/q,q finite,

the integral transform

u(x′, xn) =

∫

Σ

K(x′ − y′, xn)φ(y′)dy′ (II.11.23)

belongs to Lq(Rn
+) and the following inequality holds:

|u|1,q ≤ cκ〈〈φ 〉〉1−1/q,q, (II.11.24)

with c = c(n, q).

Theorem II.11.4 and Theorem II.11.6 play a fundamental role in the Lq-
theory of elliptic partial differential equations, mainly in deriving a priori
estimates for solutions (see, e.g., Agmon, Douglis, & Nirenberg 1959). In the
following exercises, we shall propose very simple applications of them to the
Poisson equation in Rn and to the Dirichlet problem for the Poisson equation
in Rn

+. Other more relevant applications will be derived, along the same lines
as those that follow, in Chapter IV, in the context of steady slow motions of
a viscous incompressible fluid (Stokes problem).

Exercise II.11.9 For the problem ∆u = f in R
n show that there is a solution u

such that

(i) If f ∈Wm,q (Rn), m ≥ 0, 1 < q < ∞, then u ∈ ∩m
k=0D

k+2(Rn) and the following
inequality holds:

|u|k+2,q ≤ c1‖f‖k,q , k = 0, 1, ...,m, c1(n, q, k);

(ii) If f ∈ D−1,q
0 (Rn), m ≥ 0, 1 < q < ∞, then u ∈ D1,q

0 (Rn) and the following
inequality holds:

|u|1,q ≤ c2|f |−1,q, c2(n, q, k).
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Hint: Take f ∈ C∞
0 (Rn). Then a solution is given by u = E ∗f (see Exercise II.11.3).

To show (i), use Theorem II.11.4 and Exercise II.11.7. To show (ii), observe that,

for any ϕ ∈ Lq′(Br) and i = 1, ..., n,

(Diu, ϕ) =

Z

Rn

f(y)φ(y)dy, φ = (DiE) ∗ ϕ,

and that, by Theorem II.11.4,

|φ|1,q′ ≤ c‖ϕ‖q′ ,Br

with c independent of r. Employ, finally, the results of Exercise II.3.4 and Theorem

II.8.1.

Exercise II.11.10 It is well known that the function (Poisson integral)

u(x) = 2

Z

Σ

φ(y)
∂E
∂yn

dy,

with Σ = {x ∈ R
n : xn = 0}, E given in (7.1) and φ ∈ Cm(Σ), m ≥ 0, is a smooth

solution to the Dirichlet problem in the half-space:

∆u = 0 in R
n
+, n ≥ 2

u = φ at Σ
(II.11.25)

(see, e.g., Sobolev 1964, Lecture 13). Use Theorem II.11.6 to show that if

φ ∈Wm,q (Σ) and
X

|k|=m

〈〈Dkφ 〉〉1−1/q,q <∞, 1 < q <∞,

then
|u|s+1,q ≤ c

X

|k|=s

〈〈Dkφ 〉〉1−1/q,q , for all s = 0, 1, ...,m,

with c = c(n, q, s).

Uniqueness of solutions determined in the preceding exercises can be easily
studied by means of the following result, which the reader is invited to prove.

Exercise II.11.11 Let H be harmonic in the whole of R
n. Assume either

(i) H =

NX

i=1

Hi, N ≥ 1, where

Z

Bρ

|Hi(x)|qi

(1 + |x|)λi
< ∞, for some qi ∈ (1,∞), ρ > 0, and

λi ∈ [0, n];

or

(ii) lim
|x|→∞

H(x) = 0.

Show H ≡ 0. Hint: By the mean value theorem, we have, for each x ∈ R
n,

|H(x)| ≤ (nωn)−1

Z

Sn−1

|H(R,ω)|dω, R = |x− y|.
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Remark II.11.3 In virtue of this latter result it follows that solutions de-
termined in Exercise II.11.9(i) are unique in Ḋ2,q(Rn), while those in (ii) are
unique in D1,q

0 (Rn). As far as solutions considered in Exercise II.11.10, their
uniqueness is likewise discussed, since if u solves (II.11.25) with φ ≡ 0, then
the function

ũ(x) =

{
u(x1, . . . , xn) if xn > 0

−u(x1, . . . ,−xn) if xn ≤ 0

is harmonic (and hence smooth; Weyl 1940, Simader 1992) throughout Rn,
including xn = 0; see, for instance, Sobolev (1964, Lecture 13). �

II.12 Notes for the Chapter

Section II.1. A similar (but different in details) proof of Lemma II.1.3 can
be found in Erig (1982, Lemma 5.3).

Section II.3. Inequality (II.3.9) was derived by Ladyzhenskaya (1959a) with
a larger value of the constant. In this respect, see also Serrin (1963).

Extensions of Lemma II.3.3 to domains with a (sufficiently smooth)
bounded boundary can be found in Friedman (1969, Theorem 10.1) for
bounded domains, and in Crispo & Maremonti (2004) for exterior domains.

Sequence of functions like that employed in Exercise II.3.9 can also be
used to find the best exponents (for fixed dimension) in certain inequalities
relating surface and volume integrals, of the type described in Section II.4
(Galdi, Payne, Proctor, & Straughan 1987).

Section II.4. The way of introducing trace inequalities through star-shaped
domains is an intrinsic treatment that does not make a direct use of the
definition of surface integral by means of local representation of the boundary.
For this latter approach see, e.g., Nečas (1967, Chapitre 2 Théorème 4.2) and
Adams (1975, Chapter 5 Theorem 5.22).

The constant C in Theorem II.4.1 can be simply estimated if the shape of
Ω is particular; in this regard see Galdi, Payne, Proctor, & Straughan (1987).

Section II.5. As already remarked, inequality (II.5.1) fails if Ω is not con-
tained in some layer Ld; see Exercise II.5.1. However, in this latter case, (II.5.1)
can be replaced by “weighted” inequalities such as (II.6.10), (II.6.13), and
(II.6.14). Furthermore, the choice of the “weight” can be suitably related to
the “geometry” of Ω at infinity. For instance, if

Ω ⊂ {x ∈ Rn : |x′| < g(xn)} ,

where g satisfies
g(t) > g0, for some g0 > 0,



II.12 Notes for the Chapter 135

then one has
‖u/g(xn)‖q ≤ c|u|1,q, u ∈ C∞

0 (Ω).

For this and similar inequalities, we refer, among others, to Elcrat and
MacLean (1980), Hurri (1990), and Edmunds & Opic (1993).

The Friedrichs inequality (II.5.8) can be a fundamental tool for treating
the convergence of approximating solutions of nonlinear partial differential
equations. A nontrivial generalization of (II.5.8) is found in Padula (1986,
Lemma 3). Extension of the Friedrichs inequality to unbounded domains are
considered in Birman & Solomjak (1974).

From Theorem II.5.2 and Theorem II.4.1 it is not hard to prove com-
pactness results involving convergence in boundary norms. For example, we
have: if {uk} ⊂ W 1,2(Ω) (Ω bounded and locally Lipschitz) is uniformly
bounded, there is a subsequence {um′} such that um′ → u in Lq(∂Ω) with
q = 2(n− 1)/(n− 2) if n > 2 and all q ∈ [1,∞) if n = 2.

The counterexample to compactness after Theorem II.5.2 is due to Benedek
& Panzone (see Serrin 1962).

The Poincaré–Sobolev inequality can be proved for a general class of do-
mains, including those with internal cusps. Such a generalization, which is of
interest in the context of capillarity theory of fluids, can be found in Pepe
(1978). However, in general, embedding inequalities no longer hold if the do-
main does not possess a certain degree of regularity. For this type of questions
we refer to Adams & Fournier (2003, §4.47).

Section II.6. After the pioneering work of Deny & Lions (1954) on the sub-
ject (“Beppo Levi Spaces”), a detailed study of homogeneous Sobolev spaces
Ḋm,q(Ω) and Dm,q

0 (Ω) along with the study of their relevant properties was
performed by the Russian school (Uspenskĭi 1961, Sobolev 1963b, Sedov 1966,
Besov 1967). These authors are essentially concerned with the case where
Ω = Rn. For other detailed analysis of the homogeneous Sobolev spaces we
refer the reader also to the work of Kozono & Sohr (1991) and Simader &
Sohr (1997), and to Chapter I of the book of Maz’ja (1985).

A central role in the study of properties of functions from Dm,q(Ω) is
played by the fundamental Lemma II.6.3 which, for q = 2 and n ≥ 3, was
first proved by Payne & Weinberger (1957). A slightly weaker version of it
was independently provided by Uspenskĭi (1961, Lemma 1). The proof given
in this book is based on a generalization of the ideas of Payne & Weinberger
and is due to me. Another proof has been given by Miyakawa & Sohr (1988,
Lemma 3.3), which, however, does not furnish the explicit form of the constant
u0. Concerning this issue, from Lemma II.6.3 it follows that

u0 = lim
|x|→∞

∫

Sn−1

u(|x|, ω)dω,

or also, as kindly pointed out to me by Professor Christian Simader,

u0 = lim
R→∞

1

|ΩR|

∫

ΩR

u.
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Results contained in Exercise II.6.3 generalize part of those established by
Uspenskĭi (1961, Lemma 1), and for q = n = 2 they coincide with those of
Gilbarg & Weinberger (1978, Lemma 2.1).

Inequality (II.6.20) with q = 2 and n = 3 is due to Finn (1965a, Corollary
2.2a); see also Birman & Solomjak (1974, Lemma 2.19) and Padula (1984,
Lemma 1), while (II.6.22) for n = 3 and q ∈ (1, 3) is proved by Galdi &
Maremonti (1986, Lemma 1.3). Theorem II.6.1, in its generality, is due to me.

The inequality in Theorem II.6.5 is due to Simader and Sohr (1997, Lemma
1.2).

Section II.7. The problem of approximation of functions fromDm,q(Ω) when
Ω = Rn with functions of bounded support was first considered by Sobolev
(1963b). In this section we closely follow Sobolev’s ideas to generalize his
results to more general domains Ω. In this connection, we refer the reader
also to the papers of Besov (1967, 1969) and Burenkov (1976).

The elementary proof of the Hardy-type inequality (II.6.10), (II.6.13) and
(II.6.14) presented here and based on the use of the “auxiliary” function g
was presented for the first time in Galdi (1994a, §2.5). The same approach
was successively rediscovered by Mitidieri (2000).

Section II.8. A slightly weaker version of Theorem II.8.2, with a different
proof, can be found in Kozono & Sohr (1991, Lemma 2.2).

The proof of the unique solvability of the Dirichlet problem (II.8.17) in the
case Ω = Rn,Rn

+ is a simple consequence of Exercise II.11.9(ii) and Remark
II.11.3. In the case Ω bounded and of class C∞, a proof was given for the
first time by Schechter (1963a, Corollary 5.2). A different proof that requires
domains only of class C2 was later provided by Simader (1972). If Ω is an
exterior domain of class C2, a thorough analysis of the problem can be found
in Simader & Sohr (1997, Chapter I). In particular, for n ≥ 3, the analysis of
these authors shows that the problem (II.8.17) has a nonzero one-dimensional
null set, if q′ ≥ n. In other words, there exists one and only one non-zero har-

monic function h ∈ D1,q′

0 (Ω), satisfying a normalization condition
∫

ΩR
h2 = 1,

for some fixed R > δ(Ω)c. For instance, if Ω is the exterior of the unit ball
in Rn, we have h(x) = c(|x|2−n − 1), for a suitable choice of the constant c
depending on R. Consequently, the map M defined in (II.8.19)–(II.8.20) is not
surjective if q′ ∈ (1, n/(n− 1)] and not injective if q′ ∈ [n,∞).

Section II.9. Results similar to those derived in Theorem II.9.1, in the gen-
eral context of spaces Dm,q , m ≥ 1, have been shown by Mizuta (1989).
Estimate (II.9.5) is of a particular interest since, as we shall see in Chapter X,
it permits us to derive at once an important asymptotic estimate for solutions
to the steady, two-dimensional Navier–Stokes equations in exterior domains
having velocity fields with bounded Dirichlet integrals.

Section II.10. The case 1 ≤ q < n in Theorem II.10.1 is due to me.

Section II.11. If in the Sobolev Theorem II.11.3 one considers the function
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ψ(x) =

∫

|x−y|≤R

f(y)|x − y|−λdy,

for fixed R > 0, the proof of (II.11.13) becomes elementary; however, only
for 1/s > λ/n + 1/q − 1 (see Sobolev 1938; 1963a, Chapter 1 §6). For a
generalization of the Sobolev theorem in weighted Lebesgue spaces, along the
same lines of Theorem II.11.5, we refer to Stein & Weiss (1958).





III

The Function Spaces of Hydrodynamics

O voi, che avete gl’intelletti sani,
mirate la dottrina che s’asconde
sotto il velame degli versi strani!

DANTE, Inferno IX, vv. 61-63

Introduction

Several mathematical problems related to the motion of a viscous, incompress-
ible fluid find their natural formulation in certain spaces of vector functions
that can be considered as characteristic of those problems. These functional
spaces are of three types, denoted by Hq, H

1
q , and D1,q

0 , and are defined as

suitable subspaces of solenoidal functions of [Lq]n, [W 1,q
0 ]n, and [D1,q

0 ]n, re-
spectively, n ≥ 2. Actually, it is just the solenoidality restriction that makes
these spaces peculiar and, as we shall see, poses problems that otherwise would
not arise.

The main objective of this chapter is to study in detail the relevant prop-
erties of the above spaces.

If Ω has a compact (and sufficiently smooth) boundary, the function class
Hq = Hq(Ω) can be characterized as the subspace of [Lq(Ω)]n of solenoidal
vectors in Ω having zero normal components at ∂Ω. The space Hq comes into
the picture as a by-product of a more general question related to a certain
decomposition of the vector space [Lq]n, the Helmholtz–Weyl decomposition.
This decomposition plays a fundamental role in the mathematical theory of
the Navier–Stokes equations, mainly for the study of time-dependent motions.
As we shall see, the validity of the decomposition is equivalent to the unique
solvability of an appropriate Neumann problem in weak form. Such a prob-
lem is certainly resolvable in domains having a (sufficiently smooth) compact
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boundary and in a half-space. However, there are also domains with boundary
of little regularity (locally Lipschitz) and domains with smooth noncompact
boundary where the Neumann problem is not uniquely solvable and, therefore,
the corresponding Helmholtz–Weyl decomposition does not hold.

The main, basic question that one has to face when dealing with spaces
H1

q and D1,q
0 is related to the very definition of the spaces themselves. To

see why, let us consider, for the sake of definiteness, the space H1
q , analogous

reasonings being valid for D1,q
0 . To study the time-dependent motion of the

fluid we need the velocity field v of the particles of the fluid together with its
first spatial derivatives to be, at each time, summable in the region of flow Ω
to the qth power for some q ≥ 1; in addition, v has to be solenoidal and vanish
at the boundary of Ω. A space of vector functions having such properties (in
a generalized sense) can be chosen in either of the following ways:

{
completion of D(Ω) in the norm of [W 1,q(Ω)]n

}
≡ H1

q (Ω)

or {
v ∈ [W 1,q

0 (Ω)]n : ∇ · v = 0 in Ω
}
≡ Ĥ1

q (Ω),

with D(Ω) denoting the subclass of [C∞
0 (Ω)]n of solenoidal functions. These

spaces may look similar, but in fact a priori they are not, since the con-
dition of solenoidality on their members is imposed before (in H1

q (Ω)) and

after (in Ĥ1
q (Ω)) having taken the completion of [C∞

0 (Ω)]n in the norm of
[W 1,q(Ω)]n. Of course, understanding the relationship between H1

q (Ω) and

Ĥ1
q (Ω) is a preliminary and fundamental question whose analysis aims to

clarify the framework within which the Navier–Stokes problem has to be set.
Actually, as pointed out for the first time by Heywood (1976), the coincidence
of the two spaces is related to the uniqueness of solutions and in particular,
in domains for which H1

q (Ω) 6= Ĥ1
q (Ω) the solution may not be uniquely de-

termined by the “traditional” initial and boundary data but other extra and
appropriate auxiliary conditions are to be prescribed (see Chapters VI and
XII).

A primary objective of this chapter will be, therefore, to analyze to some
extent for which domains the coincidence of the spaces H1

q , Ĥ1
q and D1,q

0 , D̂1,q
0

holds and for which it does not. Specifically, we shall see that coincidence is
essentially not related to the smoothness of the domain but rather to its shape.
In particular, the above spaces may not be the same only for domains with a
noncompact boundary, and we shall provide a large class of such domains for
which, in fact, they do not coincide.

Another question with which we shall be dealing, and is technically some-
what related to the one just described, is that of the approximation of func-
tions from H1

q ∩ H1
r [respectively, D1,q

0 ∩ D1,r
0 ], with r 6= q, in the norm of

H1
q ∩ H1

r [respectively, D1,q
0 ∩ D1,r

0 ], by functions from D(Ω). If there were
no solenoidality constraints, the question would be rather classical and would
find its answer in the standard literature. However, since we are dealing with
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solenoidal fields, the problem becomes more complicated and we are able to
solve it only for a certain class of domains including domains with a smooth
enough compact boundary.

Finally, we wish to mention that all problems described previously need a
careful study of the properties of the solutions of the equation ∇·u = f , for a
suitably ascribed f . Such an auxiliary problem will therefore also be analyzed
in great detail.

III.1 The Helmholtz–Weyl Decomposition of the Space
Lq

It has been well known, since the work of H. von Helmholtz in electromag-
netism (Helmholtz 1870), that any smooth vector field u in R3 that falls off
sufficiently fast at large distances can be uniquely decomposed as the sum

u = u1 + u2 (III.1.1)

of a gradient and a curl. In other words, u1 and u2 can be taken of the form

u1 = ∇ϕ, u2 = ∇×A, (III.1.2)

where ϕ andA are the scalar and vector potential, respectively. In fact, setting

U(x) = (E ∗ u) (x),

with E denoting the fundamental solution of Laplace’s equation (II.9.1), it
follows that ∆U(x) = u(x); see Exercise II.11.3. Putting into this equation
the identity

∆V = ∇(∇ · V ) −∇× (∇× V ), (III.1.3)

relations (III.1.1) and (III.1.2) follow with

ϕ = ∇ ·U , A = −∇×U .

Much later than 1870, it was recognized that decompositions of the type
just described, once formulated in suitable function spaces, become useful
tools in the theory of partial differential equations. A systematic study of
space decomposition was initiated by Weyl (1940) and continued by Friedrichs
(1955), Bykhovski & Smirnov (1960), and others, until the recent work of
Simader & Sohr (1992). In this respect, the decomposition of the space of
vector functions in Ω having components in Lq(Ω), which we continue to
denote by Lq(Ω),1 into the direct sum of certain subspaces is of basic interest

1 Let X be any space of real functions used in this book. Unless confusion arises,
we shall use the same symbol X to denote the corresponding space of vector and
tensor-valued functions.
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in theoretical hydrodynamics and to this problem we will devote the present
section.

We begin to introduce some classes of functions. Let Ω ⊆ Rn, n ≥ 2.
Setting

D = D(Ω) = {u ∈ C∞
0 (Ω) : ∇ · u = 0 in Ω} ,

for q ∈ [1,∞) we denote by Hq = Hq(Ω) the completion of D in the norm of
Lq and put

Gq = Gq(Ω) =
{
w ∈ Lq(Ω) : w = ∇p, for some p ∈W 1,q

loc (Ω)
}
. (III.1.4)

For q = 2 we will simply write H and G in place of H2 and G2. Obviously, Hq

is a subspace of Lq ; moreover, from Exercise III.1.2, it follows that Gq also is
a subspace of Lq.

Referring the study of the relevant properties of these spaces to the next
section, in the present section we will investigate the validity of the decompo-
sition

Lq(Ω) = Gq(Ω) ⊕Hq(Ω), (III.1.5)

where ⊕ denotes direct sum operation. In other words, we wish to determine
when an arbitrary vector u ∈ Lq(Ω) can be uniquely expressed as the sum

u = w1 +w2, w1 ∈ Gq(Ω) and w2 ∈ Hq(Ω). (III.1.6)

Remark III.1.1 The validity of the decomposition (III.1.5) implies the ex-
istence of a unique projection operator

Pq : Lq(Ω) → Hq(Ω),

that is, of a linear, bounded, idempotent (P 2
q = Pq) operator having Hq(Ω) as

its range and Gq as its null space (Rudin 1973, §5.15(d)). In the case q = 2,
we set P2 ≡ P . �

We shall show that the validity of (III.1.5) is equivalent to the unique
resolubility of an appropriate (generalized) Neumann problem in Ω (NP ,
say); see Lemma III.1.2 and also Simader & Sohr (1992). Now, if q = 2, just
employing the Hilbert structure of the space L2, we prove that (III.1.5) is valid
for any domain Ω (see Theorem III.1.1), thus obtaining, as a by-product, the
solvability of NP for q = 2 in arbitrary domains. On the other hand, if q 6= 2,
in order to obtain (III.1.5) we directly address the solvability of NP, which
a priori depends on the value of the exponent q, on the “shape” of Ω, and
on its regularity. Specifically, if q 6= 2, we show that if Ω is either a bounded
or an exterior C2-smooth domain2 or a half space, then (III.1.5) holds, see
Theorem III.1.2. On the other hand, for a certain class of domains with an

2 The regularity of Ω can be further weakened (Simader & Sohr 1992).
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unbounded boundary (no matter how smooth), the corresponding NP looses
either solvability or uniqueness and, therefore, in such a class, the Helmholtz–
Weyl decomposition does not hold (see Remark III.1.3, Exercise III.1.7 and
Bogovskĭi 1986 and Maslennikova & Bogovskĭi 1986a, 1986b, 1993).

Exercise III.1.1 Given a reflexive Banach space X and a subset S of X , the an-
nihilator S⊥ of S is a subset of the dual space X

′
defined as

S⊥ = {` ∈ X ′
: `(x) = 0, for all x ∈ S}

(Kato 1966, p. 16). If, in particular, X is a Hilbert space, then S⊥ is said to be

the orthogonal complement of S. In this case, two subsets S1, S2 of X are called

orthogonal if S1 ⊂ S⊥
2 (or, equivalently, S2 ⊂ S⊥

1 ). Show that: (a) S⊥ is a closed

subspace of X
′
; (b) H⊥

q ⊃ Gq′ , q ∈ (1,∞), (1/q + 1/q′ = 1), so that, for q = 2, H

and G are orthogonal.

Exercise III.1.2 Show that Gq is a closed subspace of Lq . Hint: Use the methods

adopted in the proof of Lemma II.6.2.

Fundamental to further development is the characterization of the class of
vectors u ∈ L1

loc(Ω) that are “orthogonal” to all vectors w ∈ D(Ω), i.e.,

∫

Ω

u ·w = 0, for all w ∈ D(Ω). (III.1.7)

Exercise III.1.3 Show that, for u ∈ L1
loc(Ω), condition (III.1.7) is equivalent to

Z

Ω

u ·w = 0, for all solenoidal w ∈ C1
0 (Ω).

IfΩ is a simply connected domain in R3 and u is continuously differentiable
one proves at once that u = ∇p for some smooth single-valued scalar function
p. In fact, for arbitrary h ∈ C∞

0 (Ω), let us choose in (III.1.7) w = ∇× h and
use the identity

∇ · (v1 × v2) = v2 · ∇ × v1 − v1 · ∇ × v2

to deduce ∫

Ω

∇× u · h = 0, for all h ∈ C∞
0 (Ω), (III.1.8)

which in turn, by Exercise II.2.9, implies∇×u = 0. Being Ω simply connected,
this last condition furnishes, by the Stokes theorem, u = ∇p, with p a suitable
line integral of the differential form

u · dx =

3∑

i=1

uidxi.
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Now, for this procedure to hold, the assumption on the regularity of u can
be fairly weakened (see the last part of Lemma III.1.1), while it is crucial the
assumptionΩ be simply connected; otherwise p need not be single-valued. The
aim of the following lemma is to show that the result just proved continues
to be valid for any domain in Rn. The method we shall employ is based on
an idea of Fujiwara & Morimoto (1977, p. 697) and is due to Simader & Sohr
(1992).

Lemma III.1.1 Let Ω be an arbitrary domain in Rn. Suppose that u ∈
L1

loc(Ω) verifies (III.1.7). Then, there exists a single-valued scalar function

p ∈W 1,1
loc (Ω) such that u = ∇p.

Proof. Assume first u ∈ C(Ω). The proof will be achieved if we show that
the line integral of the differential form u · dx is zero along all closed nonin-
tersecting polygonals lying in Ω.3 Let Γ denote any such curve; we may then
represent it by a continuous function γ such that

γ : [0, 1] → Rn,

γ ∈ C∞([ti, ti+1]),

where 0 = t0 < t1 < . . . < tk = 1 and γ(0) = γ(1). For w ∈ C(Ω) we thus
have ∫

Γ

w · dx =
k∑

i=0

∫ ti+1

ti

w(γ(t)) · dγ
dt
dt.

Let ε0 = dist (Γ, ∂Ω). For x ∈ Ω we set

Φε(x) =

k∑

i=0

∫ ti+1

ti

jε(x− γ(t))
dγ

dt
dt,

where jε(ξ) = ε−nj(ξ/ε) is a mollifying kernel of the type introduced in
Section II.2 and 0 < ε < ε0. Obviously, Φε ∈ C∞(Ω) for all such ε, and since

∇ ·Φε(x) =

k∑

i=0

∫ ti+1

ti

∇(x)jε(x− γ(t)) · dγ
dt
dt

= −
k∑

i=0

∫ ti+1

ti

d

dt
[jε(x − γ(t))] dt

= −jε(x− γ(1)) + jε(x− γ(0)) = 0,

3 Recall that, since Ω is open and connected, it is also polygonally connected.
Namely, given x,x′ ∈ Ω we can find a non-intersecting polygonal joining x with
x′.
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it follows that Φε ∈ D(Ω). Now, by definition of mollifier and by (III.1.7) we
have
∫

Γ

uε · dx =

k∑

i=0

∫

Rn

u(x) · dγ
dt

{∫ ti+1

ti

jε(x− γ(t))dt

}
dx =

∫

Ω

u ·Φε = 0.

(III.1.9)
Therefore, letting ε→ 0 in (III.1.9) and using the properties of mollifiers, we
find ∫

Γ

u · dx = 0, for all Γ,

which implies u = ∇p with p ∈ C1(Ω). The lemma is therefore proved when
u ∈ C(Ω). Assume now merely u ∈ L1

loc(Ω). Let O be the open covering of
Ω introduced in Lemma II.1.1, and let B0 ∈ O. We choose ε > 0, such that
ε < dist (B0, ∂Ω) and let w be an arbitrary vector in D(B0). From Section
II.2 we deduce that the regularization wε of w belongs to D(Ω) and thus, by
assumption and Fubini’s theorem, we obtain

0 =

∫

Ω

u ·wε = ε−n

∫

Rn

u(x)

[∫

Rn

j

(
x− y

ε

)
w(y) dy

]
dx

= ε−n

∫

Rn

[∫

Rn

j

(
x− y

ε

)
u(x) dx

]
w(y)dy =

∫

B0

uε ·w.

Since uε ∈ C∞(B0) and w ranges arbitrarily in D(B0), from the first part
of the proof we find uε = ∇pε in B0, for some pε ∈ C∞(B0). Set ε = 1/m,
m ≥ m0 ∈ N+, and let m → ∞. By an argument completely analogous to
that used in the proof of Lemma II.6.2, we show that p1/m converges to some

p(0) ∈ W 1,1(B0) such that u = ∇p(0) a.e. in B0. Now, by Lemma II.1.1, we
can find B1 ∈ O such that B0 ∩ B1 ≡ B1,2 6= ∅, and so, by the same kind
of argument, we can find p(1) ∈ W 1,1(B1) such that u = ∇p(1) a.e. in B1.
Since p(0) = p(1) + c a.e. in B1,2, we may modify p(1) by the addition of a
constant in such a way that p(0) and p(1) agree on B1,2. Let us continue to
denote by p(1) the modified function and define a new function p(1,2) which
equals p(0) on B0 and equals p(1) on B1. Clearly, p(1,2) ∈W 1,1(B0∪B1) and,
furthermore, u = ∇p(1,2) a.e. in B0 ∪ B1. In view of the properties of the
covering O, we can repeat this procedure to show, by induction, the existence
of a function p ∈ W 1,1

loc (Ω) satisfying the statement in the lemma which is,
therefore, completely proved. ut

As an immediate consequence of the previous result, we deduce the validity
of (III.1.5) for q = 2.

Theorem III.1.1 Let Ω be an arbitrary domain in Rn, n ≥ 2. Then G(Ω)
and H(Ω) are orthogonal subspaces in L2(Ω). Moreover

L2(Ω) = G(Ω) ⊕H(Ω).
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Proof. From Exercise III.1.1 we know that H and G are orthogonal subspaces
in L2. Moreover, suppose that u belongs to H⊥. By Lemma III.1.1 there
exists a scalar function p ∈ L1

loc(Ω) such that u = ∇p and, by Lemma II.6.1,
p ∈ L2

loc(Ω) thus showing u ∈ G, which completes the proof. ut

The study of the validity of the decomposition (III.1.5) when q 6= 2 turns
out to be more involved, due to the fact that Lq ceases to be a Hilbert space.
However, if q ∈ (1,∞), it is not hard to show that the decomposition is
equivalent to the unique solvability of a suitable Neumann problem. Actually,
consider the following problem NP: Given

u ∈ Lq(Ω)

to find a unique (up to a constant) function p : Ω → R such that

(i) p ∈ D1,q(Ω);

(ii)

∫

Ω

(∇p− u) · ∇ϕ = 0, for all ϕ ∈ D1,q′
(Ω).

The reader will check with no pain that if Ω has a sufficiently smooth
boundary and u is regular enough, NP implies the existence of a solution
p ∈ D1,q(Ω) to the following classical Neumann problem:

∆p = ∇ · u in Ω

∂p

∂n
= u · n at ∂Ω.

(III.1.10)

The next lemma gives a characterization of the validity of the Helmholtz–
Weyl decomposition.

Lemma III.1.2 The Helmholtz–Weyl decomposition of Lq(Ω), 1 < q < ∞,
holds if and only if NP is solvable for any u ∈ Lq(Ω).

Proof. Denote by HW the Helmholtz–Weyl decomposition. Let us first show
that NP implies HW. Given u ∈ Lq(Ω), set

w = u −∇p, (III.1.11)

with p (unique) solution to NP. It is easy to see that w ∈ Hq(Ω). In fact, by
(ii) we deduce

w ∈ G⊥
q′ .

On the other hand, by Lemma III.1.1 and by the Riesz representation theorem,
it is

H⊥
q ⊂ Gq′ , 1 < q <∞.

Therefore,
w ∈ (H⊥

q )⊥ ∩ Lq ,
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and so, by well-known properties on annihilators (see, e.g., Kato 1966, p. 136)
we conclude w ∈ Hq. To prove HW completely, it remains to show that the
representation obtained for u from (III.1.11) is indeed unique. This amounts
to proving that the equality

w = ∇p, w ∈ Hq(Ω), p ∈ D1,q(Ω) (III.1.12)

is possible if and only if w ≡ ∇p ≡ 0. Let us show that this is certainly so in
our case. In fact, from (III.1.12) and Exercise III.1.1(b) we have

∫

Ω

∇p · ∇ϕ = 0 for all ϕ ∈ D1,q′
(Ω),

which, in turn, by the uniqueness of solutions to NP and (III.1.12) implies
w ≡ ∇p ≡ 0. Conversely, assume that HW holds. Then, given u ∈ Lq(Ω) we
may decompose u as in (III.1.6) where w1 = ∇p, p ∈ D1,q(Ω). Multiplying
this relation by ∇ϕ, ϕ ∈ D1,q′

(Ω), and integrating over Ω, we obtain

∫

Ω

(∇p− u) · ∇ϕ = −
∫

Ω

w2 · ∇ϕ, w2 ∈ Hq(Ω).

In view of Exercise III.1.1(b),

∫

Ω

w2 · ∇ϕ = 0,

so that p satisfies (ii). By the uniqueness of the representation (III.1.6), we
have that such a p is unique (up to a constant). The lemma is proved. ut

Remark III.1.2 Theorem III.1.1 and Lemma III.1.2 imply that, for q = 2,
the corresponding generalized Neumann problem NP admits a unique solu-
tion in an arbitrary domain Ω. �

We shall next present a wide class of domains for which NP is solvable.
The simplest situation occurs when Ω = Rn for, in this case, for u ∈ C∞

0 (Rn),
we can produce an explicit solution, that is (see Exercise II.11.3),

p(x) =

∫

Rn

E(x− y)∇ ·u(y)dy. (III.1.13)

It is easy to show that (III.1.13) satisfies all the requirements. In fact, on the
one hand, by Exercise II.11.7 and by the Calderón–Zygmund Theorem II.11.4,
it follows that (i) is accomplished and, moreover, that

|p|1,q ≤ c‖u‖q. (III.1.14)

On the other hand, since u vanishes outside a compact set K (say), we also
have for sufficiently large R
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∫

BR

(∇p− u) · ∇ϕ = −
∫

∂BR

ϕ
∂p

∂n
, (III.1.15)

where ϕ ∈ D1,q′
(Rn). From (III.1.13) it is easily seen that for x outside K

∇p(x) = O(|x|−n). (III.1.16)

Furthermore, ϕ obeys the estimate (see Exercise II.6.3)

∫

Sn

|ϕ(x)| = o(|x|). (III.1.17)

Thus, from (III.1.15)–(III.1.17), in the limit R → ∞ we deduce (ii) of the
definition of NP. Finally, uniqueness is obtained with the help of Exercise
II.11.11. It is now easy to extend the results just shown to the case when
u is an arbitrary function in Lq(Ω). This will be achieved through a stan-
dard approximating procedure based on (III.1.14). Actually, by the density
properties recalled in Section II.2, we can approximate u with a sequence
{um} ⊂ C∞

0 (Ω). For each um we solve NP as before and denote by pm the
corresponding solution. Using (III.1.14) and the uniqueness property we then
prove that {[pm]} is a Cauchy sequence in Ḋ1,q(Ω), and so, by Lemma II.6.2,
there exists [p] ∈ Ḋ1,q(Ω) such that

|[pm] − [p]|1,q → 0, m→ ∞ .

It is easy to verify that p′ ∈ [p] uniquely satisfies (up to a constant) condition
(ii) stated for NP, thus proving the desired decomposition of Lq(Rn) for all
q ∈ (1,∞).

Analogous reasoning can be used if Ω is the half space Rn
+. In this case

too, in fact, we have an explicit formula for p:

p(x) =

∫

Rn
+

N (x, y)∇ · u(y)dy, x ∈ Rn
+, (III.1.18)

where

N (x, y) ≡ E(x− y) + E(x− y∗), y∗ = (y1, . . . , yn−1, yn)

is the (Neumann) Green’s function of the Laplace operator in Rn
+; see Exercise

III.1.5. The details of the proof are left to the reader (see also McCracken
1981).

If Ω has a sufficiently smooth bounded boundary, the problem NP is still
solvable but, of course, in a more involved way.

Actually, if Ω is a bounded domain of class C2, a solution to NP can
be determined as a consequence of more general results on elliptic problems
established by Lions & Magenes (1962, Teor.4.1), Miranda (1978, §57) and
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Schechter (1963a, 1963b); see Fujiwara & Morimoto (1977), Simader (1990,
Theorem 4.1), and Simader & Sohr (1992).4

Using the above results one can then secure the solvability of NP for
an exterior domain. To prove this, we begin to observe that, assuming at
first u ∈ C∞

0 (Ω), the existence of a unique solution p to NP with q = 2 is
immediately established; see Remark III.1.2. One can then use the classical
estimates of Agmon, Douglis, & Nirenberg (1959, §15) to show

p ∈ C∞(Ω) ∩W 2,q(Ωr), for all r > δ(Ωc) and all q ≥ 1. (III.1.19)

Furthermore, p solves (III.1.10). We shall now prove that p ∈ D1,q(Ω), 1 <
q < ∞, and the validity of (III.1.14). To reach this goal, we take ϕ ∈ C∞(R)
with

ϕ(ξ) =

{
0 if |ξ| ≤ 1/2

1 if |ξ| ≥ 1

and set

ϕR(x) = ϕ(|x|/R), w(x) = ϕR(x)p(x), R > 2δ(Ωc).

From (III.1.10) we have that w solves the problem

∆w = f

f = ∇ · (p∇ϕR + uϕR) + ∇ϕR · (∇p− u) ≡ f1 + f2.
(III.1.20)

Clearly, fi ∈ C∞
0 (Rn), i = 1, 2. Also, by using the properties of ϕR and u

along with (III.1.10), it is readily seen that

∫

Rn

fi = 0, i = 1, 2, (III.1.21)

and so, by Theorem II.8.1 (see also Remark II.8.1), fi ∈ D−1,q
0 (Rn), i = 1, 2,

and we may apply the results of Exercise II.11.9(ii) and Exercise II.11.11 to
deduce the existence of a unique (up to a constant) solution w ∈ D1,q(Rn),
1 < q <∞, which further verifies

|w|1,q ≤ c |f |−1,q, 1 < q <∞. (III.1.22)

From (III.1.20)2 it follows for all ψ ∈ D1,q′

0 (Rn), 1 < q′ <∞,

∣∣∣∣
∫

Rn

f1ψ

∣∣∣∣ ≤ c1 (‖p‖q,ΩR + ‖u‖q) |ψ|1,q′,Rn ,

where c1 = c1(ϕR). Furthermore, if 1 < q′ < n, by the Sobolev inequality
(II.3.7),

4 These latter two papers require Ω to be only of class C1.
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‖ψ‖q′,ΩR ≤ c2|ψ|1,q′,Rn ,

with c2 = c2(ΩR, q
′). Thus, since ψ∇ϕR ∈ W 1,q

0 (ΩR), for these values of q′

we have, for some c3 = c3(ϕR),

∣∣∣∣
∫

Rn

f2ψ

∣∣∣∣ ≤ c3‖∇p− u‖−1,q,ΩR |ψ|1,q′,Rn .

If q′ ≥ n, we recall that the generic element of D1,q′

0 (Rn) is an equivalence
class, [ψ], constituted by functions that differ, at most, by a constant; see
(II.7.16). Thus, pick ψ ∈ [ψ] and set

ψ0 =
1

|ΩR|

∫

ΩR

ψ.

From (III.1.21), with the help of Poincaré inequality (II.5.10), we deduce

∣∣∣∣
∫

Rn

f2ψ

∣∣∣∣ =

∣∣∣∣
∫

Rn

f2(ψ − ψ0)

∣∣∣∣ ≤ c4‖∇p− u‖−1,q,ΩR|ψ|1,q′,Rn

= c4‖∇p− u‖−1,q,ΩR |[ψ]|1,q′,Rn ,

with c4 = c4(ϕR, ΩR). We may then conclude

|f |−1,q ≤ c5 (‖u‖q + ‖∇p‖−1,q,ΩR + ‖p‖q,ΩR) .

Substituting this inequality into (III.1.22) we find

|w|1,q ≤ c6 (‖u‖q + ‖∇p‖−1,q,ΩR + ‖p‖q,ΩR) .

Recalling that w = ϕRp and property (III.1.19), we conclude that

p ∈ D1,q(Ω),

|p|1,q,ΩR ≤ c7 (‖u‖q + ‖∇p‖−1,q,ΩR + ‖p‖q,ΩR) ,
(III.1.23)

where c7 = c7(q, n, Ω, ϕR). This proves, in particular, the validity of condition
(i) of NP. Moreover,

∇p = O(|x|−n), |x| → ∞,

see Exercise III.1.4, and so, as in the case Ω ≡ Rn, we show the validity of
identity (ii) of NP. The uniqueness of the solution p is likewise established,
see Exercise III.1.4. To complete the proof of the solvability of NP it remains
to extend these results to the case when u merely belongs to Lq(Ω). To this
end, we may proceed exactly as in the case Ω ≡ Rn (i.e., by a density argu-
ment) provided we show that the solution p just found satisfies the estimate
(III.1.14). We shall next prove that this is indeed the case. Set
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ψR(x) = 1 − ϕ2R(x), v(x) = p(x)ψR(x).

From (III.1.10)1 it follows that the function v satisfies the following problem
in ΩR:

∆v = ∇ · (p∇ψR + uψR) + ∇ψR · (∇p− u) ≡ ∇ ·U1 + F. (III.1.24)

Since, clearly, ∫

Ω2R

F = 0 ,

we may employ Theorem III.3.1 (in the following section) to show the existence
of a vector field U2 ∈W 1,q

0 (Ω2R) such that

∇ ·U2 = F in Ω2R ,

‖U2‖ ≤ c ‖F ‖ ,

with c = c(n, q, R). Setting

U = U1 +U2 ,

from (III.1.10)2 and (III.1.24) we therefore obtain

∆v = ∇ ·U in Ω2R,

∂v

∂n
= U · n at ∂Ω2R.

Since Ω2R is bounded (and smooth), we know that the Helmholtz–Weyl de-
composition of Lq(Ω2R) holds for all values of q ∈ (1,∞) and so, by Lemma
III.1.2 and Remark III.1.1, it follows that

|v|1,q,Ω2R ≤ c1‖U‖q,Ω2R

with c1 = c1(n, q, ΩR). Recalling the definition of v and the estimates for
‖U‖q, we deduce

|p|1,q,ΩR ≤ c2
(
‖u‖q + ‖p‖1,q,ΩR,2R

)
, (III.1.25)

where c2 = c2(n, q, R, ΩR). Combining (III.1.23)2 with (III.1.25) and taking
into account that problem (III.1.10) does not change if we modify p by adding
a constant to it, it follows that

|p|1,q,Ω ≤ c3
(
‖u‖q + ‖∇p‖−1,q,ΩR + ‖p‖q,ΩR/R

)
, (III.1.26)

with
‖p‖q,ΩR/R ≡ inf

k∈R

‖p+ k‖q,ΩR .

We claim the existence of a positive constant C = C(n, q, R, ΩR) such that
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‖∇p‖−1,q,ΩR + ‖p‖q,ΩR/R ≤ C‖u‖q. (III.1.27)

Contradicting (III.1.27) implies that there is a sequence {um} ⊂ C∞
0 (Ω) and

a sequence of corresponding solutions, {pm}, to (III.1.10), such that

‖um‖q → 0

‖∇pm‖−1,q,ΩR+ ‖p‖q,ΩR/R = 1
as m→ ∞. (III.1.28)

From (III.1.26) and (III.1.28) we obtain that

|pm|1,q,Ω ≤M , (III.1.29)

for some constant M independent of m. By the weak compactness property of
spaces Ḋ1,q, 1 < q <∞ (Exercise II.6.2), we find from (III.1.29) the existence
of p ∈ D1,q(Ω) and of a subsequence {pm′} such that

(∇pm′ ,ϕ) → (∇p,ϕ) for all ϕ ∈ Lq′
(Ω).

Thus, by this property and (ii) of NP (that we have previously established
for all u ∈ C∞(Ω)) we find for all φ ∈ D1,q′

(Ω)

0 = lim
m′→∞

(um′ ,∇φ) = lim
m′→∞

(∇pm′ ,∇φ) = (∇p,∇φ),

which, by uniqueness, in turn implies

∇p ≡ 0. (III.1.30)

Furthermore, from the compactness results of Exercise II.5.7 and Theorem
II.5.3, it follows that {pm′} can be chosen to converge to p in Lq(ΩR), while
∇pm′ tends to ∇p in W−1,q

0 (ΩR). As a consequence, from (III.1.28)2, we find
that

‖∇p‖−1,q,ΩR + ‖p‖q,ΩR/R = 1,

which contradicts (III.1.30). Thus, (III.1.27) is established and we may con-
clude the validity of the Helmholtz–Weyl decomposition of Lq(Ω), 1 < q <∞,
for any domain Ω of class C2.

We have thus proved the following theorem.

Theorem III.1.2 Let Ω ⊂ Rn, n ≥ 2 be either a domain of class C2 or the
whole space or a half-space. Then the Helmholtz–Weyl decomposition holds
for Lq(Ω), for any q ∈ (1,∞). 5

Remark III.1.3 As already observed, in view of the characterization given
in Lemma III.1.2, it is not expected that decomposition (III.1.5) holds for
arbitrary domains whenever q 6= 2. Actually, one can show that, for certain

5 Of course, if q = 2, it holds for any Ω, see Theorem III.1.1.
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smooth domains with an unbounded boundary or for bounded domains with
“sharp” corners, the Neumann problem NP loses either existence or unique-
ness for values of q in some range. This problem is analyzed in the work of
Maslennikova & Bogovskĭi (1986a, 1986b, 1993) and Bogovskĭi (1986), where
examples of such domains are given. For instance, if Ω is a domain in the
plane that is the complement of a smoothed angle ϑ = 2π−θ < π (see Figure
III.1), then NP loses existence if

1 < q < 2/(1 + π/θ)

while it loses uniqueness if

2/(1 − π/θ) < q (III.1.31)

and therefore, for these values of q, the Helmholtz–Weyl decomposition of
Lq(Ω) does not hold; see also Exercise III.1.7.

Figure III.1

A counterexample to the validity of the Helmohltz-Weyl decomposition in
bounded domains with only locally Lipschitz boundary, is given in Fabes,
Mendez & Mitrea (1998, Theorem 12.2); see also the Notes for this Chapter.

�

For other results concerning the resolution of NP (equivalently, the va-
lidity of the Helmholtz–Weyl decomposition) in domains with an unbounded
boundary, we refer to the Notes for this Chapter.

Exercise III.1.4 Let p ∈ D1,q(Ω) be a (smooth) solution to (III.1.10) with u ∈
C∞

0 (Ω). Show the following assertions:

(i) ∇p = O(|x|−n) as |x| → ∞;

(ii) If u ≡ 0, then p ≡ const.

Hint: (i) Use the methods of Lemma II.9.1 to prove the relation

Dip(x) =

Z

∂Ω∪∂BR

p(y)
∂

∂n
(DiE(x−y))dσy−

nX

j=1

Z

ΩR

uj(y)DjiE(x−y)dy, (III.1.32)

where R is so large that ΩR contains the bounded support K of u. Then let R→ ∞
into (III.1.32) and employ the results of Exercise II.6.3 and the estimate
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|DjiE(ξ)| = O(|ξ|−n) as x → ∞.

(ii) Multiply (III.1.10)1 with u ≡ 0 by p, integrate by parts over ΩR, use (i) and let

R→ ∞.

Exercise III.1.5 We recall that a functionG(x, y) is said to be the Green’s function
for the Laplace operator in a domain Ω if G(x, y) = E(x − y) + g(x, y) with g such
that for all x ∈ Ω

∆(y)g(x, y) = 0 y ∈ Ω
and, moreover,

g(x, y) = −E(x − y) y ∈ ∂Ω (Dirichlet or first kind).

or
∂g(x, y)

∂ny
= −∂E(x − y)

∂ny
y ∈ ∂Ω (Neumann or second kind).

Assuming Ω bounded and u and Ω sufficiently smooth, use Green’s identity (see
Lemma II.9.1) to show the following representations

u(x) =

Z

Ω

G(x, y)∆u(y)dy +

Z

∂Ω

u(y)
∂G(x, y)

∂ny
dσy (Dirichlet), (III.1.33)

u(x) =

Z

Ω

G(x, y)∆u(y)dy +

Z

∂Ω

∂u(y)

∂ny
G(x, y)dσy (Neumann). (III.1.34)

These formulas continue to hold also if Ω is unbounded and u and G are “well
behaved” at large distances. In this connection, show that

N (x, y) ≡ E(x − y) + E(x− y∗), y∗ = (y1, . . . , yn−1,−yn),

is Green’s function of the second kind for the half-space, while

D(x, y) ≡ E(x− y) − E(x − y∗) (III.1.35)

is Green’s function of the first kind and formulate assumptions on u such that

(III.1.33) and (III.1.34) are valid.

Exercise III.1.6 (Fujiwara & Morimoto 1977) Assume that Ω is such that the

Helmholtz–Weyl decomposition for Lq(Ω) holds for all q ∈ (1,∞). Show that the

adjoint P ∗
q of the projection operator Pq (see Remark III.1.1) coincides with Pq′ ,

1/q + 1/q′ = 1.

Exercise III.1.7 Let Ω be the “smoothed angle” domain of Figure III.1, with
θ > π. Show that the homogeneous Neumann problem (III.1.10) with u ≡ 0 has
a nonzero solution p ∈ D1,q(Ω), for all q satisfying (III.1.31). Hint: Let (r, ϕ) be
a polar coordinate system with the origin at the tip of the “smoothed angle”. The
function

p = rπ/θ cos
“π
θ
ϕ
”
,

satisfies ∆p(r, ϕ) = 0 and ∂p(r, ϕ)/∂n|∂Ω = 0, for all (r, θ), r ≥ r0 > 0. Moreover,

p ∈ D1,q(Ω2r0) only for those q satisfying (III.1.31). The desired solution is then

given by p = ψ p+ p1, where ψ = ψ(r) is 0 for r ≤ 2r0 and is 1 for r ≥ 3r0, while p1
is the unique (up to a constant) solution to the Neumann problem (III.1.10) with

u ≡ −2∇ψ · ∇p− p∆ψ, and such that ∇p1(r, ϕ) → 0 as r → ∞.
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III.2 Relevant Properties of the Spaces Hq and Gq

We begin to furnish a simple characterization of elements of Hq(Ω), 1 < q <
∞, valid for an arbitrary domain Ω. Specifically, we have

Lemma III.2.1 Let Ω be any domain in Rn, n ≥ 2. Then, a vector field u
in Lq(Ω), 1 < q <∞, belongs to Hq(Ω) if and only if

∫

Ω

u · h = 0, for all h ∈ Gq′(Ω). (III.2.1)

Proof. Assume (III.2.1) holds. Then employing the same reasoning showed
after formula (III.1.11), we deduce u ∈ Hq(Ω). Conversely, take u ∈ Hq(Ω)
and denote by {um} ⊂ D(Ω) a sequence converging to u in Lq(Ω). Integrating
by parts we show that (III.2.1) is satisfied by each um and then, by continuity,
by u. ut

Relation (III.2.1) tells us, in particular, that u is weakly divergence free,
that is, ∫

Ω

u · ∇ψ = 0, for all ψ ∈ C∞
0 (Ω) 1

and that, in a generalized sense, the “normal component” of u at the boundary
is zero. Actually, if Ω is a regular bounded or exterior domain or a half-space
and u is a sufficiently smooth function of Lq(Ω), one can show that u ∈ Hq(Ω)
if and only if ∇ · u = 0 in Ω and u · n = 0 at ∂Ω. To this end, consider first
the case where Ω is bounded and locally Lipschitz and let u ∈ Hq(Ω). From
the Gauss divergence theorem (see Exercise II.4.3) we have for all functions
ϕ ∈W 1,q′

(Ω) ∫

Ω

ϕ∇ ·u =

∫

∂Ω

γ(ϕ)u · n−
∫

Ω

u · ∇ϕ, (III.2.2)

where γ(ϕ) is the trace of ϕ on ∂Ω. From Lemma III.2.1 and (III.2.2) written,
in particular, with ϕ ∈ C∞

0 (Ω) we obtain ∇ · u = 0 which, once substituted
into (III.2.2), with the aid of Lemma III.2.1 entails

∫

∂Ω

γ(ϕ)u · n = 0, for all ϕ ∈W 1,q′
(Ω).

1 In analogy with the definition of the generalized derivative, one can introduce
the notion of generalized (or weak) differential operator, as in fact we already
did with the gradient operator (see also Smirnov 1964, §110). Thus, in the case
under consideration, we say that a vector u ∈ L1

loc(Ω) has a generalized (or weak)
divergence U ∈ Lq

loc(Ω) if and only if

Z

Ω

u · ∇ψ = −
Z

Ω

Uψ, for all ψ ∈ C∞
0 (Ω).

As usual, U will be denoted by ∇ · u.
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Therefore, in view of Gagliardo’s Theorem II.4.3, we deduce u ·n = 0 at ∂Ω.
Conversely, assume ∇ ·u = 0 in Ω and u ·n = 0 at ∂Ω and take an arbitrary
h ≡ ∇φ ∈ Gq′(Ω). By Lemma II.6.1, it follows that φ ∈ W 1,q′

(Ω) (this is no
longer true if Ω is unbounded2) and from (III.2.2) we recover (III.2.1), which
implies u ∈ Hq(Ω).

If Ω is a locally Lipschitz exterior domain, using (III.2.2) with ϕ ∈ C∞
0 (Ω)

and (III.2.1) we can prove as in the previous case that u ∈ Hq(Ω) implies
∇·u = 0 in Ω and u·n = 0 at ∂Ω. To prove the converse relation, however, we
should argue in a slightly more complicated way. Let u be a smooth solenoidal
function of Lq(Ω), with u ·n = 0 at ∂Ω and let ψR be the “cut-off” function
(II.7.1). Given an arbitrary φ ∈ D1,q′

(Ω), we can replace ϕ = ψRφ into
(III.2.2) to find ∫

Ω

ψR(u · ∇φ) = −
∫

Ω

φ∇ψR · u.

Since

lim
R→∞

∫

Ω

ψR(u · ∇φ) =

∫

Ω

u · ∇φ,

in view of Lemma III.2.1 we will show u ∈ Hq(Ω) if we prove

lim
R→∞

∫

Ω

φ∇ψR · u = 0. (III.2.3)

Now, by the Hölder inequality we find

∣∣∣∣
∫

Ω

φ∇ψR · u
∣∣∣∣ ≤ ‖u‖q‖φ∇ψR‖q′, eΩR

,

where Ω̃R is defined in (II.7.3). The quantity ‖φ∇ψR‖q′ eΩR
formally coincides

with (II.7.5) with the replacements u → φ, q → q′ and so, proceeding as in the
part of the proof of Theorem II.7.1 that follows (III.6.5), we establish (III.2.3)
and the proof is accomplished.

The above considerations are summarized in the following.

Lemma III.2.2 Let Ω be a locally Lipschitz domain of Rn, n ≥ 2, and let
u ∈ C1(Ω) ∩ Lq(Ω), 1 < q <∞. Then u ∈ Hq(Ω) if and only if ∇ · u = 0 in
Ω and u ·n = 0 at ∂Ω.

Remark III.2.1 By an argument entirely analogous to that just shown, one
can prove that the result of Lemma III.2.2 continues to hold for Ω a half-space.

�

If u is no longer assumed regular, we can nevertheless prove that the char-
acterization just described of the space Hq(Ω) is still valid, provided we give
suitable generalizations of the definition of the trace of the normal component

2 Take, for instance, Ω = {x ∈ R
3 : |x| > 1}, q = 2 and φ(x) = |x|−1. Then

∇φ ∈ Lq(Ω) while φ 6∈ Lq(Ω).
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of u at the boundary and of identity (III.2.2), and provided, of course, that
the solenoidality condition is interpreted in the sense of weak derivatives. This
will be our next objective, that will be reached by arguments basically due to
Temam (1977, Chapter I, §1.3); see also Miyakawa (1982).

For q ∈ (1,∞) let

H̃q = H̃q(Ω) =
{
u ∈ L1

loc(Ω) : ‖u‖ eHq
<∞

}
, (III.2.4)

where
‖u‖ eHq

≡ ‖u‖q + ‖∇ · u‖q. (III.2.5)

Clearly, the functional (III.2.5) defines a norm in H̃q and, by a simple rea-

soning, one shows that H̃q is complete under this norm; see Exercise III.2.1.

The following result holds.

Theorem III.2.1 Let Ω be locally Lipschitz. Then, C∞
0 (Ω) is dense in

H̃q(Ω), for all q ∈ [1,∞).

Proof. Assume first Ω bounded. From Lemma II.1.3 we find a finite open cov-
ering of Ω, denoted by G = {G0, G1, . . . , Gm}, with the following properties:
(i) G0 ⊂ Ω, (ii) ∂Ω ⊂ ∪m

i=1Gi, and (iii) Ωi ≡ Ω ∩ Gi, i = 1, . . . , m, is a
star-shaped domain with respect to some interior point xi. We extend u|Ωi

to zero outside Ωi, continue to denote by u this extension. Let {ψi}i=0,1,...,m

be a partition of unity of Ω subordinate to G (see Lemma II.1.4), and set
ui = ψiu. The result then follows if, for any ε > 0, we can find ϕi ∈ C∞

0 (Rn)
such that

‖ui − ϕi‖ eHq(Ω) < ε , for all i = 0, 1, . . . , m . (III.2.6)

In fact, setting Φ =
∑m

i=0 ϕi, and observing that
∑m

i=0 ψi(x) = 1, x ∈ Ω,
from (III.2.6) we obtain

‖u− Φ‖ eHq(Ω) ≤
m∑

i=0

‖ui −ϕi‖ eHq(Ω) < (m+ 1) ε .

Because of the properties of G0 and of ψ0, the mollifier (u0)η of u0 belongs to
C∞

0 (Ω), for all sufficiently small η > 0. Therefore, from (II.2.9) and Exercise
II.3.2, we at once obtain

‖u0 − (u0)η‖ eHq(Ω) → 0 as η → 0 . (III.2.7)

We next pick i ∈ {1, . . . , m}. By means of a translation in Rn, we may take
xi = 0. Then, the domain

Ω
(ρ)
i = {x ∈ Rn : ρx ∈ Ωi} (III.2.8)

satisfies Ω
(ρ)
i ⊃ Ωi, for ρ ∈ (0, 1); see Exercise II.1.3. Setting
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uρ = uρ(x) ≡ u(ρx) , x ∈ Ω
(ρ)
i , (III.2.9)

and recalling that ψi ∈ C∞
0 (Gi), by the properties of the mollifier we deduce

ψi(uρ)η ∈ C∞
0 (Rn), for all η > 0. Since |x| < δ(Ωi), for x ∈ Ωi, from the

continuity in the mean property (see Exercise II.2.8), given ε > 0, we can find
ρ ∈ (0, 1) such that

‖u− uρ‖q,Ωi < ε .

Furthermore, from (II.2.9) we also have, for some η = η(ρ) > 0,

‖uρ − (uρ)η‖q,Ωi < ε ,

so that we conclude

‖ui−ψi(uρ)η‖q,Ω ≤ ‖u−(uρ)η‖q,Ωi ≤ ‖u−uρ‖q,Ωi +‖uρ−(uρ)η‖q,Ωi < 2 ε .
(III.2.10)

By the same token and by Exercise II.3.2,

‖∇ · (ui − ψi(uρ)η) ‖q,Ω ≤ C ‖u− (uρ)η‖q,Ωi + ‖∇ ·uρ − (∇ ·uρ)η‖q,Ωi

+‖∇ · u −∇ · uρ‖q,Ωi

≤ C ε+ ε+ ‖∇ ·u −∇ · uρ‖q,Ωi .
(III.2.11)

We now notice that, setting χ(x) = ∇ · u(x), x ∈ Ωi, by Exercise II.3.3 we
have ∇ · uρ(x) = ρχ(ρx). As a consequence,

‖∇ · u−∇ · uρ‖q
q,Ωi

≤ (1 − ρ)‖∇ ·u‖q
q,Ωi

+ ρq

∫

Ωi

|χ(x)− χ(ρx)|q .

Thus, again by the continuity in the mean property (see Exercise II.2.8), for
ρ sufficiently close to 1, we deduce ‖∇ · u − ∇ · uρ‖q,Ωi < ε, which, along
with (III.2.7)–(III.2.11) allows us to conclude the validity of (III.2.6). This
concludes the proof when Ω is bounded. Next, assume Ω exterior, and, for
sufficiently small η > 0, let ψη be a “cut-off” function that is 1 in Ω1/η, 0

in Ω2/η and satisfies |∇ψη| ≤ M η, with M independent of η. It is at once

recognized that, for any u ∈ H̃q(Ω), we have uη ≡ ψηu ∈ H̃q(Ω). Given
ε > 0, we choose η such that

(1 +Mη)‖u‖q,Ω1/η + ‖∇ · u‖q,Ω1/η < ε . (III.2.12)

Since supp (uη) ⊂ Ω2/η, following step by step the proof just given in the case

Ω bounded with, this time, {ψi} partition of unity in Ω2/η, we show that,
corresponding to the given ε > 0, there is ϕε ∈ C∞

0 (Rn) such that

‖uη −ϕε‖ eHq(Ω) < ε . (III.2.13)

Therefore, by the triangle inequality and the properties of ψη, with the help
of (III.2.12) and (III.2.13), we conclude
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‖u −ϕε‖ eHq(Ω)
≤ ‖u− uη‖ eHq(Ω)

+ ‖uη −ϕε‖ eHq(Ω)

≤ (1 +Mη)‖u‖q,Ω1/η + ‖∇ · u‖q,Ω1/η + ε < 2ε

The proof of the theorem is thus completed. ut
With the help of Theorem III.2.1 we are now able to define, suitably, the

trace of the normal component of u ∈ H̃q(Ω) at ∂Ω, provided Ω is locally Lip-
schitz. Actually, fix u ∈ C∞

0 (Ω), and consider the following linear functional
Fu on W 1−1/q′,q′

(∂Ω), 1 < q <∞:

Fu(ω) =

∫

∂Ω

ω n ·u , ω ∈ W 1−1/q′,q′
(∂Ω).

Obviously, this functional is determined once the value of the normal compo-
nent of u at the boundary is specified. Let n· be the linear map that to each
u ∈ C∞

0 (Ω) prescribes the corresponding functional Fu defined above; that
is,

n · u = Fu.

Let us denote by W−1/q,q(∂Ω) the (strong) dual of W 1−1/q′,q′
(∂Ω), and by

〈·, ·〉∂Ω the corresponding duality pair. Using Gagliardo’s Theorem II.4.3 one
then proves that n·(·) |∂Ω can be extended to a bounded (linear) operator

from H̃q into W−1/q,q(∂Ω). In fact, by that theorem we can extend ω to a

function ϕ ∈W 1,q′
(Ω) such that

‖ϕ‖1,q′ ≤ c1‖ω‖1−1/q′,q′(∂Ω).

Thus, by identity (III.2.2), the Hölder inequality, and (III.2.5) we obtain

|〈Fu, ω〉∂Ω| =

∣∣∣∣
∫

Ω

(u · ∇ϕ+ ϕ∇ ·u)

∣∣∣∣ ≤ ‖u‖ eHq
‖ϕ‖1,q′

≤ c1‖u‖ eHq
‖ω‖1−1/q′,q′(∂Ω),

implying

‖n · u‖W−1/q,q(∂Ω) ≤ c1‖u‖ eHq
, for all u ∈ C∞

0 (Ω),

which is what we wanted to prove. Now, by the standard procedure used
to define generalized traces (see Theorem II.4.1), since, by Theorem III.2.1,

C∞
0 (Ω) is dense in H̃q(Ω), we may extend, by continuity, the map n· to

the whole of H̃q(Ω). Moreover, the following generalization of (II.4.21) and
(III.2.2) holds:

〈n ·u, ω〉∂Ω =

∫

Ω

u · ∇ϕ+

∫

Ω

ϕ∇ · u, ϕ ∈W 1,q′
(Ω), (III.2.14)

where ω = γ(ϕ) is the trace of ϕ at ∂Ω.

The above results are summarized in the following
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Theorem III.2.2 Assume Ω locally Lipschitz, and let u ∈ H̃q(Ω), 1 < q <
∞. Then n · u ∈ W−1/q,q(∂Ω) and the generalized Gauss identity (III.2.14)
holds.

After having obtained generalizations of the trace of the normal component
of a vector field at the boundary and of (III.2.2), it is now straightforward
to obtain the desired characterization of any element u of the space Hq(Ω).
In fact, by an argument completely analogous to that used in the proof of
Lemma III.2.2 we prove the following.

Theorem III.2.3 Let

H ′
q(Ω) = {u ∈ Lq(Ω) : ∇ · u = 0 in Ω, n · u = 0 at ∂Ω} .

Then, for any locally Lipschitz domain Ω of Rn, n ≥ 2, we have

H ′
q(Ω) = Hq(Ω) .

Remark III.2.2 The coincidence of the spaces H ′
q(Ω) and Hq(Ω) can be

proved for any (sufficiently smooth) domain for which identity (III.2.14) holds.
However, such a coincidence certainly does not hold for certain domains with
noncompact boundary; see Remark III.4.1. �

Exercise III.2.1 Show that the space eHq(Ω) endowed with the norm (III.2.5) is a

Banach space.

Exercise III.2.2 Prove the results of Theorem III.2.3 to the case where Ω = R
n
+,

n ≥ 2.

Another question that will play an important role later is that of charac-
terizing the kernel of the map n· . In this regard, we have the following result,
of which Theorem III.2.3 is a special case.

Theorem III.2.4 Let Ω be a locally Lipschitz domain in Rn, n ≥ 2, and let
H̃0,q = H̃0,q(Ω) designate the completion of C∞

0 (Ω) in the norm (III.2.5).
Then, for q ∈ (1,∞) we have that

H̃0,q(Ω) =
{
u ∈ H̃q(Ω) : n · u = 0 at ∂Ω

}
. (III.2.15)

Proof. Denote by
˜̃
H0,q(Ω) the space on the right-hand side of (III.2.15). It is

clear that H̃0,q(Ω) is a closed subspace of
˜̃
H0,q(Ω). Therefore, we only have

to show that every function from
˜̃
H0,q(Ω) can be approximated by functions

from D(Ω) in the norm (III.2.5). To this end, we observe that the extension

of u ∈ ˜̃
H0,q(Ω) to the whole of Rn, obtained by setting u = 0 outside Ω, is an
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element of H̃0,q(Rn); see Exercise III.2.3. Let us denote by u this extension.
Next, let Ωi, i = 0, . . . , m, and {ψ}0,1,...,m be the domains and the partition

of unity introduced in the proof of Theorem III.2.1. Also, let Ω
(ρ)
i be the

domain defined in (III.2.8) but, this time, with ρ > 1, so that Ω
(ρ)
i ⊂ Ωi. It

is then clear that the function ui(x) = ψi(x)uρ(x), x ∈ Ω
(ρ)
i , with uρ defined

in (III.2.9), is of compact support in Ω and belongs to H̃q(Ω), and that its
mollifier, (ψiu)η , is in C∞

0 (Ω), for all sufficiently small η > 0. The result then
follows by using exactly, from now onward, the same procedure used in the
proof of Theorem III.2.1. ut

Finally, it remains to investigate the properties of the function space
Gq(Ω). However, we notice that members of Gq(Ω) are gradients of func-
tions belonging to D1,q(Ω) and, in particular, it is easily shown that, in view
of Lemma II.6.2, Gq(Ω) and Ḋ1,q(Ω) are isomorphic via the mapping

i : u ∈ Gq(Ω) → i(u) ∈ Ḋ1,q(Ω),

where i(u) is the class of functions p ∈ D1,q(Ω) such that u = ∇p. We may
then conclude that all relevant properties ofGq(Ω) are immediately obtainable

from the analogous ones established for the space Ḋ1,q(Ω) in Section II.6.

Exercise III.2.3 Show that if u ∈ eeH0,q(Ω), with Ω locally Lipschitz, then its

extension to R
n, obtained by setting u = 0 in R

n − Ω, belongs to eH0,q(R
n). Hint:

Use (III.2.14).

III.3 The Problem ∇ · v = f

In the proof of several results of this chapter we shall often consider an auxil-
iary problem whose interest goes well beyond this particular context. Actually,
we already encountered it in the proof of Theorem III.1.2, dealing with the
Helmholtz–Weyl decomposition of the space Lq(Ω).

The problem consists, essentially, in representing a scalar function as the
divergence of a vector field in suitable function spaces and determining cor-
responding estimates. The resolution of such a problem is a fundamental tool
in several questions of mathematical fluid mechanics and, therefore, we find
it convenient to investigate it to some extent.

Let us begin to consider the case when Ω is a bounded domain in Rn,
n ≥ 2. The problem is then formulated as follows: Given

f ∈ Lq(Ω)

with ∫

Ω

f = 0, (III.3.1)

to find a vector field v : Ω → Rn such that



162 III The Function Spaces of Hydrodynamics

∇ · v = f

v ∈W 1,q
0 (Ω)

|v|1,q ≤ c ‖f‖q

(III.3.2)

where c = c(n, q, Ω).
Notice that (III.3.1) represents a compatibility condition, as a consequence

of (III.3.2)1 and (III.3.2)2. Also, since Ω is bounded, we may use the inequality
(II.5.1) into (III.3.2)3 to deduce the stronger estimate

‖v‖1,q ≤ c1‖f‖q . (III.3.3)

Problem (III.3.1), (III.3.2) (which, of course, does not admit a unique
solution) has been studied by several authors and with different methods (see
the Notes for this Chapter). Here, we shall follow the approach of Bogovskĭi
(1979, 1980) based on an explicit representation formula (see (III.3.8)), which
requires little regularity for Ω, e.g., Ω locally Lipschitz. In this latter respect
it should be emphasized that some regularity on Ω is in fact necessary for
the solvability of the problem; see Remark III.3.9. We also point out that the
difficulty with (III.3.2) relies in the fact that we require that v vanishes (in a
suitable sense) at ∂Ω. If this condition is removed, resolution of the problem
is trivial; see Exercise III.3.1

To begin with, we assume that Ω is of a special shape. Specifically, we
have

Lemma III.3.1 Let Ω ⊂ Rn, n ≥ 2, be star-like with respect to every point
of BR(x0) with BR(x0) ⊂ Ω. Then for any f ∈ Lq(Ω), 1 < q <∞, satisfying
(III.3.1), problem (III.3.2) has at least one solution v. Moreover, the constant
c in (III.3.2)3 admits the following estimate

c ≤ c0 [δ(Ω)/R]
n

(1 + δ(Ω)/R), (III.3.4)

with c0 = c0(n, q). Finally, if f ∈ C∞
0 (Ω) then v ∈ C∞

0 (Ω).

Proof. Let us assume first f ∈ C∞
0 (Ω). By the change of variables

x→ x′ = (x− x0)/R, (III.3.5)

we shift the origin of coordinates to the point x0 and transform BR(x0) into
B1(0) ≡ B. Moreover, Ω goes into a domain Ω′ that is star-like with respect
to every point of B with

δ(Ω′) = δ(Ω)/R, (III.3.6)

while v goes into v′, f into f ′ and equation (III.3.2)1 becomes

∇ · v′ = Rf ′ ≡ F ′ in Ω, (III.3.7)

where, of course, ∇ operates on the primed variables. Clearly, F ′ has mean
value zero in Ω′ and F ′ ∈ C∞

0 (Ω′). Furthermore, if v′, F ′ satisfy (III.3.7),
the transformed functions v and f through the inverse of (III.3.5) satisfy
(III.3.2)1. Let now ω be any function from C∞

0 (Rn) such that
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(i) supp (ω) ⊂ B,

(ii)

∫

B

ω = 1.

We wish to show that the vector field1

v(x) =

∫

Ω

F (y)

[
x− y
|x− y|n

∫ ∞

|x−y|
ω

(
y + ξ

x− y

|x− y|

)
ξn−1dξ

]
dy

≡
∫

Ω

F (y)N (x, y)dy

(III.3.8)

solves (III.3.7), where, for simplicity, we have omitted primes. By a straight-
forward calculation, we easily show that the field v can be written in the
following equivalent useful forms

v(x) =

∫

Ω

F (y)(x − y)

[∫ ∞

1

ω(y + r(x− y))rn−1dr

]
dy

v(x) =

∫

Ω

F (y)
x− y
|x− y|n

[∫ ∞

0

ω

(
x+ r

x− y

|x− y|

)
(|x− y| + r)n−1dr

]
dy.

(III.3.9)
Making into the integral (III.3.9)2 the change of variable z = x−y, we recover
at once v ∈ C∞(Rn). Moreover, from (III.3.9)1, it follows that v is of compact
support in Ω. In fact, set

E =
{
z ∈ Ω : z = λz1 + (1 − λ)z2, z1 ∈ supp (F ), z2 ∈ B, λ ∈ [0, 1]

}
.

(III.3.10)
Since Ω is star-like with respect to every point of B, E is a compact subset
of Ω. Fix x ∈ Ω −E. For all y ∈ supp (F ) and all r ≥ 1,

y + r(x− y) 6∈ B

and, therefore, ω(y + r(x − y)) = 0, i.e., by (III.3.9)1, v(x) = 0. We thus
conclude

v ∈ C∞
0 (Ω). (III.3.11)

Surrounding the point x ∈ Ω with a ball Bε(x) of radius ε sufficiently small
and using integration by parts, from (III.3.8) one has

Djvi(x) = lim
ε→0

(
∫

Bc
ε(x)

F (y)DjNi(x, y)dy+

∫

∂Bε(x)

F (y)
xj − yj

|x− y| Ni(x, y)dσy).
(III.3.12)

It is simple to show

1 The equation (III.3.8) is sometimes referred to as “Bogovskĭi formula.” It is a
generalization of a similar representation due to Sobolev; see the Notes at the
end of this chapter.



164 III The Function Spaces of Hydrodynamics

lim
ε→0

∫

|x−y|=ε

F (y)
xj − yj

|x− y| Ni(x, y)dσy = F (x)

∫

Ω

(xj − yj)(xi − yi)

|x− y|2 ω(y)dy.

(III.3.13)
Actually, denoting by Iε the integral on the left-hand side of (III.3.13),

∆ε(x) ≡
∣∣∣∣Iε(x) − F (x)

∫

Ω

(xj − yj)(xi − yi)

|x− y|2 ω(y)dy

∣∣∣∣

=

∣∣∣∣∣

∫

|z|=1

{
zizjF (x− εz)

∫ ∞

0

ω(x + rz)(r + ε)n−1dr

}
dσz

−F (x)

∫

|z|=1

{
zizj

∫ ∞

0

ω(x+ rz)rn−1dr

}
dσz

∣∣∣∣∣

and so, in the limit ε→ 0 it follows

∆ε(x) ≤
∫

|z|=1

|F (x)− F (x− εz)|dσz + o(1),

which proves (III.3.13). On the other hand, the first limit on the right-hand
side of (III.3.12) exists as a consequence of the Calderón–Zygmund Theorem
II.11.4. To see this, we observe that from (III.3.9)1 we have for fixed y

DjNi(x, y) = Dj

[
(xi − yi)

∫ ∞

1

ω(y + r(x− y))rn−1dr

]

= δij

∫ ∞

1

ω(y + r(x− y))rn−1dr

+(xi − yi)

∫ ∞

1

Djω(y + r(x− y))rndr

=
δij

|x− y|n
∫ ∞

0

ω

(
x+ r

x− y

|x− y|

)
(|x− y| + r)n−1dr

+
xi − yi

|x− y|n+1

∫ ∞

0

Djω

(
x+ r

x− y

|x− y|

)
(|x− y| + r)ndr

(III.3.14)
By expanding the powers of n in the last two integrals it easily follows that
DjNi(x, y) can be decomposed as

DjNi(x, y) = Kij(x, x− y) +Gij(x, y), (III.3.15)

where
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Kij(x, x− y) =
δij

|x− y|n
∫ ∞

0

ω

(
x+ r

x− y

|x− y|

)
rn−1dr

+
xi − yi

|x− y|n+1

∫ ∞

0

Djω

(
x+ r

x− y

|x− y|

)
rndr

≡ kij(x, x− y)

|x− y|n

(III.3.16)

while Gij admits an estimate of the type

|Gij(x, y)| ≤ c
δ(Ω)n−1

|x− y|n−1
, x, y ∈ Ω, (III.3.17)

where c = c(ω, n). It is readily seen that, for each i and j, Kij(x, z) is a
singular kernel, i.e., that kij(x, z) satisfies all conditions (II.11.15)–(II.11.17).
Actually, (II.11.15) is at once satisfied. Concerning (II.11.17), we notice that

|kij(x, z)| ≤
∣∣∣∣
∫ ∞

0

ω (x+ rz) rn−1dr

∣∣∣∣+
∣∣∣∣
∫ ∞

0

Djω (x+ rz) rndr

∣∣∣∣

≤ ‖ω‖∞
δ(Ω)n

n
+ ‖Djω‖∞

δ(Ω)n+1

n + 1
for |z| = 1 .

(III.3.18)

Therefore, also (II.11.17) is satisfied. Furthermore,

∫

|z|=1

kij(x, z) = δij

∫

|z|=1

∫ ∞

0

ω(x+ rz)rn−1dr

+

∫

|z|=1

zi

∫ ∞

0

Djω(x+ rz)rndr

=

∫

Rn

[δijω(x + y) + yiDjω(x+ y)] dy = 0

and so condition (II.11.16) is satisfied as well. Consequently, from (III.3.15)–
(III.3.17), the first limit on the right-hand side of (III.3.12) exists and (III.3.12)
can be rewritten as

Djvi(x) =

∫

Ω

Kij(x, x− y)F (y)dy +

∫

Ω

Gij(x, y)F (y)dy

+F (x)

∫

Ω

(xj − yj)(xi − yi)

|x− y|2 ω(y)dy

≡ F1(x) + F2(x) + F3(x),

(III.3.19)

where the first integral has to be understood in the Cauchy principal value
sense. We next show that (III.3.8) is a solution to (III.3.7). To this end, from
(III.3.12)–(III.3.14) and property (ii) of ω we have
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∇ · v =

∫

Ω

F (y)

(
n

∫ ∞

1

ω(y + r(x− y))rn−1dr

+

n∑

i=1

∫ ∞

1

(xi − yi)Diω(y + r(x− y))rndr

)
dy

+

n∑

i=1

F (x)

∫

Ω

(xi − yi)(xi − yi)

|x− y|2 ω(y)dy

=

∫

Ω

F (y)

[
n

∫ ∞

1

ω(y + r(x− y))rn−1dr

+

∫ ∞

1

rn

(
d

dr
ω(y + r(x− y))

)
dr

]
dy+ F (x)

= −ω(x)

∫

Ω

F (x) + F (x)

and so, since F has mean value zero over Ω,

∇ · v(x) = F (x), x ∈ Ω, (III.3.20)

which proves (III.3.7). It remains to show that v satisfies (III.3.2)3. For 1 <
q < ∞, from (III.3.16) and (III.3.19), by the Calderón–Zygmund Theorem
II.11.4 we obtain

‖F1‖q ≤ c1‖F ‖q,

while Young’s inequality (II.11.2) and (III.3.15)2 furnish

‖F2‖q ≤ c2δ(Ω)n‖F ‖q.

Finally, we obviously have

‖F3‖q ≤ c3δ(Ω)n‖F ‖q.

We wish to emphasize that the constants c2 and c3 depend on ω, n, q but
not on Ω. As far as the constant c1 is concerned, from (III.3.18) and Remark
II.11.2 we obtain

c1 ≤ c4δ(Ω)n(1 + δ(Ω)),

where c4 = c4(n, q, ω). Restoring the primed notation, from the previous in-
equalities we recover

|v′|1,q,Ω′ ≤ c5δ(Ω
′)n(1 + δ(Ω′))‖F ′‖q,Ω′ ,

with c5 = c5(n, q). Coming back to the original variables via the inverse
of transformation (III.3.4), recalling (III.3.6) and F ′ = Rf ′, we obtain that
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the transformed solution v also satisfies (III.3.2)3 with a constant c obeying
(III.3.4). To complete the proof, we have to show solvability for arbitrary f
in Lq(Ω) (obeying, of course, (III.3.1)). Thus, let f ∈ Lq(Ω) satisfy (III.3.1)
and let {fm} ⊂ C∞

0 (Ω) be a sequence approximating f in Lq(Ω). Then, the
functions

f∗m = fm − ϕ

∫

Ω

fm, m ∈ N

with

ϕ ∈ C∞
0 (Ω),

∫

Ω

ϕ = 1

still approximate f in Lq(Ω) and, at the same time, they obey (III.3.1) for
all m ∈ N. By what we have just shown, corresponding to each m ∈ N we
can find a solution vm ∈ C∞

0 (Ω). By the estimate (III.3.3) and the linearity
of problem (III.3.2)1,2, as m → ∞ the sequence {vm} converges (strongly)

in W 1,q
0 (Ω) to a function v ∈ W 1,q

0 (Ω) that obeys (III.3.2)1,3 in the sense of
generalized differentiation. The lemma is therefore proved. ut

Remark III.3.1 The result just shown admits of a straightforward general-
ization to the case when f ∈ Lq(Ω) ∩ Lr(Ω), 1 < q, r < ∞. Specifically, one
easily shows that there exists a solution to (III.3.2)1, which further satisfies

v ∈ W 1,q
0 (Ω) ∩W 1,r

0 (Ω)

|v|1,q ≤ c ‖f‖q

|v|1,r ≤ c ‖f‖r .

�

Remark III.3.2 Formula (III.3.8) allows us to obtain solutions to (III.3.1)
and (III.3.2), in a domain Ω star-like with respect to a ball in the sense
specified in Lemma III.3.1, that satisfy estimates of the type (III.3.3) in
Sobolev spaces Wm,q

0 (Ω) of arbitrary order. To show this, for two multi-indices
α = (α1, . . . , αn), β = (β1 , . . . , βn), we set β ≤ α to mean βi ≤ αi for all
i = 1, . . . , n and, in such a case, we put

Dα−β ≡ ∂|α|−|β|

∂xα1−β1

1 . . . ∂xαn−βn
n

,

(
α

β

)
≡
(
α1

β1

)
. . .

(
α

β

)
.

Applying the operator Dα to both sides of (III.3.8), integrating by parts, and
using the Leibnitz rule we then find for F ∈ C∞

0 (Ω)

Dαv(x) =
∑

β≤α

(
α

β

)∫

Ω

Nβ(x, y)Dα−βF (y)dy, (III.3.21)

where
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Nβ(x, y) = (x− y)

∫ ∞

1

Dβω(y + r(x− y))rn−1dr. (III.3.22)

Taking into account that Nβ has the same properties as N , we apply the
same reasonings employed before to deduce the following inequality for all
f ∈ C∞

0 (Ω)
‖∇v‖`,q ≤ c ‖f‖`,q (III.3.23)

for all ` ≥ 0 and q ∈ (1,∞), where c satisfies an estimate of the type (III.3.4).
Using (III.3.15) along with a density argument of the type adopted in the last
part of the proof of Lemma III.3.1, we thus obtain, in particular, a solution v
to (III.3.1) and (III.3.2) for any f inWm,q

0 (Ω). Such a v belongs toWm+1,q
0 (Ω)

and satisfies (III.3.23) for all ` = 0, . . . , m. �

Remark III.3.3 In several applications, the function f depends on a param-
eter t ∈ I, where I is an interval in R. In such a case, assuming that Ω is
star-like with respect to a ball, one immediately obtains from the representa-
tion (III.3.8) and the more general (III.3.21), (III.3.22), that if f(t) ∈ C∞

0 (Ω),
t ∈ I, is continuous in t in the Wm,q-norm, then the corresponding v = v(x, t)
given by (III.3.8) is continuous in the Wm+1,q-norm and one has

‖v(t1) − v(t2)‖`+1,q ≤ c1‖f(t1) − f(t2)‖`,q , t1, t2 ∈ I , ` = 0, . . . , m .

Likewise, if f is differentiable in t, with the help of (III.3.21), (III.3.22), we
find that the field v(x, t) given by (III.3.8) is also differentiable in t and that

∥∥∥∥∇
(
∂v

∂t

)∥∥∥∥
`,q

≤ c2

∥∥∥∥
∂f

∂t

∥∥∥∥
`,q

,

for all ` ≥ 0. Extension of these results to more general domains will be given
in Exercise III.3.6 and Exercise III.3.7. �

Exercise III.3.1 Let Ω be an arbitrary domain in R
n, n ≥ 2, and let f ∈ Lq(Ω),

q ∈ (1,∞). Show that there exists v ∈ D1,q(Ω) such that ∇ · v = f in Ω and

|v|1,q ≤ c ‖f‖q, c = c(n, q,Ω). Hint: Let {fk} ⊂ C∞
0 (Ω) with fk → f in Lq(Ω).

Then, vk = (∇E ∗ fk) solves ∇ · vk = fk in Ω, and, by the Calderón–Zygmund

Theorem II.11.4, satisfies |vk|1,q ≤ c ‖fk‖q.

Our next task is to extend the results of Lemma III.3.1 to the case of more
general domains. To this end, we propose

Lemma III.3.2 Let Ω ⊂ Rn, n ≥ 2, be such that

Ω =
N⋃

k=1

Ωk, N ≥ 2,

where each Ωk is a star-shaped domain with respect to some open ballBk with
Bk ⊂ Ωk, and let f ∈ Lq(Ω) satisfy (III.3.1). Then, there exist N functions
fk such that for all k = 1, . . . , N :
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(i) fk ∈ Lq(Ω) ;
(ii) supp (fk) ⊂ Ωk;
(iii)

∫
Ωk
fk = 0 ;

(iv) f =
∑N

k=1 fk;
(v) ‖fk‖q ≤ Ck‖f‖q , with

C1 =

(
1 +

|Ω1|1−1/q

|F1|1−1/q

)

Ck =

(
1 +

|Ωk|1−1/q

|Fk|1−1/q

) k−1∏

i=1

(1 + |Fi|1/q−1|Di −Ωi|1−1/q), k ≥ 2

and where Fi = Ωi ∩Di and Di = ∪N
s=i+1Ωs.

2

Proof. Define

f1(x) =





f(x) − χ1(x)

|F1|

∫

Ω1

f if x ∈ Ω1

0 if x ∈ D1 − Ω1

g1(x) =





[1− χ1]f(x) −
χ1(x)

|F1|

∫

D1−Ω1

f if x ∈ D1

0 if x ∈ Ω1 −D1

(III.3.24)

with χ1 characteristic function of the set F1. Clearly, it holds that

f = f1 + g1
∫

Ω1

f1 =

∫

D1

g1 = 0

supp (f1) ⊂ Ω1 , supp (g1) ⊂ D1

f1 ∈ Lq(Ω1) , g1 ∈ Lq(D1).

By the same token, we split g1 as

g1 = f2 + g2,

with f2 and g2 belonging to Lq(Ω2) and Lq(D2), respectively, and satisfying

2 Observe that, since Ω is connected, we can always label the sets Fi in such a
way that |Fi| 6= 0, for all i = 1, ...,N − 1.
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∫

Ω2

f2 =

∫

D2

g2 = 0

supp (f2) ⊂ Ω2 , supp (g2) ⊂ D2.

This procedure gives rise to the following iteration scheme for the determina-
tion of the functions fk. We set g0 = f and for k = 1, . . .N − 1

gk(x) =





[1− χk]gk−1(x) −
χk(x)

|Fk|

∫

Dk−Ωk

gk−1 if x ∈ Dk

0 if x ∈ Ωk −Dk

(III.3.25)

with Fk = Ωk ∩Dk and χk characteristic function of Fk; the functions fk are
then given by

fk(x) =





gk−1(x) −
χk(x)

|Fk|

∫

Ωk

gk−1 if x ∈ Ωk

0 if x ∈ Dk −Ωk

k = 1, . . .N − 1,

fN (x) = gN−1(x)

(III.3.26)
Relations (III.3.25) and (III.3.26) completely define the functions fk and prove
properties (i)-(iv). To show estimate (v), we observe that from (III.3.26), by
the Hölder inequality, for all k = 1, . . . , N

‖fk‖q,Ωk ≤ ‖gk−1‖q,Ω

(
1 + |Fk|1/q−1|Ωk|1−1/q

)
.

Therefore, by estimating ‖gk−1‖q,Ω from (III.3.25) in terms of ‖gk−2‖q,Ω and
so on for k − 2 times, we arrive at (v). The lemma is proved. ut

Remark III.3.4 A noteworthy class of domains that satisfy the assumption
of Lemma III.3.2 is that constituted by domains Ω satisfying the cone prop-
erty. Such a property ensures that there exists a cone Γ 3 such that every
point x ∈ ∂Ω is the vertex of a finite cone Γx congruent to Γ and contained
in Ω. To see this, we recall a result of Gagliardo (1958, Teorema 1.I), which
states that every bounded domain that satisfies the cone condition can be rep-
resented as the union of a finite number of domains, each of which is locally
Lipschitz.4 By virtue of Lemma II.1.3 and Exercise II.1.5, any such domain

3 Namely, Γ is the intersection of an open ball centered at the origin with a set of
the type

{λz : λ > 0, z ∈ R
n, |z − y| < r}

where r > 0 and y is a fixed point in R
n with |y| > r.

4 Observe that every locally Lipschitz domain satisfies the cone condition; see Ex-
ercise III.3.2.
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can be, in turn, represented as the union of a finite number of domains each
being star-shaped with respect to all points of an open ball that they strictly
contain.

�

Lemma III.3.1 and Lemma III.3.2 enable us to show the following result
(Bogovskĭi 1980, Theorem 1 and Lemma 3).

Theorem III.3.1 Let Ω be a bounded domain of Rn, n ≥ 2, such that

Ω = ∪N
k=1Ωk, N ≥ 1,

where each Ωk is star-shaped with respect to some open ballBk withBk ⊂ Ωk.
For instance, Ω satisfies the cone condition.5 Then, given f ∈ Lq(Ω),
1 < q <∞, satisfying (III.3.1), there exists at least one solution v to (III.3.2).
Furthermore, the constant c entering inequality ((III.3.2)3 admits the follow-
ing estimate:

c ≤ c0C

(
δ(Ω)

R0

)n(
1 +

δ(Ω)

R0

)
, (III.3.27)

where R0 is the smallest radius of the balls Bk, c0 = c0(n, q) and C is an
upper bound for the constants Ck given in Lemma III.3.2(v). Finally, if f is
of compact support in Ω so is v.

Proof. We decompose f as in Lemma III.3.2. Then, with the help of Lemma
III.3.1, we construct in each domain Ωk a solution vk to (III.3.2), correspond-
ing to fk, k = 1, . . . , N . If we extend vk to zero outside Ωk and recall Exercise
II.3.11, we deduce that the field

v =

N∑

k=1

vk

belongs to W 1,q
0 (Ω) and solves (III.3.2)1 in the whole of Ω. Moreover, again,

from Lemma III.3.1 and Lemma III.3.2(v), we have

‖v‖1,q ≤
N∑

k=1

‖vk‖1,q ≤ c

N∑

k=1

‖fk‖q ≤ cC‖f‖q, (III.3.28)

which completes the proof of the first part of the theorem once we take into
account Remark III.3.4. To show the second one, for each Ωk consider the

corresponding domain Ω
(ρ)
k , ρ ∈ (1/2, 1), introduced in Exercise II.1.3. As we

know from this exercise,

Ω
(ρ)
k ⊂ Ωk, for all k = 1, . . . , N ,

5 See Remark III.3.4 and Remark III.3.5.
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and if Ωk is star-shaped with respect to every point of the ball BR(x0k),

then Ω
(ρ)
k enjoys the same property with respect to every point of the ball

BρR(x0k). Let us set

Ω(ρ) = ∪N
k=1Ω

(ρ)
k

and denote by ρ1 ∈ (1/2, 1) a number such that for all ρ ∈ [ρ1, 1) the following
properties hold

Ω(ρ) is connected

supp (f) ⊂ Ω(ρ).

In virtue of Lemma III.3.2, we can decompose f as the sum of N functions

f
(ρ)
k , where f

(ρ)
k satisfy the following properties:

f
(ρ)
k ∈ Lq(Ω

(ρ)
k ), supp (f

(ρ)
k ) ⊂ Ω

(ρ)
k ,

∫

Ω
(ρ)
k

f
(ρ)
k = 0, k = 1, . . . , N.

Furthermore, taking into account that

|Ω(ρ)
k | = ρn|Ωk|, |Ω(ρ)

k ∩Ω(ρ)
k′ | = ρn|Ωk ∩Ωk′ |,

from property (v) of Lemma III.3.2 we also have

‖f(ρ)
k ‖q ≤ C‖f‖q (III.3.29)

with a constant C depending on Ωk but otherwise independent of ρ ∈ [ρ1, 1).

We next solve problem (III.3.1), (III.3.2) in each Ω
(ρ)
k and denote by v

(ρ)
k ∈

W 1,q
0 (Ω

(ρ)
k ) the corresponding solution. Extending v

(ρ)
k by zero outside Ω

(ρ)
k ,

we obtain that the function

v(ρ) =

N∑

k=1

v
(ρ)
k

solves (III.3.2)2, belongs to W 1,q
0 (Ω), and is of compact support in Ω. More-

over, proceeding as in (III.3.28) and using (III.3.29) we recover that v(ρ) obeys
(III.3.2)3 with a constant c depending on n, q and Ω but independent of ρ,
namely, of f . The theorem is completely proved. ut
Remark III.3.5 Even though the assumption on the regularity of Ω made
in the previous theorem may allow, in principle, for domain even less regular
than those satisfying the cone condition, some kind of regularity is indeed
necessary for the solvability of problem (III.3.1)–(III.3.2); see Remark III.3.9.
For example, Ω can not have an external cusp. The question of the “least”
requirement on Ω for (III.3.1)–(III.3.2) is studied in Acosta, Durán & Muschi-
etti (2006), where, in particular, for n = 2, q ∈ (1, 2), and Ω simply connected,
a complete characterization is furnished in terms of “John domains”; see also
the Notes for this Chapter.

�
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Remark III.3.6 Remark III.3.1 equally applies to Theorem III.3.1. �

Remark III.3.7 Theorem III.3.1 leaves out the two limiting cases q = 1,∞.
As a matter of fact, in both cases, problem (III.3.2) does not have a solution
for all f ∈ Lq(Ω) satisfying (III.3.1). A proof of this assertion when q = ∞,
is given by Preiss (1997), McMullen (1998, Theorem 2.1) and Bourgain and
Brezis (2002, § 2.2); see also Dacorogna, Fusco and Tartar (2004). A proof of
the non-solvability of problem (III.3.2) when q = 1 for arbitrary f ∈ L1(Ω)
satisfying (III.3.1), can be found in Bourgain and Brezis (2003, § 2.1) and in
Dacorogna, Fusco and Tartar (2004). The argument of Bourgain and Brezis
is elementary and will be reproduced here. Thus, assume that the problem

∇ · v = f , ‖v‖1,1 ≤ c ‖f‖1 (III.3.30)

has at least one solution v ∈ W 1,1
0 (Ω), corresponding to an arbitrarily given

f ∈ L1(Ω) satisfying (III.3.1). Choose f = g − gΩ, where g is any function in
L1(Ω), and let u ∈ C∞

0 (Ω). From (III.3.30) we thus have

(∇u, v) = −(u,∇ · v) = −(u, g − gΩ) ,

which, by a simple calculation that uses the Hölder inequality and Theorem
II.3.2, implies

|(u− uΩ, g)| ≤ ‖∇u‖n‖v‖n/(n−1) ≤ c ‖∇u‖n‖v‖1,1 .

From this latter relation, from (III.3.30)2, and from Theorem II.2.2 we readily
deduce

‖u− uΩ‖∞ = sup
g∈L1(Ω);‖g‖1=1

|(u− uΩ), g)| ≤ c ‖∇u‖n ,

which, by (II.2.6) and (II.5.1), in turn implies the following property

‖u‖∞ ≤ c ‖∇u‖n , for all u ∈ C∞
0 (Ω) ,

which, as we know from Exercise II.3.8, is not true . �

Remark III.3.8 If q > n, in view of the embedding Theorem II.3.2, any
solution v to (III.3.1)–(III.3.2), belongs, in addition, to L∞(Ω).6 Of course,
as we know from Exercise II.3.8, this embedding does not hold if q = n and,
therefore, we can not prove, in such a case, v ∈ L∞(Ω), at least by this kind
of argument. However, it is simple to bring examples where, for certain f
and Ω, it is indeed possible to produce a solution to (III.3.1)–(III.3.2) which
is in L∞(Ω), under the sole assumption that f ∈ Ln(Ω). For instance, let
Ω = BR, for some R > 0, and assume that f = f(|x|), f ∈ Ln(BR). Then, by
a straightforward calculation, we prove that a solution to (III.3.1)–(III.3.2) is
given by

6 Actually, to C(Ω).
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v(x) =





x

|x|n
∫ |x|

0

rn−1f(r)dr if 0 < |x| ≤ R ,

0 if x = 0 .

It is easy to show that
lim

|x|→0
v(x) = 0 ,

which furnishes v ∈ C(Ω). Moreover,

‖v‖∞ ≤
(

1

n

)(n−1)/n

‖f‖n .

At this point it is natural to ask if such a result can be proved for more gen-
eral functions f and for (sufficiently smooth, bounded) Ω of arbitrary shape.
The answer to this question is positive, and, in fact, by methods completely
different than those used here, Bourgain and Brezis (2003, Theorem 3′) have
shown the following result, for whose proof we refer to their article.

Theorem III.3.2 Let Ω be a bounded and locally Lipschitz domain of Rn,
n ≥ 2. Then, for any f ∈ Ln(Ω) satisfying (III.3.1) there exists a solution v
to (III.3.2) with q = n, which, furthermore, belongs to C(Ω) and obeys the
following estimate

‖v‖∞ ≤ c ‖f‖n ,

where c = c(n,Ω).

�

Another interesting question is the dependence of the constant c entering
inequality (III.3.2)3 on the domainΩ. For example, from (III.3.27) we deduce,
in particular, that if Ω is a ball, c is independent of the diameter of Ω. This
is a particular case of the following lemma whose proof we leave to the reader
as an exercise.

Lemma III.3.3 Let yi = φi(x), i = 1, . . . , n, be a transformation of Rn into
itself. Then, the constant c in (III.3.2)3 does not change if φi is homothetic,
i.e.,

φi(x) = axi + bi, a, bi ∈ R

or a rotation, i.e.,

φi(x) =

n∑

j=1

Aijxj ,

n∑

j=1

AijA`j = δi`.

Other questions related to the solvability of (III.3.1) and (III.3.2) are left
to the reader in the following exercises.
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Exercise III.3.2 Show that if Ω is locally Lipschitz then Ω satisfies the cone con-

dition.

Exercise III.3.3 Show that for q = 2 the constant c of inequality (III.3.2)3, in

general, cannot be less than one.

Exercise III.3.4 Let Ω be an arbitrary domain of R
n, and let u ∈ Lq

loc(Ω), q ∈
(1,∞). By the Hahn-Banach Theorem II.1.7, there exists a unique A ∈ D−1,q

0 (Ω)
such that

(u,divψ) = −〈A,ψ〉 , for all ψ ∈ C∞
0 (Ω) .

It is readily checked that A does not depend on q. Moreover, if Dku exists in the
weak sense, k = 1, . . . , n, then 〈A,ψ〉 = (∇u,ψ), for all the above specified functions
ψ. Thus, the above formula can be viewed as a generalization of the definition of
weak gradient of u, and the functional A will be still denoted by ∇u. It is obvious
that, if u ∈ Lq(Ω),

|∇u|−1,q ≤ c1‖u‖q ,

for some c1 = c1(q). Conversely, suppose Ω bounded and such that problem (III.3.1)–
(III.3.2) is solvable in Ω. Show that, if u ∈ Lq

loc(Ω), with ∇u ∈ W−1,q
0 (Ω),7 then

u ∈ Lq(Ω), and the following generalization of the Poincaré’s inequality (II.5.10)
holds:8

‖u− uΩ‖q ≤ c2‖∇u‖−1,q ,

with c2 = c2(Ω,q). Thus, in particular, if u ∈ Lq(Ω), q ∈ (1,∞), with

Z

Ω

u = 0,

for the above types of domain, ‖u‖q and ‖∇u‖−1,q are equivalent norms. Hint: Pick
arbitrary ψ ∈ C∞

0 (Ω), and let ϕ ∈ C∞
0 (Ω) with

R
Ω
ϕ = 1. Set f := ψ− ϕ

R
Ω
ψ, and

let v ∈ C∞
0 (Ω) be a solution to (III.3.1)–(III.3.2) corresponding to this f . Then, use

the relation
(u, f) = (u,div v) = −〈∇u, v〉

along with the property (III.3.3) of the function v and the results of Exercise II.2.12.

Remark III.3.9 Poincaré’s inequality holds for sufficiently smooth domains,
e.g., locally Lipschitz (see Theorem II.5.4), while it fails, in general, for do-
mains with very little regularity, like, for example, those having an external
cusp (Courant & Hilbert 1937, Kapitel VII, §8.2; see also Amick 1976 and
Fraenkel 1979, §2). Consequently, since by Exercise III.3.4, the validity of
Poincaré’s inequality is implied by the solvability of problem (III.3.1)–(III.3.2),
we conclude that this latter cannot be solved in arbitrary (bounded) domains.

�

7 Observe that, for bounded Ω, W−1,q
0 (Ω) and D−1,q

0 (Ω) are isomorphic; see Re-
mark II.6.3.

8 Observe that, by (II.5.1), we immediately find ‖∇u‖−1,q ≤ c ‖∇u‖q , 1 ≤ q ≤ ∞,
with c = c(q,Ω).
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Remark III.3.10 An elementary example of two-dimensional domain where
problem (III.3.1)–(III.3.2), for q = 2, can not have a solution for all f ∈ L2(Ω)
with fΩ = 0 is the following one, due to G. Acosta (see Durán & López Garćıa,
2010, p. 423). Let

Ω = {x ∈ R2 : 0 < x1 < 1, |x2| < x2
1} ,

and consider the function

u(x) =
1

x2
1

− 3 , x ∈ Ω.

Clearly, u ∈ L1(Ω), with uΩ = 0. Moreover,

u 6∈ L2(Ω) .

However,
∂u

∂x1
= −2

∂

∂x2

(
x1x2

x4
1

)
:=

∂g

∂x2
,

and since g ∈ L2(Ω), we obtain

u ∈W−1,2
0 (Ω) .

Therefore, by Exercise III.3.4, there exists at least one f ∈ L2(Ω) with fΩ = 0
for which problem (III.3.1)–(III.3.2), for q = 2, does not have a solution. �

Exercise III.3.5 Along with problem (III.3.2), one can consider the following non-
homogeneous version of it. Given f and a suitably, find a vector field v such that

∇ · v = f

v ∈ W 1,q(Ω)

v = a at ∂Ω.

(III.3.31)

Show that, for Ω a bounded and locally Lipschitz domain of R
n, n ≥ 2, given

f ∈ Lq(Ω), a ∈W 1−1/q,q (∂Ω), 1 < q < ∞,

satisfying Z

Ω

f =

Z

∂Ω

a · n,

problem (III.3.31) admits at least one solution v. Moreover, denoting by A ∈
W 1,q(Ω) an extension of a (according to Theorem II.4.3), show that this solution
satisfies the estimate

‖v‖1,q ≤ c (‖f‖q + ‖∇ ·A‖q) .

Therefore, in particular,

‖v‖1,q ≤ c
`
‖f‖q + ‖a‖1−1/q,q(∂Ω)

´
. (III.3.32)
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Exercise III.3.6 Let Ω be as in Theorem III.3.1. Furthermore, let I be an interval
in R, and suppose f = f(t) is in Lqi (Ω), qi ∈ (1,∞), i = 1, 2, and satisfies (III.3.1),
for all t ∈ I . Then, show that problem (III.3.2) has at least one solution v = v(x, t)
which, in addition, satisfies

|v(t1) − v(t2)|1,qi ≤ c1‖f(t1) − f(t2)‖qi , t1, t2 ∈ I , i = 1, 2 ,

for some c1 = c1(qi, Ω). Moreover, if
∂f

∂t
∈ Lri (Ω), i = 1, 2, show that

∂v

∂t
∈

W 1,ri
0 (Ω), i = 1, 2, and that the following estimate holds

‚‚‚‚
∂v

∂t

‚‚‚‚
1,ri

≤ c2

‚‚‚‚
∂f

∂t

‚‚‚‚
ri

, i = 1, 2 ,

where c2 = c2(qi, Ω). Hint: Use the argument presented in Remark III.3.3 along

with the method used in the proof of Theorem III.3.1.

Unless Ω is star-shaped with respect to a ball, the method of construction
of the field v used in the proof of Theorem III.3.1 ensures, in general, no
more than the W 1,q-regularity for v, even for f ∈ C∞

0 (Ω). Our next objective
is, therefore, to show that if Ω is sufficiently smooth (for example, locally
Lipschitz) we may find a solution to (III.3.2) that belongs to C∞

0 (Ω) if f ∈
C∞

0 (Ω). The regularity of the domain is required in order to construct a
suitable covering ofΩ and a corresponding decomposition of f , as the following
lemma proves.

Lemma III.3.4 Let Ω be bounded and locally Lipschitz. Then there exists
an open cover G = {G1, . . . , Gm, Gm+1, . . . , Gm+ν} of Ω such that

(i) Ωi ≡ Ω ∩Gi is star-shaped with respect to an open ball Bi with Bi ⊂ Ωi

for i = 1, . . . , m+ ν ;
(ii) ∂Ω ⊂ ∪m

i=1Gi;
(iii)Gi is an open ball with Bi ⊂ Ω for i = m+ 1, . . . , m+ ν ;
(iv) Ω = ∪m+ν

i=1 Ωi.

Moreover, if f ∈ C∞
0 (Ω) satisfies (III.3.1), we have f =

∑m+ν
i=1 fi where

(v) fi ∈ C∞
0 (Ωi);

(vi)
∫
Ω
fi = 0 ;

(vii) fi = ζf +
∑mi

k=1 θk

∫
Ω
φkf , where mi ∈ N, ζ ∈ C∞

0 (Gi), θk ∈ C∞(Ωi)

and φk ∈ C∞
0 (Ω).

(viii)‖fi‖m,q ≤ C‖f‖m,q , for all m ≥ 0 and q ≥ 1,

where C depends only on m, q, and Ω.

Proof. In virtue of Lemma II.1.3, we may find m locally Lipschitz domains
G1, . . . , Gm such that Ωi ≡ Ω∩Gi is star-shaped with respect to an open ball
Bi with Bi ⊂ Ωi and verifying condition (ii). Denote by G0 a domain with
G0 ⊂ Ω such that {G0, G1, . . . , Gm} forms an open cover of Ω. Since Ω is
bounded, we may find ν open balls Gm+1, . . . , Gm+ν such that
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G0 ⊂
m+ν⋃

i=m+1

Gi

{
m+ν⋃

i=m+1

Gi

}−

⊂ Ω.

Evidently,
G = {G1, . . . , Gm, Gm+1, . . . , Gm+ν}

is an open cover of Ω with Ω ⊂ ∪m+ν
i=1 Gi. Setting

Ωi ≡ Ω ∩Gi, i = 1, . . . , m+ ν

it is immediately obtained that properties (i) and (iv) are satisfied. Let us
now pick f ∈ C∞

0 (Ω) and show the existence of fi satisfying (v)-(viii). To this
end, let

{ψ1, . . .ψm+ν}
be a partition of unity subordinate to G; see Lemma II.1.4. Setting

D2 =

m+ν⋃

i=2

Ωi, Ψ2 =

m+ν∑

i=2

ψi(x),

and observing that

ψ1(x) + Ψ2(x) = 1, for all x ∈ Ω,

we may write f = f1 + g1, where

f1 = ψ1f − χ1

∫

Ω

ψ1f,

g1 = Ψ2f − χ1

∫

Ω

Ψ2f,

and

χ1 ∈ C∞
0 (Ω1 ∩D2),

∫

Ω

χ1 = 1.

Since ψ1 ∈ C∞
0 (G1) and f ∈ C∞

0 (Ω) it immediately follows that

f1 ∈ C∞
0 (Ω1).

Moreover, we have

Ψ2 =

m∑

i=2

ψi(x) +

m+ν∑

i=m+1

ψi(x)

so that, by recalling the definition of G2, . . . , Gm, Gm+1, . . . , Gm+ν and that
f ∈ C∞

0 (Ω), it follows that
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g1 ∈ C∞
0 (D2).

In addition, we have, evidently,
∫

Ω

f1 =

∫

Ω

g1 = 0.

We may then continue this procedure, using g1 as the function to be split.
Precisely, setting

D3 =
m+ν⋃

i=3

Ωi, Ψ3 =
m+ν⋃

i=3

ψi(x),

we let

f2 = ψ2g1 − χ2

∫

Ω

ψ2g1,

g2 = Ψ3g1 − χ2

∫

Ω

Ψ3f,

where
χ2 ∈ C∞

0 (Ω2 ∩D3)

∫

Ω

χ2 = 1.

From the expression of g1 and property (b) of the partition of unity we recover
at once that f2 can be written as

f2 = ψ2(1 − ψ1)f − χ1ψ2

∫

Ω

(1 − ψ1)f − χ2

∫

Ω

ψ2(1 − ψ1)f

+χ2

∫

Ω

ψ2χ1

∫

Ω

(1 − ψ1)f,

which proves f2 ∈ C∞
0 (Ω2), along with properties (vii) and (viii). Further-

more,
g1 = f2 + g2, g2 ∈ C∞

0 (D3),

∫

Ω2

f2 =

∫

D3

g2 = 0.

We may then use an iteration scheme of the same type employed in the proof
of Lemma III.3.2 to show the validity of (v)-(vii) for all i = 1, . . . , m+ ν . ut

The result just proved allows us to show the following one.

Theorem III.3.3 Let Ω be a bounded and locally Lipschitz domain in Rn,
n ≥ 2. Given

f ∈Wm,q
0 (Ω), m ≥ 0, 1 < q <∞, (III.3.33)

satisfying (III.3.1), there exists v ∈ Wm+1,q
0 (Ω) satisfying (III.3.2) and

(III.3.23), for all ` = 0, . . . , m. Moreover, if f ∈ C∞
0 (Ω) then v ∈ C∞

0 (Ω).
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Proof. The proof is essentially analogous to that of Theorem III.3.1 once we
take into account Lemma III.3.4 (in place of Lemma III.3.2) and Remark
III.3.2. Actually, for f ∈ C∞

0 (Ω), we denote by Ωi and fi the domains and
functions introduced in Lemma III.3.4 and we let vi ∈ C∞

0 (Ωi) denote the
solution to problem (III.3.1), (III.3.2) in Ωi whose existence is assured by
Lemma III.3.1. In view of Lemma III.3.4(vi) and Remark III.3.2, we have also

‖∇vi‖`,q ≤ C‖f‖`,q , ` = 0, . . . , m ,

for some constant C = C(n, q, `, Ω). Then the field

v =

N∑

i=1

vi

belongs to C∞
0 (Ω) and satisfies (III.3.2) in Ω along with the inequality

‖∇v‖`,q ≤ C‖f‖`,q, ` = 0, . . . , m , (III.3.34)

which proves the second part of the theorem. Let us now assume f merely
satisfying (III.3.33) and denote by {fk} ⊂ C∞

0 (Ω) a sequence of functions
satisfying (III.3.1) and converging to f in Wm,q

0 (Ω). Let {vk} ⊂ C∞
0 (Ω) be

the corresponding solutions to (III.3.2). It is readily seen that, by the estimate
(III.3.34) and inequality (II.5.1), as k → ∞ the sequence {vk} converges
(strongly) in Wm+1,q

0 (Ω) to a function v ∈ Wm+1,q
0 (Ω) that solves (III.3.2)1

in the sense of generalized differentiation and satisfies (III.3.34). The theorem
is therefore proved. ut

Remark III.3.11 The regularity assumption on Ω made in Theorem III.3.3
can be further weakened (Bogovskĭi 1980, Theorem 2). �

Remark III.3.12 From the proof of Theorem III.3.3it immediately follows
that if

f ∈Wm,q
0 (Ω) ∩Wm,r

0 (Ω), m ≥ 0, 1 < q, r <∞,

satisfying (III.3.1), we can find one solution to (III.3.2) with

v ∈ Wm+1,q
0 (Ω) ∩Wm+1,r

0 (Ω) (III.3.35)

such that

‖∇v‖m,q ≤ C‖f‖m,q , ‖∇v‖m,r ≤ C‖f‖m,r . (III.3.36)

�

From Theorem III.3.3 we obtain the following corollary on the extension
of solenoidal fields (Coscia and Galdi, 1997; Bogovskĭi 1980, Theorem 3).
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Corollary III.3.1 Let Ω be a bounded locally Lipschitz domain of Rn, n ≥
2, and let Γi, i = 1, . . . , k, k ≥ 1, denote the connected components of the
boundary ∂Ω. Let v be a solenoidal field of Wm,q(Ω), m ≥ 1, 1 < q < ∞,
satisfying the following conditions

∫

Γi

v · n = 0, for all i = 1, . . . , k,

with n normal component to ∂Ω. Then, given an open ball B with B ⊃ Ω,
there exists a solenoidal field V such that

V ∈Wm,q
0 (B)

V (x) = v(x) for all x ∈ Ω.

Moreover,
‖V ‖m,q,B ≤ c‖v‖m,q,Ω.

for some c = c(Ω,m, q, n, B) > 0.

Proof. From Theorem II.3.3 there exists u ∈Wm,q
0 (B) such that

u(x) = v(x) for all x ∈ Ω

‖u‖m,q,B ≤ c‖v‖m,q,Ω.

However, u need not be solenoidal and to obtain the desired extension V we
have to modify u suitably. To this end, denote by ωi, i = 1, . . . , k − 1 the
bounded connected components of Rn −Ω and set ωk = B−Ω. In each ωi we
consider the following problem

∇ ·wi = ∇ · u in ωi

wi ∈Wm,q
0 (ωi)

‖wi‖m,q ≤ c‖∇ · u‖m−1,q.

By assumption,
∫

ωi

∇ · u =

∫

Γi

v · n = 0, i = 1, . . . , k.

Moreover, being ∇ · v = 0 in Ω, it also follows that

∇ · u ∈ Wm−1,q
0 (ωi), i = 1, . . . , k.

As a consequence, from Theorem III.3.3 we deduce the existence of the fields
wi. Set wi ≡ 0 in ωc

i and denote again by wi their extensions. We define

V (x) =

{
u(x) −wi(x) x ∈ ωi, i = 1, . . . , k,

v(x) x ∈ Ω.

It is immediately checked that the field V satisfies all the properties stated
in the corollary, which is therefore proved. ut
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Exercise III.3.7 Let Ω be as in Theorem III.3.3. Furthermore, let I be an interval
in R, and suppose f = f(t) is in Wm,qi

0 (Ω), m ≥ 0, qi ∈ (1,∞), i = 1, 2, and that
satisfies (III.3.1), for all t ∈ I . Then, show that, for all t ∈ I , problem (III.3.2) has
at least one solution v(t) ∈ Wm+1,qi

0 (Ω), i = 1, 2, satisfying (III.3.23) with q = qi,
i = 1, 2, for all t ∈ I , and which, in addition, obeys the following inequality

‖∇(v(t1) − v(t2))‖`,qi ≤ c1‖f(t1) − f(t2)‖`,qi , t1, t2 ∈ I , ` = 0, . . . ,m , i = 1, 2 ,

for some c1 = c1(qi, `, Ω). Moreover, if
∂f

∂t
∈Wk,qi

0 (Ω), for i = 1, 2 and some k ≥ 0,

show that
∂v

∂t
∈Wk+1,qi

0 (Ω), i = 1, 2, and that the following estimate holds

‚‚‚‚
∂v

∂t

‚‚‚‚
l+1,qi

≤ c2

‚‚‚‚
∂f

∂t

‚‚‚‚
l,qi

, l = 0, . . . , k , i = 1, 2 ,

where c2 = c2(qi, l, Ω). Hint: Use the argument presented in Remark III.3.3 along

with the method used in the proof of Theorem III.3.3.

A further question that can be reasonably posed for problem (III.3.1),
(III.3.2) is that of finding a solution that further obeys an estimate with f in
negative Sobolev spaces, that is,

‖v‖q ≤ c‖f‖−1,q. (III.3.37)

However, the answer is, in general, negative even when f is in the form of
divergence. Actually, if we take

f = ∇ · g, g ∈ H̃q(Ω), (III.3.38)

with H̃q(Ω) defined in (III.2.4), (III.2.5), the solvability of (III.3.1), (III.3.2),
and (III.3.37) would imply the existence of certain solenoidal extensions of
boundary data that, as shown by counterexamples, cannot exist; see Remark
IX.4.4. Nevertheless, the question admits a positive answer if we further re-
strict the hypothesis on f . Specifically, we shall prove that (III.3.1), (III.3.2),
and (III.3.37) have at least one solution for all f of the type

f = ∇ · g, g ∈ H̃0,q(Ω), (III.3.39)

where H̃0,q(Ω) is given in (III.2.15). The difference between (III.3.38) and
(III.3.39) is that the latter, unlike the former, requires the vanishing of the
normal component of g at the boundary.

One important consequence of this result (see Theorem III.3.5) is that,
provided Ω is sufficiently regular, the following inequality holds

‖v‖q ≤ c|f |∗−1,q , (III.3.40)

where
|f |∗−1,q = sup

u∈D1,q′(Ω);|u|1,q′=1

|(f, u)| . (III.3.41)
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Notice that, since W 1,q
0 (Ω) ⊂ D1,q(Ω), we have ‖f‖−1,q ≤ |f |∗−1,q, so that

(III.3.40) is a weaker form of (III.3.37) .

We begin to show the following

Lemma III.3.5 Let Ω, G be bounded, locally Lipschitz domains in Rn, n ≥
2, with Ω ∩G ≡ Ω0 (6= ∅) star-shaped with respect to a ball B with B ⊂ Ω0.
Let, further, φk, θk, k = 1, . . . , m, ζ, and g be functions such that

φk ∈ C∞
0 (Ω), θk ∈ C∞

0 (Ω0), ζ ∈ C∞
0 (G),

g ∈ H̃0,q(Ω), 1 < q <∞, ∇ · g ∈ C∞
0 (Ω).

Set

f = ζ∇ · g +
m∑

i=1

θk

∫

Ω

φk∇ · g (III.3.42)

and suppose ∫

Ω0

f = 0. (III.3.43)

Then, there is at least one solution w to the problem

∇ ·w = f

w ∈ C∞
0 (Ω)

‖w‖1,s,Ω0 ≤ c‖∇ · g‖s,Ω

‖w‖q,Ω0 ≤ c‖g‖q,Ω,

(III.3.44)

where s is arbitrary in (1,∞) and c = c(φk, θk, ζ, s, q, n, B,G,Ω).

Proof. For simplicity, we shall restrict ourselves to discuss the case where
m = 1 and set θ = θ1 , φ = φ1. Clearly, f ∈ C∞

0 (Ω0). Then, by (III.3.43) and
the assumption made on Ω0, we can find a solution to the problem by the
Bogovskĭi formula (III.3.8), that is,

w(x) =

∫

Ω0

f(y)

[
x− y
|x− y|n

∫ ∞

|x−y|
ω

(
y + ξ

x− y
|x− y|

)
ξn−1dξ

]
dy

≡
∫

Ω0

f(y)N (x, y)dy.

(III.3.45)

Thus, repeating the proof of Lemma III.3.1, we obtain that the field w defined
in (III.3.45) satisfies (III.3.44)1,2 and

‖w‖1,s ≤ c1‖f‖s,

with c1 = c1(n, s, Ω0). Since
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‖f‖s ≤ c2‖∇ · g‖s,

with c2 = c2(φ, θ, ζ, s, Ω), (III.3.44)3 also follows. It remains to show (III.3.44)4.
From (III.3.45) and (III.3.42) we find for i = 1, . . . , n

wi(x) = w
(1)
i (x) + w

(2)
i (x)

w
(1)
i (x) =

∫

Ω0

Ni(x, y)ζ(y)Dj gj(y)dy

w
(2)
i (x) =

(∫

Ω

φ∇ · g
)(∫

Ω0

Ni(x, y)θ(y)dy

)
.

(III.3.46)

Using the properties of ω, we obtain

|N(x, y)| ≤
∣∣∣∣∣
x− y
|x− y|n

∫ ∞

|x−y|
ω

(
y + ξ

x− y
|x− y|

)
ξn−1dξ

∣∣∣∣∣

≤ |x− y|1−n‖ω‖∞
∫ δ(Ω0)

0

ξn−1dξ ≤ c|x− y|1−n

(III.3.47)

with c = c(n, B,Ω0). Thus, from Young’s inequality on convolutions (Theorem
II.11.1) it follows that

‖
∫

Ω0

N (·, y) θ(y)dy‖q,Ω0 <∞,

and so

‖w(2)‖q,Ω0 ≤ c3

∣∣∣∣
∫

Ω

φ∇ · g
∣∣∣∣ .

Since g ∈ H̃0,q(Ω), the trace n · g of the normal component of g at ∂Ω
is identically vanishing (see Theorem III.2.4), and consequently we have by
(III.2.14) ∫

Ω

φ∇ · g = −
∫

Ω

g · ∇φ.

Therefore,
‖w(2)‖q,Ω0 ≤ c4‖g‖q,Ω. (III.3.48)

Again from (III.2.14) and taking into account ζ ∈ C∞
0 (G), we may integrate

by parts into (III.3.46)3 to obtain
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w
(1)
i (x) = − lim

ε→0
(
∫

Ω0−Bε(x)

[Ni(x, y)gj(y)Djζ(y)

+ζ(y)gj(y)DjNi(x, y)]dy+

∫

∂Bε(x)

Ni(x, y)ζ(y)gj (y)
xj − yj

|x− y| dσy)

≡ − lim
ε→0

3∑

i=1

Ii(x, ε).

(III.3.49)
Since by (III.3.47) and Young’s inequality on convolutions,

‖
∫

Ω0

N(·, y)g · ∇ζ(y)dy‖q,Ω0 ≤ c5‖g‖q,Ω,

we have, for a.a. x ∈ Ω,

lim
ε→0

I1(x, ε) =

∫

Ω0

Ni(x, y)gj(y)Djζ(y)dy. (III.3.50)

Furthermore, by a reasoning analogous to that leading to (III.3.13) we show
for a.a. x ∈ Ω0

lim
ε→0

I3(x, ε) = ζ(x)gj(x)

∫

Ω0

(xi − yi)(xj − yj)

|x− y|2 ω(y)dy. (III.3.51)

Finally, as we know from (III.3.15), (III.3.16), and (III.3.17),

DjNi(x, y) = Kij(x, x− y) +Gij(x, y),

where Kij is a Calderón–Zygmund kernel, while Gij is bounded by a weakly
singular kernel. Therefore, from Theorem II.11.4 we deduce for a.a. x ∈ Ω0

lim
ε→0

I2(x, ε) =

∫

Ω0

Kij(x, x− y)ζ(y)gj (y)dy +

∫

Ω0

Gij(x, y)ζ(y)gj (y)dy,

(III.3.52)
where, of course, the first integral has to be understood in the Cauchy principal
value sense. From (III.3.49)–(III.3.52), from Theorem II.11.4, (III.3.15)2 and
Young’s inequality on convolutions we then conclude

‖w(1)‖q,Ω0 ≤ c6‖g‖q,Ω. (III.3.53)

Thus, estimates (III.3.44)4 becomes a consequence of (III.3.46), (III.3.48), and
(III.3.53) and the lemma is proved. ut

We are now in a position to prove the following.

Theorem III.3.4 Let Ω be a bounded, locally Lipschitz domain in Rn, n ≥
2. Then, given
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g ∈ H̃0,q(Ω), 1 < q <∞,

there exists at least one solution v to the problem

∇ · v = ∇ · g
v ∈ W 1,q

0 (Ω)

‖v‖1,q ≤ c ‖∇ · g‖q

‖v‖q ≤ c ‖g‖q.

(III.3.54)

In particular, if ∇ · g ∈ C∞
0 (Ω), then v ∈ C∞

0 (Ω) and we have

‖v‖1,s ≤ c ‖∇ · g‖s, for all s ∈ (1,∞). (III.3.55)

Proof. We first take g such that

∇ · g ∈ C∞
0 (Ω), g ∈ H̃0,q(Ω), 1 < q <∞. (III.3.56)

In view of Lemma III.3.4, there exist N domains Ωi = Ω ∩Gi, with {Gi} an
open covering of Ω, satisfying (i)-(iv) of that lemma. Furthermore, we may
write

∇ · g =

N∑

i=1

fi

with
fi ∈ C∞

0 (Ωi)

∫

Ωi

fi = 0,
(III.3.57)

and where fi has the expression

fi = ζi∇ · g +

mi∑

k=1

θk

∫

Ω

φk∇ · g, some mi ∈ N, (III.3.58)

with

φk ∈ C∞
0 (Ω), ζi ∈ C∞

0 (Gi), θk ∈ C∞
0 (Ωi), k = 1, . . . , mi, i = 1, . . . , N.

From (III.3.57) and (III.3.58), with the aid of Lemma III.3.4, for any i =
1, . . . , N we can state the existence of a vector vi such that for all s ∈ (1,∞)

∇ · vi = fi

vi ∈C∞
0 (Ωi)

‖vi‖1,s,Ωi ≤ c ‖∇ · g‖s,Ω

‖vi‖q,Ωi ≤ c ‖g‖q,Ω.

(III.3.59)



III.3 The Problem ∇ · v = f 187

Thus, the field

v =

N∑

k=1

vk

satisfies all requirements of the theorem, which is thus proved if g satisfies
(III.3.56). Assume, now, g merely belongs to H̃0,q(Ω), 1 < q < ∞. In view
of Theorem III.2.4 we can approximate g by a sequence {gs} ⊂ C∞

0 (Ω). For
each s we then establish the existence of vs solving (III.3.54) with gs in place
of g. Because of (III.3.54)3,4 we attain the existence of v ∈W 1,q

0 (Ω) such that

vs → v in W 1,q
0 (Ω).

Evidently, v solves (III.3.54)1 in the generalized sense and, again by (III.3.54)3,4

(written for vs) v satisfies (III.3.54)3,4. The proof of the theorem is therefore
completed. ut

An interesting consequence of the result just shown is given in the follow-
ing.

Theorem III.3.5 Let Ω be a bounded domain of Rn, n ≥ 2, of class C2.
Then, for any f ∈ Lq(Ω), 1 < q < ∞, satisfying (III.3.1), there exists a
solution v to problem (III.3.2) which, in addition, obeys the following estimate

‖v‖q ≤ c |f |∗−1,q ,

with c = c(q, Ω, n), where | · |∗−1,q is defined in (III.3.41).

Proof. For a given f in the statement of the theorem, consider the functional

F : [ϕ] ∈ Ḋ1,q′
(Ω) → (f, ϕ) ∈ R , ϕ ∈ [ϕ].

Since f satisfies (III.3.1), the value of F is independent of the choice of ϕ ∈ [ϕ],
and F is, therefore, well defined. It is easy to show that

F ∈ (Ḋ1,q′
(Ω))′ . (III.3.60)

In fact, it is obvious that F is additive. Furthermore, since f satisfies (II.1.13),
by means of (II.5.10) we obtain

|(f, ϕ)| = |(f, ϕ− ϕΩ)| ≤ ‖f‖q‖ϕ− ϕΩ‖q′ ≤ c ‖f‖q|ϕ|1,q′ ,

which proves (III.3.60), and, moreover,

‖F‖(Ḋ1,q′
(Ω))′ = |f |∗−1,q . (III.3.61)

Now, by Theorem II.8.2, there is F ∈ [Lq′
(Ω)]n such that (f, ϕ) = (F ,∇ϕ),

for all ϕ ∈ D1,q(Ω) and ‖F ‖q = |f |∗−1,q. Thus, in view of Lemma III.1.2 and
Theorem III.1.2, the Neumann problem
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− (∇w,∇ϕ) = (f, ϕ) , for all ϕ ∈ D1,q′
(Ω) , (III.3.62)

has a unique (up to a constant) solution w ∈ D1,q(Ω) which, in particular,
satisfies the following estimate

|w|1,q ≤ c |f |∗−1,q , (III.3.63)

with c = c(n, q, Ω). If we set g = ∇w, from (III.3.62) we get (in the sense of
weak derivatives)

∇ · g = f (III.3.64)

and, in particular,

(g,∇ϕ) + (∇ · g, ϕ) = 0, for all ϕ ∈W 1,q′
(Ω).

Therefore, by (III.2.14), we find g · n = 0, and, by Theorem III.2.4, we con-

clude that g ∈ H̃0,q. The result is then a consequence of (III.3.63), (III.3.64)
and of Theorem III.3.4. ut

We shall next consider the solvability of problem (III.3.2) for Ω an exterior
domain. In this case the problem will be suitably reformulated, as the following
considerations suggest. Let

Ω = R2 −B(0),

and f = f(|x|) be smooth and of compact support in Ω. The vector field

v(x) =

(
x

|x|2
)∫ |x|

1

τ f(τ )dτ

solves (III.3.2)1, vanishes on ∂Ω and, further,

|v|1,2 = ‖f‖2.

However,
v 6∈ L2(Ω)

and so
v 6∈W 1,2

0 (Ω).

This example suggests that, for an exterior domain, the class W 1,q
0 (Ω) in

problem (III.3.2) should be enlarged to the class D1,q
0 (Ω). Therefore, for such

domains, we shall formulate the problem as follows: Given f ∈ Lq(Ω) to find
a vector field v : Ω → Rn such that

∇ · v = f

v ∈D1,q
0 (Ω)

|v|1,q ≤ c ‖f‖q

(III.3.65)

where c = c(n, q, Ω).



III.3 The Problem ∇ · v = f 189

Remark III.3.13 For Ω an exterior domain, the condition (III.3.1) on f is
no longer required. �

The following existence result holds.

Theorem III.3.6 Let Ω be a locally Lipschitz, exterior domain of Rn, n ≥ 2.
Then, for any f ∈ Lq(Ω), 1 < q < ∞, there exists a solution to problem
(III.3.65).

Proof. If Ω = Rn, we at once check, with the help of Exercise II.11.9(i),
that the field v = ∇ψ with ∆ψ = f gives a solution to the problem. Thus,
we assume ∂Ω 6= ∅. Let {fm} ⊂ C∞

0 (Ω) be a sequence approximating f in
Lq(Ω), and set

vm = ∇ψm +wm, m ∈ N,

where
∆ψm = fm in Rn

and, for some R > 2δ(Ωc),

∇ ·wm = 0 in ΩR

wm = −∇ψm on ∂Ω

wm = 0 on ∂BR(0).

(III.3.66)

By Exercise II.11.9(i), we find

|ψm|2,q ≤ c‖fm‖q. (III.3.67)

Moreover, since ∆ψm = 0 in Ωc, we have
∫

∂Ω

∇ψm ·n = 0, for all m ∈ N, (III.3.68)

and so, from Exercise III.3.5, we deduce the existence of a solenoidal field
wm ∈W 1,q

0 (ΩR) solving (III.3.66). We extend wm to zero outside ΩR so that

‖wm‖1,q ≤ c1‖∇ · (ϕ∇ψm)‖q, (III.3.69)

where ϕ ∈ C1(Rn) and ϕ = 1 if |x| < R/2, ϕ = 0 if |x| ≥ R. From (III.3.67)
and (III.3.69) we thus obtain

‖wm‖1,q ≤ c2
(
‖fm‖q + ‖∇ψm‖q,ΩR/2,R

)
. (III.3.70)

If 1 < q < n, since ∇ψm = O(|x|1−n) as |x| → ∞, we apply Theorem II.6.1
to deduce

‖∇ψm‖nq/(n−q) ≤ c3|ψm|2,q , (III.3.71)

which, along with the properties of wm and the characterization (II.7.14),
delivers vm ∈ D1,q

0 (Ω). Moreover, from (III.3.67), (III.3.70) and (III.3.71) we
obtain
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‖wm‖1,q ≤ c4‖fm‖q. (III.3.72)

If q ≥ n, we add to ψm a linear function in x such that
∫

ΩR/2,R

∇ψm = 0,

and continue to denote the modified fields by ψm and vm. Clearly, ψm continue
to satisfy (III.3.68), while vm, in view of the characterization (II.7.15), belongs
to D1,q

0 (Ω). From the last displayed equation and Theorem II.5.4 it follows
that

‖∇ψm‖q,ΩR/2,R
≤ c5|ψm|2,q.

Employing this inequality back into (III.3.69) and using (III.3.70) gives again
(III.3.72). From what we said, and from (III.3.67) and (III.3.72) it then follows
that vm solves the problem

∇ · vm = fm

vm ∈ D1,q
0 (Ω)

|vm|1,q ≤ c‖fm‖q

(III.3.73)

with c = c(n, q, Ω). The theorem then easily follows by letting m → ∞ into
(III.3.73) (details are left to the reader). ut
Remark III.3.14 Theorem III.3.6 continues to hold if Ω satisfies the cone
condition (Bogovskĭi 1980, Theorem 4). �

Remark III.3.15 From the proof of Theorem III.3.4 it follows that if

f ∈ Lq(Ω) ∩ Lr(Ω),

we can find a solution v to (III.3.65)1 such that v ∈ D1,q
0 (Ω) ∩ D1,r

0 (Ω) and
that satisfies

|v|1,q ≤ c‖f‖q , |v|1,r ≤ c‖f‖r .

�

Remark III.3.16 A result similar to that of Theorem III.3.3 can also be
proved for exterior domains. We shall not show this here, since it will not be
needed later, and refer to Bogovskĭi (1980, Theorem 5) for a proof. However,
the reader may wish to give his/her own proof. �

Exercise III.3.8 Let Ω satisfy the assumptions of Theorem III.3.6. Show that, for
any f ∈ Lq(Ω) and a ∈ W 1−1/q,q (∂Ω), there exists at least one solution to the
problem

∇ · v = f

v ∈ D1,q(Ω)

v = a at ∂Ω

|v|1,q ≤ c
`
‖f‖q + ‖a‖1−1/q,q(∂Ω)

´
,
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with c = c(n, q, Ω). Notice that, unlike the case of a bounded domain (see Exercise
III.3.5), the condition Z

Ω

f =

Z

∂Ω

a · n

is not needed. In this respect, show that if

f ≡ 0 and

Z

∂Ω

a · n = 0,

then v can be taken of bounded support in Ω.

Exercise III.3.9 Let Ω satisfy the assumption of Theorem III.3.6, and assume that
‖(|x|α +1) f‖∞ < ∞, for some α ∈ (1, n). Show that problem (III.3.65), with q > n,
has at least one solution which, in addition, satisfies the estimate

‖(|x|α−1 + 1)v‖∞ ≤ c1 ‖(|x|α + 1) f‖∞ .

Show also that, if f ∈ Lq(Ω), q > n, with a bounded support, K , then there exists
a solution to (III.3.65) which, in addition, satisfies the estimate

‖(|x|n−1 + 1)v‖∞ ≤ c2‖f‖q ,

with c2 = c2(K,q). Hint: Use the argument employed in the proof of Theorem III.3.6,

along with Lemma II.9.2.

Exercise III.3.10 Let Ω satisfy the assumption of Theorem III.3.6, and let u ∈
L1

loc(Ω) with ∇u ∈ D−1,q
0 (Ω). Show that u ∈ Lq(Ω) and that the following general-

ization of the Poincaré inequality holds

‖u‖q ≤ c |∇u|−1,q ,

where c = c(Ω,q). Hint: See Exercise III.3.4. (For inequality of this type where only

one derivative of u is in D−1,q
0 (Ω) see Galdi 2007, Proposition 1.1.)

Problem (III.3.65) can be considered also for domains with a noncompact
boundary (Bogovskĭi 1980, §3; Solonnikov 1981, §2; Padula 1992, Lemma 2.2).
In Section 3 of the next chapter (see Theorem IV.3.2) we shall show that it can
be solved for Ω = Rn

+. A detailed study of solvability of (III.3.65) in domains
having m ≥ 1 “exits” at infinity (such as infinite tubes and pipes) has been
performed by Solonnikov (1981) for the case q = 2. (His results, however,
admit of a straightforward generalization to the case q ∈ (1,∞).) It should be
noted that, in this latter case, the problem need not be solvable, in general, if f
merely belongs to Lq(Ω) and, in fact, some additional compatibility conditions
are to be assumed on f . For instance, if Ω is the infinite cylinder:

Ω = {x ∈ Rn : |x′| < A} , x′ = (x1, . . . , xn−1), A > 0,

one easily checks that the problem

∇ · v = f

v ∈ D1,q
0 (Ω)

(III.3.74)



192 III The Function Spaces of Hydrodynamics

can admit a solution only if f satisfies (III.3.1) and the quantity

|f |eq ≡
{∫ ∞

−∞

∣∣∣∣∣

∫ ∞

t

(∫

|x′|≤A

f(x′, xn)dx′
)
dxn

∣∣∣∣∣

q

dt

}1/q

is finite. Conversely, one can prove that, for any f satisfying (III.3.1) and
belonging to the completion of C∞

0 (Ω) with respect to the norm

‖f‖eq ≡ ‖f‖q + |f |eq,

there exists a solution to (III.3.74) that also satisfies the inequality

|v|1,q ≤ c‖f‖eq

(see Solonnikov 1981, Theorem 2). Notice that, in the particular case where
f has zero average along the cross-section of the cylinder, namely,

∫

|x′|≤A

f(x′, xn)dx′ = 0 ,

then ‖f‖eq = ‖f‖q .

Remark III.3.17 The solvability of problem (III.3.1), (III.3.2)1 in Hölder

spaces Cm,λ(Ω) has been investigated by Kapitanskĭi & Pileckas (1984, §8).
In particular, these authors prove the following result (see their Theorem 1
on p. 481). �

Theorem III.3.7 Let Ω be a bounded domain of Rn, n ≥ 2, of class Cm+2,λ,
m ≥ 0, λ ∈ (0, 1). Then, given f ∈ Cm,λ(Ω) satisfying (III.3.1), there exists at
least one field v ∈ Cm+1,λ(Ω) vanishing at ∂Ω such that ∇·v = f . Moreover,
v obeys the following estimate

‖v‖Cm+1,λ ≤ c‖f‖Cm,λ

with c = c(m, λ, n, Ω).

Remark III.3.18 In connection with Theorem III.3.7, we wish to observe
that, in general, the number λ cannot be taken to be zero; otherwise, this
would imply the existence of certain solenoidal extensions of boundary data
that, however, cannot exist, as shown by counterexamples, see Section IX.4;
see also Dacorogna, Fusco & Tartar (2004). �
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III.4 The Spaces H1

q

The study of the dynamical properties of the flow of a viscous, incompressible
fluid requires velocity fields of the particles of the fluid which, at each time, are
summable to the qth power, q ≥ 1, along with their first spatial derivatives,
are solenoidal and vanish at the boundary of the region where the motion
occurs. One is thus led to introduce a space of vector functions having such
properties (in a generalized sense) and, in this respect, either of the following
two choices seems plausible, namely,

{
completion of D(Ω) in the norm of W 1,q(Ω)

}
≡ H1

q (Ω)

or {
v ∈W 1,q

0 (Ω) : ∇ · v = 0 in Ω
}
≡ Ĥ1

q (Ω).

(For q = 2 we will write H1(Ω) and Ĥ1(Ω), respectively.) Even though
these spaces look similar, they are a priori distinct in that the condition of
solenoidality on their members is imposed before (in H1

q (Ω)) and after (in

Ĥ1
q (Ω)) taking the completion of C∞

0 (Ω) in the norm of W 1,q(Ω). However,
one easily shows that for any domain Ω the following inclusions hold for all
q ≥ 1:

H1
q (Ω) ⊂ Ĥ1

q (Ω)

H1
q (Ω) ⊂ Hq(Ω).

The fact that the two spaces can be different for some domains and some
q (depending on the space dimension n) can be guessed through the following
considerations. Let Ω be the infinite cylinder

{
x ∈ R3 : x2

1 + x2
2 < 1

}
.

If v is a solenoidal vector function vanishing on ∂Ω, one readily verifies that
the flux φ of v through the cross section Σ of Ω1 at a point x3 of the axis of
the cylinder is a constant independent of x3, that is,

φ ≡
∫

Σ

v · n = const., n = (0, 0, 1).

If v ∈ H1(Ω), one immediately obtains φ = 0. Actually, in such a case, we
know that v is approximated by solenoidal vector functions of compact support
in Ω, see Exercise III.4.1. If v ∈ Ĥ1(Ω), however, this approximation does not
hold a priori but nevertheless we can deduce φ = 0 from the following three
observations:

(i)

∣∣∣∣
∫

Σ

v · n
∣∣∣∣ ≤ |Σ|1/2

(∫

Σ

v2

)1/2

,

1 Namely, Σ is the intersection of Ω with a plane orthogonal to the axis of Ω.
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(ii) There exists a sequence {x(k)
3 } ⊂ R with |x(k)

3 | → ∞ as k → ∞ such that

lim
k→∞

(1 + |x(k)
3 |)

∫

Σ

v2 = 0,

(iii) |Σ|/(1 + |x3|) is bounded.

Notice that (ii) is a simple consequence of the hypothesis v ∈ W 1,2
0 (Ω).2

Assume now that the domain, instead of having “exits” to infinity of bounded
cross section (as in the previous case), has a cross section whose area increases
sufficiently fast as x3 → ±∞. For example, we may choose

Ω =
{
x ∈ R3 : x2

1 + x2
2 < 1 + x2

3

}
. (III.4.1)

We still have φ = 0 for v ∈ H1(Ω), but we can no longer deduce the same

result if v ∈ Ĥ1(Ω). Actually (i) and (ii) also remain true in this case but (iii)
fails, because now |Σ| = π(1 + x2

3). Thus one may suspect the existence of a
solenoidal vector in W 1,2

0 (Ω) which, though satisfying (ii), has a non-zero flux

through Σ, thus obtaining H1(Ω) 6= Ĥ1(Ω). We shall see later in this section
that such a vector field actually exists.

Exercise III.4.1 Let Ω be a domain of R
n, n ≥ 2, with N ≥ 1 “outlets to infinity,”

i.e.,
Ω = Ω0 ∪Ω1 ∪ . . . ∪ΩN ,

where Ω0 is bounded, Ωi∩Ωj = ∅, i 6= j, and each Ωi, in possibly different coordinate
systems, has the form

Ωi =
˘
x ∈ R

n : xn > 0, x′ ∈ Σ(xn)
¯
,

where Σ(xn) is a bounded domain in R
n−1 smoothly varying with xn and x′ =

(x1, . . . , xn−1). Show that for all v ∈ H1
q (Ω), 1 ≤ q ≤ ∞,

2 In fact, setting

g(x3) =

Z

Σ

v2(x1, x2, x3)dx1dx2,

by Theorem II.4.1 g(x3) is well defined. Moreover,

Z ∞

−∞

g(x3)dx3 < ∞. (∗)

Therefore, there exists a sequence {x(k)
3 } with |x(k)

3 | → ∞ as k → ∞ such that

lim
k→∞

(1 + |x(k)
3 |)g(x(k)

3 ) = 0.

In fact, if this were not true, we should have

g(x3) ≥ `/(1 + |x3|), for all x3 with |x3| > b,

and for some `, b > 0, which contradicts (∗).
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Z

Σi

v · ni = 0, i = 1, ...,N.

Hint: Use the fact that v can be approximated by elements of D(Ω), together with

Theorem II.4.1.

The problem of the relationship between H1
q (Ω) and Ĥ1

q (Ω) is not merely
a question of mathematical completeness; rather, as pointed out for the first
time by Heywood (1976), the coincidence of the two spaces is tightly linked
with the uniqueness of flow of a viscous, incompressible fluid and, in particular,
in domains for which H1

q (Ω) 6= Ĥ1
q (Ω) the motion of such a fluid is not

uniquely determined by the “traditional” initial and boundary data but other
extra and appropriate auxiliary conditions are needed. Referring the reader
to Chapters VI and XII for a description of these latter and related results,
in the present section we shall only consider the question of investigating for
which domains the two spaces coincide and will indicate domains for which
they certainly don’t. To this end, we subdivide the domains of Rn(n ≥ 2) into
three groups:

(a) bounded domains;
(b) exterior domains;
(c) domains with a noncompact boundary.

In cases (a) and (b) one shows H1
q (Ω) = Ĥ1

q (Ω) provided only Ω has a
mild degree of smoothness (for example, cone condition, or even less, would
suffice); see Theorem III.4.1 and Theorem III.4.2. On the other hand, in case
(c) one exhibits examples of domains for which the two spaces are distinct,
no matter how smooth their boundary is; see Theorem III.4.4 and Theorem
III.4.6. Therefore, the coincidence of H1

q (Ω) and Ĥ1
q (Ω) does not seem related

to a high degree of regularity of Ω but rather to its shape. In this connection,
we wish to recall a remarkable general result of Maslennikova & Bogovskĭi
(1983, Theorem 5), which states that, if Ω is an arbitrary strongly locally

Lipschitz domain,3 then H1
q (Ω) = Ĥ1

q (Ω), for all q ∈ [1, n/(n− 1)].
It is conjectured that, for all domains with a compact boundary, the two

spaces coincide for q = 2, but no proof is, to date, available in the general
case.4 Should this coincidence fail to hold for some domain of the above type,
we would have paradoxical situations from the physical point of view. For
example, if for some bounded domain,Ω] (say), the two spaces did not coincide,
then the steady-state Stokes boundary-value problem formulated in Ω] and
corresponding to zero body force and zero (Dirichlet) data at the boundary
would admit a non-zero and smooth solution; see Remark IV.1.2. Analogous
situation would occur if Ω] is an exterior domain; see Remark V.1.2

3 This type of regularity extends the local Lipschitz one to the case of domains
with a noncompact boundary, see, e.g., Adams (1975, p. 66).

4 See, however the result of Šverák (1993) mentioned in the Notes for this Chapter.
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We finally notice that, as already observed, for the proof of coincidence,
it is sufficient to show Ĥ1

q (Ω) ⊂ H1
q (Ω), the converse inclusion being always

satisfied.

III.4.1 Bounded Domains

The simplest situation occurs when Ω is star-shaped (with respect to the

origin, say). For ρ ∈ (0, 1) we know from Exercise II.1.3 that Ω
(ρ) ⊂ Ω. Thus,

given a vector v ∈ Ĥ1
q (Ω), by extending it by zero outside Ω, we deduce that

the family of vectors vρ(x) ≡ v(x/ρ), x ∈ Rn, belongs to Ĥ1
q (Ω) and is of

compact support in Ω. Set

h0 = min
x∈∂Ω

|x|, ε(ρ) = h0(1 − ρ)/2

and consider the mollification (vρ)ε(ρ) ≡ V ρ. By the results ofSection II.2
on regularizations we obtain that, for each ρ ∈ (0, 1), V ρ ∈ D(Ω) and that
V ρ → v in W 1,q(Ω) as ρ → 1, for all q ∈ [1,∞). Therefore, for these values

of q, Ĥ1
q (Ω) ⊂ H1

q (Ω) and the two spaces coincide.

Using an idea of Bogovskĭi (1980, Lemma 4), this result can be generalized
to a fairly reach class of bounded domains. Specifically, we have the following.

Theorem III.4.1 Assume that the bounded domain Ω ⊂ Rn, n ≥ 2, is
the union of a finite number of domains Ωi each of which is star-shaped with
respect to an open ballBi with Bi ⊂ Ωi (e.g., Ω satisfies the cone condition).5

Then Ĥ1
q (Ω) = H1

q (Ω).

Proof. Let us first consider the case q ∈ (1,∞). Given v ∈ Ĥ1
q (Ω), let

{vk} ⊂ C∞
0 (Ω) be a sequence approximating v in W 1,q(Ω) and denote by

wk a solution to (III.3.2) with f = −∇ · vk. Since f satisfies (III.3.1), by
Theorem III.3.1 wk exists, belongs to W 1,q

0 (Ω), and can be taken to be of
compact support in Ω. The functions uk = vk +wk, k ∈ N, are thus diver-
gence free and of compact support in Ω. Furthermore, using (III.3.3) for wk,
we have

‖uk − v‖1,q ≤ ‖vk − v‖1,q + ‖wk‖1,q ≤ ‖vk − v‖q + c‖∇ · vk‖q

with c independent of k. Since ∇ · v = 0, it follows that

‖∇ · vk‖q → 0 as k → ∞,

and so the previous inequality furnishes

uk → v in W 1,q(Ω), as k → ∞.

5 See Remark III.3.4 and Remark III.3.5.
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Let (uk)ε be the regularization of uk. For sufficiently small ε, (uk)ε belongs
to D(Ω) and approaches uk in W 1,q(Ω) (see Section II.2 and Exercise II.3.2),

which proves v ∈ H1
q (Ω). Let us now prove H1

1(Ω) = Ĥ1
1 (Ω). To this end,

it is sufficient to show that every linear functional F defined in Ĥ1
1 (Ω) and

vanishing in H1
1 (Ω) is identically zero. Since H1

q (Ω) ⊂ H1
1(Ω) and Ĥ1

q (Ω) =
H1

q (Ω) for q > 1, we have F ∈ S where

S =

{
` ∈

(
Ĥ1

q (Ω)
)′

: `(v) = 0 for all v ∈ H1
q (Ω)

}
.

On the other hand, by what we already proved, S ≡ 0 and hence F ≡ 0,
which completes the proof. ut

III.4.2 Exterior Domains

Following the argument of Ladyzhenskaya & Solonnikov (1976), we can prove
the following.

Theorem III.4.2 Let Ω ⊆ Rn, n ≥ 2, be an exterior domain such that, for
some ρ > δ(Ωc), Ωρ satisfies the assumption of Theorem III.4.1. Then,

Ĥ1
q (Ω) = H1

q (Ω), 1 < q <∞ .

Proof. We begin with the obvious observation that if Ωρ satisfies the assump-
tion of Theorem III.4.1, then also ΩR does, for all R > ρ. Now, let ψ ∈ C1(R)
with ψ(ξ) = 1 if |ξ| ≤ 1 and ψ(ξ) = 0 if |ξ| ≥ 2 and set ψR(x) = ψ(|x|/R),

R > ρ. For v ∈ Ĥ1
q (Ω), denote by w(R) a solution to the problem

∇ ·w(R) = −v · ∇ψR

w(R) ∈W 1,q
0 (ΩR,2R)

|w(R)|1,q,ΩR,2R ≤ c‖v · ∇ψR‖q,Ω.

(III.4.2)

Since the compatibility condition
∫

ΩR,2R

v · ∇ψR =

∫

ΩR,2R

∇ · (vψR) = 0

is satisfied, such a field exists, by Theorem III.3.1. Moreover, by Lemma III.3.3
the constant c does not depend on R. Also, since ∇ψR = O(1/R) uniformly
in x, using inequality (II.5.5) we deduce for some c1, c2 independent of R

‖w(R)‖q,ΩR,2R ≤ c1R|w(R)|q,ΩR,2R ≤ c2‖v‖q,ΩR,2R . (III.4.3)

Setting w(R) ≡ 0 in the complement of ΩR,2R, we define
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v(R) = ψRv +w(R).

Due to (III.4.2), v(R) ∈ Ĥ1
q (Ω2R). Since Ω2R satisfies the assumption of The-

orem III.4.1, we have

Ĥ1
q (Ω2R) = H1

q (Ω2R), for all R > δ(Ωc),

and therefore, given ε > 0, we can find vε,R ∈ D(Ω2R) ⊂ D(Ω) such that

‖v(R) − vε,R‖1,q,Ω2R < ε.

So,
‖v − vε,R‖q,Ω ≤ ‖vε,R − v(R)‖q,Ω + ‖v − v(R)‖q,Ω

< ε+ ‖(1 − ψR)v‖q,Ω + ‖w(R)‖q,ΩR,2R .

Because of (III.4.3) and the properties of ψR, by taking R sufficiently large
and ε sufficiently small, we can make the right-hand side of this inequality as
small as we please, thus proving

‖vε,R − v‖q,Ω → 0 as ε→ 0, R → ∞.

By the some token one shows

|vε,R − v|1,q,Ω → 0 as ε→ 0, R → ∞,

which completes the proof of the coincidence. ut

III.4.3 Domains with Noncompact Boundary

It is easy to convince oneself that the method of proof just employed for the
exterior case applies with no significant changes to show Ĥ1

q (Ω) = H1
q (Ω),

1 < q <∞, for domainsΩ with noncompact boundary, provided the following
conditions are satisfied for all R greater than a fixed number R0:

(i) Ω2R = {x ∈ Ω : |x| < 2R} and ΩR,2R = {x ∈ Ω : R < |x| < 2R} are do-
mains;

(ii)Problem (III.4.2) is solvable with a constant c independent of R;
(iii) Inequality (III.4.3) holds with a constant c2 independent of R;

(iv) Ĥ1
q (Ω2R) = H1

q (Ω2R);

(see Ladyzhenskaya & Solonnikov 1976, Theorem 4.1). In particular, condi-
tions (i)-(iv) are certainly fulfilled if Ω = Rn

+. Thus, we have.

Theorem III.4.3 Ĥ1
q (Rn

+) = H1
q (Rn

+), 1 < q <∞.

Our next task, throughout the rest of this section, will be to investigate the
question of coincidence when Ω has “exits” to infinity, namely, when outside
a connected, compact subset Ω0 (say) Ω splits into m disjoint components
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Ωi, which in possibly different coordinate systems (depending on i), can be
represented as

Ωi = {x ∈ Rn : xn > 0, x′ ∈ Σi(xn)} ,
where Σi(xn) is a domain in Rn−1 smoothly varying with xn and x′ =
(x1, . . . , xn−1). Familiar domains Ω having these properties are, for instance,
infinitely long pipes and tubes of possibly varying cross section.

As we have noted at the beginning of this section, the coincidence of Ĥ1
q (Ω)

and H1
q (Ω) can be tightly related to the way in which Σi(xn) “widens” as

xn → ∞. It would thus be useful to establish a characterization of the class of
cross sections for which the coincidence holds but, to the best of our knowl-
edge, such a result is not available yet; nonetheless, one can certainly select
certain classes of Σi(xn) and establish whether or not Ĥ1

q (Ω) = H1
q (Ω). For

example, if all Σi, i = 1, . . . , m, are independent of xn, i.e., each Ωi reduces
to a straight semi-infinite cylinder, then, by the same technique used for the
case of an exterior domain, it is not hard to show that Ĥ1

q (Ω) = H1
q (Ω),

1 < q < ∞, provided Ω has a mild degree of regularity; see Exercise III.4.4.
On the other hand, if some of the domains Σi(xn) become unbounded as
xn → ∞ with a suitable growth rate, then, for the corresponding Ω we may
have Ĥ1

q (Ω) 6= H1
q (Ω).

An example of such domains was given for the first time by Heywood
(1976), who proved noncoincidence of Ĥ1(Ω) and H1(Ω) when Ω is an “aper-
ture domain,” namely, a domain of Rn, n > 2, of the type

Ω = Ω0 ∪Ω1 ∪Ω2

with Ω0 a bounded subset of the plane xn = 0 containing a unit disk C and,
in the same coordinate system,

Ω1 = Rn
−, Ω2 = Rn

+,

so that the two cross sections Σ1, Σ2 reduce to the entire space Rn−1. Stated
equivalently,

Ω = {x ∈ Rn : xn 6= 0 or x′ ∈ Ω0} , (III.4.4)

with x′ = (x1, . . . , xn−1). By using the ideas of Heywood, we now show the
following.

Theorem III.4.4 Let Ω be the “aperture” domain (III.4.4). Then

Ĥ1(Ω) 6= H1(Ω) .

Moreover,

d ≡ dim
(
Ĥ1(Ω) / H1(Ω)

)
= 1.
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Proof. Take the origin of coordinates at the center of C, denote by Γi, i = 1, 2,
the cones {x ∈ Ωi : x′ < |xn|} and set

σi = Γi ∩ {|x| = 1} , i = 1, 2.

We then let

b∗(x) =
ω(θ)x

|x|n
with

ω(θ) =





(cos 2θ)2 for θ ∈ [0, π/4]

0 for θ ∈ [π/4, 3π/4]

−(cos 2θ)2 for θ ∈ [3π/4, π],

where θ is the angle between the positive xn axis and the ray joining the point
x with the origin. Evidently,

b∗ ∈ L1
loc(R

n),

∇ · b∗ = 0, for all x ∈ Ω − {0}
supp (b∗) ⊆ Γ1 ∪ Γ2.

Furthermore, by indicating with Si,R the surface Ωi ∩ {|x| = R}, it follows
that

∫

S1,R

b∗(x) · n =

∫

σ1

ω(θ) = −
∫

σ2

ω(θ)

= −
∫

S2,R

b∗(x) · n ≡ φ = const.> 0.

(III.4.5)

Setting
b = (b∗)ε, 0 < ε < 1/2,

the regularization of b∗, by the properties of regularizations (see Section II.2)
we readily deduce b ∈ C∞(Rn) and that the following conditions hold for all
x ∈ Ω

∇ · b(x) = 0

|b(x)| ≤ c |x|−n+1

|∇b(x)| ≤ c |x|−n

|∆b(x)| ≤ c |x|−n−1

(III.4.6)

Furthermore,

supp (b) ⊂
{
|x′| < |xn| + 1/

√
2
}
. (III.4.7)

Using (III.4.6)2,3, (III.4.7) along with a now standard “cut-off” argument, it
follows that
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b ∈W 1,2
0 (Ω)

and so, in virtue of (III.4.6)1, we may infer

b ∈ Ĥ1(Ω).

However, by the solenoidality of b and (III.4.5), using the properties of regu-
larizations we can select ε so small that

∫

Ω0

b · n ≡ const.> φ/2 > 0. (III.4.8)

Condition (III.4.8) then tells us that b 6∈ H1(Ω). In fact, since every element u
from H1(Ω) is approximated by functions from D(Ω) it is immediately shown
that ∫

Ω0

u · n = 0. (III.4.9)

We may then conclude Ĥ1(Ω) 6= H1(Ω). We shall now prove the second
part of the theorem. For simplicity, we shall take the bounded domain Ω0

just coincident with the unit circle C and begin to show that if u ∈ Ĥ1(Ω)
satisfies (III.4.9) then u ∈ H1(Ω). Actually, since Ω = Ω0 ∪ Ω1 ∪ Ω2 with
Ω1 ≡ Rn

− and Ω2 ≡ Rn
+, we set

D1 = Ω1 ∩B1

D2 = Ω2 ∩B2

and denote by vi a solenoidal vector field in Di that equals u at Ω0, vanishes
at Ωi ∩ ∂B1 and belongs to W 1,2(Di). Since u satisfies (III.4.9), such a field
exists in virtue of Exercise III.3.5. Furthermore, it is a simple task to show
that, by extending vi to zero outside Di, the vector field v1 +v2 is solenoidal
in B1 and belongs to W 1,2

0 (B1). Denoting by ui the restriction of u to Ωi, we
may thus write

u = (u1 − v1) + (u2 − v2) + (v1 + v1) ≡ w1 +w2 +w3.

Employing the results on the coincidence of the two spaces for the half-space
and for a bounded domain, we deduce

w1 ∈ H1(Rn
−), w2 ∈ H1(Rn

+), w3 ∈ H1(B1),

and so, since each of these latter spaces is embedded in H1(Ω) we conclude
u ∈ H1(Ω). Take now the vector b constructed before and multiply it by a
constant in such a way that, denoting this new vector by b,

∫

Ω0

b · n = 1. (III.4.10)
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(This is allowed, in virtue of (III.4.8).) Take any v ∈ Ĥ1(Ω) and let Φ indicate
its flux through Ω0. Then, by (III.4.10),

v − Φb ≡ u

satisfies (III.4.9) and so u ∈ H1(Ω), which proves d = 1.
ut

Exercise III.4.2 By means of the arguments described in the proof of the preced-
ing theorem, show that for Ω given in (III.4.4):

bH1
q (Ω) 6= H1

q (Ω), for all q > n/(n− 1), n ≥ 2.

Moreover, for the above values of q, show dim( bH1
q (Ω)/ H1

q (Ω)) = 1 .

It is not difficult to convince oneself that Heywood’s procedure described
in the proof of Theorem III.4.4 should also work for a general class of domains
with a finite number of exits to infinity, provided each exit contains a semi-
infinite cone. This problem is taken up by Ladyzhenskaya & Solonnikov (1976,

Theorem 4.2) who prove, in fact, that Ĥ1(Ω) 6= H1(Ω), whenever Ω ⊂ Rn,
n ≥ 3, has m ≥ 2 (disjoint) exits Ωi to infinity and provided each Ωi contains
a semi-infinite cone. Furthermore,

dim(Ĥ1(Ω) / H1(Ω)) = m− 1 .

However, if n = 2, then Ĥ1(Ω) = H1(Ω); see also Kapitanskĭi (1981).

Remark III.4.1 In the light of the proof of Theorem III.4.4, it is easy to
show that for the domain (III.4.4), H ′

q(Ω) 6= Hq(Ω), for all q > n/(n − 1),
n ≥ 2, where Hq(Ω) and H ′

q(Ω) are defined in Section III.2 and Theorem
III.2.3. Actually, in view of Lemma III.2.1, it is enough to prove the existence
of v ∈ H ′

q(Ω) such that

∫

Ω

v · ∇φ = κ 6= 0, for some φ ∈ D1,q′
(Ω). (III.4.11)

For simplicity, we shall take Ω0 = C, with C unit disk of Rn−1. Putting the
origin of coordinates at the center of C and setting r = |x|, we choose

φ(x) =





exp(−r) if r ≥ 1 and xn > 0

exp(−1) if r ≤ 1

1 − (1 − exp(−1))exp(−r + 1) if r ≥ 1 and xn < 0.

Clearly, φ ∈ D1,q′
(Ω) for any q′ ≥ 1, and

lim
r→∞

φ(x) =

{
0 if xn > 0

1 if xn < 0.
(III.4.12)
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Taking into account the properties of the field b introduced in the proof of
Theorem III.4.4, it immediately follows that

b ∈ H ′
q(Ω) for all q > n/(n− 1), n ≥ 2.

Furthermore, by (III.4.6)1 and (III.4.7), we find for all R > 0

∫

Ω∩BR

b·∇φ =

∫

Σ+
R

φb·n+

∫

Σ−
R

φb·n =

∫

Σ+
R

φb·n+

∫

Σ−
R

(φ−1)b·n+

∫

Ω0

b·n,

(III.4.13)
where

Σ+
R = ∂BR ∩ Rn

+, Σ−
R = ∂BR ∩ Rn

−.

Thus, letting R → ∞ into (III.4.13) and recalling (III.4.12), (III.4.6)2 and
(III.4.8) we recover (III.4.11) with v = b and κ =

∫
Ω0
b · n. �

The aim of the remaining part of this subsection is to analyze all previous
problems when the exits Ωi are bodies of rotation, i.e., in possibly different
coordinate systems,

Ωi = {x ∈ Rn : xn > 0, |x′| < fi(xn)} , (III.4.14)

where fi are suitable strictly positive functions. This class of domains is
interesting in that, provided fi satisfies a global Lipschitz condition and
ΩR ≡ Ω ∩ BR has a mild degree of regularity for all R, we can completely
characterize the class of fi for which the coincidence of Ĥ1

q and H1
q holds,

1 < q <∞, and, in the case where it doesn’t, we can establish the dimension
of the quotient space. The above study is essentially due to Solonnikov &
Pileckas (1977), Pileckas (1983), and independently to Bogovskĭi & Maslen-
nikova (1978) and Maslennikova & Bogovskĭi (1978, 1981a, 1981b, 1983). We
begin to show the following preliminary result.

Lemma III.4.1 Let

Ω =

m⋃

i=1

Ωi

be a domain in Rn, n ≥ 2, where Ω0 is a compact set and Ωi, i = 1, . . . , m, are
disjoint domains that (in possibly different coordinate systems) are of type
(III.4.14) with fi satisfying the following conditions:

(i) fi(t) ≥ f0 > 0;
(ii) |fi(t2) − fi(t1)| ≤ M |t2 − t1|, for some constants f0,M and for all t, t1,

t2 > 0.

Suppose, further, that
ΩR ≡ Ω ∩BR

satisfies the cone condition for all R > δ(Ω0) (the origin of coordinates is

taken in Ω0). Then Ĥ1
q (Ω) = H1

q (Ω), 1 < q < ∞, if and only if all vectors
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v ∈ Ĥ1
q (Ω) have zero flux through the planar cross sections Σi = Σi(xn) of

Ωi,
6 perpendicular to the axis x′ = 0 and passing through the point (0, xn),

that is, ∫

Σi

v · n = 0, i = 1, . . . , m. (III.4.15)

Proof. For fixed i and all R > 0, put

R̂i = R+ fi(R)/2M

and
ΩR, bRi

= Ωi ∩
{
R < xn < R̂i

}
,

in the system of coordinates to which the exit Ωi is referred. Let ζ ∈ C1(R)
be such that ζ(ξ) = 1 for ξ ≤ 1 and ζ(ξ) = 0 for ξ ≥ 2 and set

ζR
i (x) = ζ (2M [xn + (fi(R)/2M) −R] /fi(R)) .

Obviously, ζR
i is equal to one for xn ≤ R and is zero for xn ≥ R̂i and,

moreover,
|∇ζR

i | ≤ C/fi(R), (III.4.16)

for some C independent of R. Denote by wR
i a solution to the problem

∇ ·wR
i = −∇ζR

i · v in ΩR, bRi

wR
i ∈ W 1,q

0 (ΩR, bRi
)

|wR
i |1,q,ΩR, bRi

≤ C‖∇ζR
i · v‖q,ΩR, bRi

.

(III.4.17)

In view of Theorem III.3.1, (III.4.17) is solvable since, as a consequence of
(III.4.15), the compatibility condition

∫

ΩR, bRi

∇ζR
i · v = 0

is satisfied. Moreover, the constant C in (III.4.17)3 can be taken independent
of R, see Exercise III.4.3. Extend wR

i to zero outside ΩR, bRi
and set

ζR ≡
m∑

i=1

ζR
i , wR ≡

m∑

i=1

wR
i , v1 ≡ ζRv +wR.

We have that v1 is a solenoidal vector field belonging to W 1,q
0 (ΩR′ ) for all

sufficiently large R′. So, v1 ∈ Ĥ1
q (ΩR′) and, by the result of this subsection

6 Of course, the flux of v through Σi(xn) is independent of xn.
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(a) and the assumption made on ΩR′ , v1 can be approximated by elements of
D(ΩR′) ⊂ D(Ω). Therefore, given ε > 0, we can find vε,R′ ∈ D(Ω) such that

‖v1 − vε,R′‖1,q,Ω < ε.

We then have

‖v − vε,R′‖q,Ω ≤ ‖v1 − vε,R′‖q,Ω + ‖v1 − v‖q,Ω

< ε+ ‖(1 − ζR)v‖q,Ω +

m∑

i=1

‖wR
i ‖q,ΩR, bRi

.
(III.4.18)

From (III.4.16), (III.4.17)3 and (II.5.5) we deduce for some constants c1, c2
independent of R, and for i = 1, . . . , m,

‖wR
i ‖q,ΩR, bRi

≤ c1fi(R)|wR
i |1,q,ΩR, bRi

≤ c2‖v‖q,ΩR, bRi
,

which, once replaced into (III.4.18), shows that vε,R′
approaches v in Lq(Ω)

when ε→ 0 and R′ → ∞. Likewise, one shows ∇vε,R′ → ∇v in Lq(Ω), thus
proving the lemma. ut

Remark III.4.2 If the domain Ω is itself a body of rotation, i.e.,

Ω = {x ∈ Rn : xn ∈ R, |x′| < f(xn)}

with f satisfying assumptions (i) and (ii) of Lemma III.4.1, this lemma con-
tinues to hold for q = 1; see Maslennikova & Bogovskĭi (1981b, Section 2).

�

Exercise III.4.3 Show that the constant C in (III.4.17)3 can be taken independent
of R. Hint: Make the change of variables:

y′ = 2Mx′/fi(R), yn = 2M(xn −R)/fi(R).

By hypothesis (ii) on fi, the domain ΩR, bRi
goes into

Ω∗
R, bRi

=

(
y ∈ R

n : |y′| ≤ gR
i (yn) ≡ 2M

fi

`
R+ (2M)−1fi(R)yn

´

fi(R)
, 0 < yn < 1

)

with
M ≤ gR

i (t) ≤ 3M, for all t > 0.

Ω∗
R, bRi

is thus contained in a ball of fixed radius for every R. One then solves (III.4.17)

in Ω∗
R, bRi

with a constant independent of R and retransform the solution to ΩR, bRi
,

obtaining the desired result.

Let us now consider some consequences of Lemma III.4.1. First of all, if
m = 1, i.e., Ω has only one exit to infinity, then Ĥ1

q (Ω) = H1
q (Ω) for all

q ∈ (1,∞). Actually, in this case we may take Ω0 = Ω ∩ Rn
− and so, denoting
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by {vk} ⊂ C∞
0 (Ω) a sequence of functions approximating v in W 1,q

0 (Ω) and
by the intersection of Ω with the plane xn = 0, it follows that

∫

Σ0

vk ·n =

∫

Ω0

∇ · vk.

Since ∇ · v = 0, the right-hand side of this identity tends to zero as k → ∞
and, by Theorem II.4.1, we deduce (III.4.15), which proves the coincidence.

In the following, we shall assume m ≥ 2. On every cross section Σi =
Σi(xn) we have

|Φi|q ≡
∣∣∣∣
∫

Σi

vn

∣∣∣∣
q

≤ Cf
(n−1)(q−1)
i (xn)

∫

Σi

|v|q,

with Φi independent of xn and so

|Φi|qβi ≡ |Φi|q
∫ ∞

0

f
(1−n)(q−1)
i (xn)dxn ≤ C‖v‖q

q. (III.4.19)

Therefore, if, for some fixed q and n, there are m− 1 integrals βi that diverge
we conclude Φi = 0 for all i = 1, . . . , m and so, Ĥ1

q (Ω) = H1
q (Ω). Actually,

if βi = ∞ for i = 1, . . . , m − 1 (say) we have Φi = 0 for the corresponding
fluxes, but since v is solenoidal in the whole of Ω we also have Φm = 0. The
circumstance just described happens whenever 1 ≤ q ≤ n/(n− 1). In fact we
have the following result that represents, in the particular case of the domain
considered by us, a much more general one due to Maslennikova & Bogovskĭi
(1983, Theorem 5) and that we recalled just before subsection (a).

Theorem III.4.5 Let Ω be as in Lemma III.4.1 with m ≥ 2. Then Ĥ1
q (Ω) =

H1
q (Ω) for all q ∈ [1, n/(n− 1)].

Proof. By assumption (ii) made on fi(xn), for xn sufficiently large (> x0, say)
it holds that

|fi(xn)| ≤ Cxn,

and so

βi ≥ C

∫ ∞

x0

x(1−n)(q−1)
n (xn)dxn = ∞, for all q ∈ [1, n/(n− 1)],

and the proof is achieved. ut
Suppose now that there are at least two of the quantities βi (β1 and β2, say)

that are finite. The fluxes Φ1 and Φ2, then, need not be zero and so the spaces
Ĥ1

q (Ω) and H1
q (Ω) may not coincide. As a matter of fact, they are distinct

and dim[Ĥ1
q (Ω)/H1

q (Ω)] is just the number of βi, which are finite minus one.
This result is due to Pileckas (1983, Theorem 7) for space dimension n = 2, 3.
Here, coupling the ideas of Maslennikova and Bogovskĭi (1978) and those
of Ladyzhenskaya & Solonnikov (1976) we extend it to arbitrary dimension
n ≥ 2. We commence by introducing an auxiliary function.
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Lemma III.4.2 Let f be a function satisfying properties (i) and (ii) of
Lemma III.4.1. Then, given σ < 1/2, there exists a function δ ∈ C∞(R+)
such that, for all t > 0 and m ≥ 0 we have

(i) σf(t) ≤ δ(t) ≤ f(t),
(ii) |dmδ(t)/dtm| ≤ c/fm−1(t),

where c = (m,M).

Proof. Let {tk} be a sequence of numbers such that

tk+1 = tk + αf(tk), t0 = 0,

with α a positive parameter to be fixed later. Let ϕ(ξ) denote a C∞ function
on R with 0 ≤ ϕ ≤ 1 and

ϕ(ξ) =

{
1 if |ξ| ≤ 1/2

0 if |ξ| > ε+ 1/2

for some positive ε. Setting

ϕk(t) = ϕ((t − ck)/`k)

ε = η/`k, η > 0,

with
ck = (tk+1 + tk)/2

`k = tk+1 − tk

and η > 0 (to be fixed later in the proof) we verify at once that

ϕk(t) =





0 if t < tk − η

1 if tk < t < tk+1

0 if t > tk + η

(III.4.20)

and
|dmϕk(t)/dtm| ≤ c/fm(tk), (III.4.21)

where c = c(α,m). We now choose

η < 1
2 min

k
`k,

so that
tk + η < tk+1 − η,

and set

δ̃(t) =

∞∑

k=0

f(tk)ϕk(t), (III.4.22)

with ϕ0(t) ≡ 0. Given t ≥ 0, we have three possibilities:
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(a) t ∈ [tk − η, tk)
(b) t ∈ [tk, tk + η)
(c) t ∈ [tk + η, tk+1 − η),

for some k ≥ 0. Correspondingly, (III.4.20) and (III.4.21) furnish

δ̃(t) = f(tk) + ϕk+1(t)f(tk+1) in case (a)

δ̃(t) = f(tk)ϕk(t) + f(tk+1) in case (b)

δ̃(t) = f(tk+1) in case (c).

(III.4.23)

By the properties of the function f , we obtain in case (a)

f(t) ≤ f(tk) +Mη, f(tk) ≤ f(t) +Mη (III.4.24)

and

f(tk+1) ≤ f(t) +M |tk+1 − tk|+Mη = f(t) + αMf(tk) +Mη

and so, by (III.4.24),

f(tk+1) ≤ (1 + αM)f(t) + (αM2 +M)η. (III.4.25)

On the other hand,

f(t) ≤ f(tk+1) + αMf(tk) +Mη. (III.4.26)

Because
f(tk) ≤ f(tk+1) + αMf(tk),

by choosing
α = γ/M, γ < 1,

it follows that
f(tk) ≤ f(tk+1)/(1 − γ)

and (III.4.26) yields

f(t) ≤ f(tk+1)/(1 + γ) +Mη. (III.4.27)

Selecting η = βf0/M , from (III.4.24), (III.4.25), and (III.4.27) we derive

f(t)

1 + β
≤ f(tk) ≤ (1 + β)f(t)

(1 − γ)f(t)

1 + β(1 − γ)
≤ f(tk+1) ≤ (1 + γ)(1 + β)f(t)





(in case (a)). (III.4.28)

Therefore,
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f(t)

1 + β
≤ δ̃(t) ≤ (1 + β)(2 + γ)f(t) (in case (a)). (III.4.29)

Likewise, one shows

f(t)

1 + β
≤ f(tk) ≤ (1 + β)f(t)

(1 − γ)f(t) ≤ f(tk+1) ≤ [1 + γ(1 + β)]f(t)





(in case (b)) (III.4.30)

and so

(1 − γ)f(t) ≤ δ̃(t) ≤ [2 + β + γ(1 + β)]f(t) (in case (b)). (III.4.31)

Finally, by (III.4.26) and by the properties of f we easily deduce

(1 − γ)f(t) ≤ f(tk+1) ≤ (1 − γ)f(t) (in case (c)), (III.4.32)

which gives

(1 − γ)f(t) ≤ δ̃(t) ≤ (1 − γ)f(t) (in case (c)). (III.4.33)

Collecting (III.4.23), (III.4.29), (III.4.31), and (III.4.33) we find

σ1f(t) ≤ δ̃(t) ≤ σ2f(t) for all t ≥ 0 (III.4.34)

with
σ1 = min{1/(1 + β), 1 − γ}, σ2 = (1 + β)(2 + γ).

Furthermore, from (III.4.21), (III.4.23), (III.4.28), (III.4.30), and (III.4.32)
there follows

|dmδ̃(t)/dtm| ≤ c

fm−1(t)

with c = c(m,M). Therefore, noting that σ ≡ σ1/σ2 (< 1/2) can be chosen
as close to 1/2 as we please by taking β and γ sufficiently close to zero, we

may conclude that the function δ(t) = δ̃(t)/σ2 satisfies all requirements of the
lemma, which is therefore completely proved. ut

For β ∈ (0, 1), set

ωi(β) = {x ∈ Ωi : βfi(xn) < |x′| < fi(xn)}.
We have

Lemma III.4.3 Let Ωi be a body of rotation of type (III.4.14). Then there
exists a vector bi ∈ C∞(Ωi) such that for all x ∈ Ωi and all |α| ≥ 0,

|Dαbi(x)| ≤ cf
−n+|α|+1
i (xn)

∇ · bi(x) = 0

∫

Σi

bi · n = 1,

(III.4.35)

where n is the unit normal to Σi in the direction of increase of the coordinate
xn and c = c(n, α,M). Moreover, bi vanishes in ωi(β), for any fixed β ∈ (0, 1).
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Proof. Let ψ ∈ C∞(R), 0 ≤ ψ ≤ 1, with ψ(t) = 1 if t ≤ 1 and ψ(t) = 0 if
t ≥ 2, and set

Ψ(x) = ψ

(
4

3

[ |x′|2
β2δ2i (xn)

+
1

2

])
,

where δi is the function associated to fi by the preceding lemma. We imme-
diately recognize that

Ψ(x) =

{
1 if |x′| ≤ 1

2βδi(xn)

0 if βδi(xn) ≤ |x′|

and therefore, by property (i) of the function δi, Ψ identically vanishes in
ωi(β). The field bi is then defined as

bik(x) =
xkδ

′
i(xn)Ψ(x)

δn
i (xn)

, k = 1, . . . , n− 1

bin(x) =
Ψ(x)

δn−1
i (xn)

,

(III.4.36)

where ′ indicates differentiation with respect to xn. It is easy to check that
bi satisfies (III.4.35)2 and vanishes in ωi(β) for any fixed β ∈ (0, 1). More-
over, differentiating (III.4.36) and taking into account Lemma III.4.2, we also
deduce (III.4.35)1. Finally, setting

ξk = xk/δi(xn), k = 1, . . . , n− 1,

we obtain
∫

Σi(xn)

bi(x) · n = 2ωn−1

∫

Σi(xn)

Ψ(ξ)|ξ|n−2d|ξ| > 0

with ωn−1 the measure of the (n− 1)-dimensional unit ball. Thus, (III.4.35)3
also follows, after possible multiplication of bi by a suitable constant. The
lemma is proved. ut

We are now in a position to prove the following results complementing
those of Theorem III.4.5.

Theorem III.4.6 Let Ω be as in Lemma III.4.1, m ≥ 2. Assume that the
integrals ∫ ∞

0

f
(1−n)(q−1)
i (t)dt (III.4.37)

converge for i = 1, . . . , ` (≤ m), and diverge for i = `+1, . . . , m. Then, setting

K1
q (Ω) = Ĥ1

q (Ω) / H1
q (Ω),

for q ∈ (n/(n− 1),∞) it holds that
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dimK1
q (Ω) = ` − 1.

In addition, if ` ≥ 2, every v ∈ Ĥ1
q (Ω) can be uniquely represented as

v = u+

`−1∑

i=1

αid
i,

where u ∈ H1
q (Ω). Here,

αi =

i∑

j=1

Φj,

and Φj, j = 1, . . . , `, with
∑`

j=1 Φj = 0, are given by

Φj =

∫

Σj

v · n,

with n normal to Σj in the direction of increase of the coordinate xnin Ωj .
Moreover, {di} is a basis in K1

q (Ω) constituted by C∞(Ω) vector fields that
vanish in a neighborhood of ∂Ω, in ωi(β), i = 1, . . . , `, for all sufficiently
small β and in Ωi, i = `+1, . . . , m, for sufficiently large |x|. Finally, for every
j = 1, . . . , ` and i = 1, . . . , ` − 1, the vectors di satisfy an estimate of type
(III.4.35)1 along with the relations

∫

Σj

di · n = δij − δi+1j .

Proof. For i = 1, . . . , `, let Si be the intersection of Ωi with the plane xn = 1
(in the coordinate system to which Ωi is referred) and consider the open ball
Bd(x

i
0), with xi

0 intersection of Si with the axis x′ = 0. We take

d < min

{
1
2 inf

t>0
fi(t), 1

}

so that Bd(xi
0) is contained in Ωi, while we may assume Bd(xi

0) strictly con-
taining Si∩ supp (bi) ≡ σi, where bi are the vectors constructed in Lemma
III.4.2. This condition is easily achieved by selecting β in such a way that

βfi(2) < (1/2)d,

which, in particular, imply

σi ⊂ Bd/2(x
i
0).

Let ψi(x) be an infinitely differentiable function that is one in B3d/4(x
i
0) and

is zero outside Bd(xi
0). Evidently, ψi(x) is one near σi. Setting
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Ki = {x ∈ Ωi : 0 < xn < 1}

and

ui(x) =

{
bi(x) if x ∈ Ωi −Ki ≡ Ci

ψi(x)b
i(x) if x ∈ Ω − Ci

(III.4.38)

we see that ui ∈ C∞(Ω) and that supp (ui) ⊂ Ωi. Moreover, by the assump-
tion made on the integrals (III.4.37) and by (III.4.35)1 we have ui ∈ W 1,q(Ω).
For i = 1, . . . , `− 1 define

di = ui − ui+1 + ri,i+1, (III.4.39)

where ri,i+1 satisfies

∇ · ri,i+1 = −∇ψi · ui + ∇ψi+1 · ui+1 in Γ ≡ ∪`
i=1Γi. (III.4.40)

Since Γ is locally Lipschitz and, moreover, by (III.4.35)3
∫

Γ

(−∇ψi · ui + ∇ψi+1 ·ui+1) =

∫

σi

bi · n−
∫

σi+1

bi+1 · n = 0

we may use Theorem III.3.3 to establish the existence of a solution ri,i+1 to
(III.4.40). Actually, since the right-hand side of (III.4.40) belongs to C∞

0 (Γ ),
we may take ri,i+1 ∈ C∞

0 (Γ ). Therefore, the fields (III.4.39) are solenoidal,
belong to W 1,q(Ω) ∩ C∞(Ω), vanish in a neighborhood of ∂Ω, and coincide
in Ωi ∩ {xn ≥ 1}, i = 1, . . . , `, with the fields bi. Furthermore, for every
j = 1, . . . , ` ∫

Σj

di · n =

∫

Σj

(bi − bi+1) ·n = δij − δi+1j ,

and Lemma III.4.1 implies, in particular,

di ∈ Ĥ1
q (Ω) and di 6∈ H1

q (Ω),

so that
Ĥ1

q (Ω) 6= H1
q (Ω).

Given now v ∈ Ĥ1
q (Ω), consider the vector

u = v −
`−1∑

i=1

αidi,

where

αi =

i∑

j=1

Φj.

Recalling that n denotes the normal to Σj in the direction of the increase of
the coordinate xn in Ωj, we find for all k = 1, . . . , `
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∫

Σk

u · n = Φk −
`−1∑

i=1

αi(δik − δi+1k) = Φk −
k∑

j=1

Φj +

k−1∑

j=1

Φj = 0.

Since the flux of u through the remaining exits Ωi, i = ` + 1, . . . , m, is zero
by assumption and so, from Lemma III.4.1 we deduce u ∈ H1

q (Ω). Moreover,

the vectors {di} are linearly independent, which completes the proof of the
theorem. ut

Remark III.4.3 We wish to point out a noteworthy generalization of Theo-
rem III.4.6. In fact, it is not necessary to suppose the “exits” Ωi to be bodies
of rotation but, rather, we can assume the following conditions (Pileckas 1983,
p. 153; Solonnikov 1981):

(a)D1
i ⊂ Ωi ⊂ D2

i , where, in possibly different coordinate systems:

D1
i = {x ∈ Rn : xn > 0, |x′| < fi(xn)}

D2
i = {x ∈ Rn : xn > 0, |x′| < aifi(xn), ai > 1} ;

(b) In the domains:

ΩR, bRi
= Ωi ∩ {R < xn < R+ fi(R)}

problem (III.4.17) is solvable with a constant c independent of R.

�

Remark III.4.4 Two further significant contributions to the problem of the
coincidence of the spaces Ĥ1

q (Ω) and H1
q (Ω) are due to Solonnikov (1983)

and to Maslennikova & Bogovskĭi (1983). In the first one (see Theorems 2.5
and 2.6) results are given avoiding assumptions on the shape of the “exits”
and imposing only some general restrictions. In the second one, the authors
provide necessary conditions and sufficient conditions for the above coinci-
dence to hold, in a class of domains with noncompact boundary which are
only requested to be strongly locally Lipschitz (see footnote 3 in this section).

�

Exercise III.4.4 Let Ω be a domain of the type considered in Exercise III.4.1.

Assume Σi(xn) = Σ0i, i = 1, . . . , N , where each section Σ0i is a locally Lipschitz

simply connected domain in R
n−1 independent of xn and bH1

q (ΩR) = H1
q (ΩR), 1 <

q <∞, for all sufficiently large R. Show bH1
q (Ω) = H1

q (Ω), 1 < q < ∞.

Exercise III.4.5 (Heywood 1976) Show that for any domain Ω ⊆ R
n, n ≥ 2, we

have bH1(Ω) = H1(Ω) if and only if the only vector v ∈ bH1(Ω) such that

Z

Ω

(∇v : ∇ϕ + v · ϕ) = 0 for all ϕ ∈ D(Ω)

is the null vector.
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III.5 The Spaces D
1,q
0

In this section we shall investigate the relevant properties of certain func-
tion spaces which, among other things, play a fundamental role in the study
of steady motions of a viscous incompressible fluid in unbounded domains.
These spaces, denoted by D1,q

0 (Ω), are subspaces of D1,q
0 (Ω) defined as the

completion of functions from D(Ω) in the norm of D1,q
0 (Ω). If Ω is contained

in some finite layer, then, by inequality (II.5.1) we have D1,q
0 (Ω) = H1

q (Ω),

otherwise D1,q
0 (Ω) ⊂ H1

q (Ω).

As in the case of spaces H1
q (Ω), it is of great interest to relate D1,q

0 (Ω)
with the space

D̂1,q
0 (Ω) =

{
v ∈ D1,q

0 (Ω) : ∇ · v = 0 in Ω
}

and to point out domains Ω for which D̂1,q
0 (Ω) 6= D1,q

0 (Ω), for some q = q(n)

(in general, D1,q
0 (Ω) ⊂ D̂1,q

0 (Ω), for any domain Ω). This is because, as shown
for the first time by Heywood (1976), whenever the coincidence does not
hold, the “traditional” boundary-value problem for Stokes and Navier–Stokes
equations must be supplemented with appropriate extra conditions in order
to take into account physically important solutions that would otherwise be
excluded. Since for a bounded domain we have

D1,q
0 (Ω) = H1

q (Ω), D̂1,q
0 (Ω) = Ĥ1

q (Ω)

it follows that, in such a case, that result proved in Theorem III.4.1 also holds
for D1,q

0 -spaces. Using this fact, we can then repeat verbatim the proofs of
Theorem III.4.1 and Theorem III.4.3 and show that they continue to be true
also for D1,q

0 -spaces. We thus have the following theorem.

Theorem III.5.1 If Ω is a bounded domain satisfying the assumption of
Theorem III.4.1, then, for all q ∈ [1,∞),

D1,q
0 (Ω) = D̂1,q

0 (Ω) . (III.5.1)

If Ω is an exterior domain satisfying the assumption of Theorem III.4.2, then
(III.5.1) holds for all q ∈ (1,∞). Finally, D1,q

0 (Rn
+) = D̂1,q

0 (Rn
+), for all q ∈

(1,∞).

Assume now Ω with a noncompact boundary and having m “exits” Ωi

to infinity. Then, one can show results similar to those established in Sub-
section 4(c) for spaces H1

q (Ω), even though different in some details. Pre-

cisely, one shows that if each Ωi contains a semi-infinite cone, then D̂1,q
0 (Ω) 6=

D1,q
0 (Ω) for all q > 1. Moreover, if Ω enjoys some further properties, then

dim
(
D̂1,q

0 (Ω) / D1,q
0 (Ω)

)
= m− 1 (Ladyzhenskaya & Solonnikov 1976, The-

orem 4.2).1

1 Actually, the proof given by these authors is for q = 2. Nevertheless, mutatis
mutandis it can be easily extended to all q > 1.
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In the special case when the domains Ωi are bodies of rotation defined by
suitable functions fi, one can give a complete description of the coincidence of
the two spaces in a way similar to that used in Subsection 4(c) for the spaces
H1

q (Ω). In particular, the proof of Lemma III.4.1 remains unchanged to show
the following result.

Lemma III.5.1 Let Ω be as in Lemma III.4.1. Then D̂1,q
0 (Ω) = D1,q

0 (Ω),

1 < q <∞, if and only if all vectors v ∈ D̂1,q
0 (Ω) satisfy (III.4.15).

However, there is a modification in the characterization furnished by The-
orem III.4.6, in that the condition imposed on the functions fi must be appro-
priately changed. This is due to the fact that now v has only first derivatives
in Lq. Thus, using the notations of Subsection 4(c), with the aid of the Hölder
inequality and inequality (II.5.5), the flux Φi can be increased as follows:

|Φi|q ≡
∣∣∣∣∣

∫

Σi(xn)

v ·n
∣∣∣∣∣ ≤ C |Σi|q−1+q/(n−1)

∫

Σi(xn)

|∇v|q

≤ C1f
(n−1)(q−1)+q
i

∫

Σi(xn)

|∇v|q

and, therefore, we find

|Φi|q
∫ ∞

0

f
(1−n)(q−1)−q
i (xn)dxn ≤ C1|v|q1,q.

So the vanishing of the fluxes Φi is this time related to the finiteness of the
integrals ∫ ∞

0

f
(1−n)(q−1)−q
i (t)dt

instead of integrals (III.4.37). Consequently, Theorem III.4.6 is replaced by
the following one whose proof, which follows exactly the same lines as those
of Theorem III.4.6, we leave to the reader as an exercise.

Theorem III.5.2 Let Ω be as in Lemma III.4.1, m ≥ 2. Assume that the
integrals ∫ ∞

0

f
(1−n)(q−1)−q
i (t)dt (III.5.2)

converge for i = 1, . . . , ` (≤ m) and diverge for i = `+1, . . . , m. Then, setting

F 1,q
0 (Ω) = D̂1,q

0 (Ω) / D1,q
0 (Ω),

for q ∈ (1,∞),
dimF 1,q

0 (Ω) = ` − 1.

In addition, every v ∈ D̂1,q
0 (Ω) can be uniquely represented as
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v = u+

`−1∑

i=1

αid
i,

where u ∈ D1,q
0 (Ω). Here,

αi =

i∑

j=1

Φj,

and Φj, j = 1, . . . , `, with
∑`

j=1 Φj = 0, are given by

Φj =

∫

Σj

v · n,

with n normal to Σj in the direction of increase of the coordinate xn in Ωj .

Moreover, {di} is a basis in F 1,q
0 (Ω) constituted by C∞(Ω) vector fields that

vanish in a neighborhood of ∂Ω, in ωi(β), i = 1, . . . , `, for all sufficiently
small β and in Ωi, i = `+1, . . . , m, for sufficiently large |x|. Finally, for every
j = 1, . . . , ` and i = 1, . . . , `− 1, the vectors di satisfy an estimate of the type
(III.4.35)1 along with the conditions

∫

Σj

di · n = δij − δi+1j .

Remark III.5.1 Theorem III.5.3 holds with the restriction from below q > 1
instead of q > n/(n − 1) as required in Theorem III.4.6. This is because,
unlike integrals (III.4.37), integrals (III.5.2) certainly diverge only if q = 1;
see Theorem III.4.5. �

Remark III.5.2 The results of Lemma III.5.1 and Theorem III.5.2 continue
to hold in the more general case when the domains Ωi are not necessarily
bodies of rotation but only satisfy the requirements listed in Remark III.4.3;
see Pileckas (1983, §3). �

Exercise III.5.1 Let Ω be as in Exercise III.4.4. Assume bD1,q
0 (ΩR) = D1,q

0 (ΩR)

for all sufficiently large R. Show bD1,q
0 (Ω) = D1,q

0 (Ω).

Exercise III.5.2 Let Ω be the “aperture domain” (III.4.4). Show bD1,2
0 (Ω) 6=

D1,2
0 (Ω), for all n ≥ 2. (Notice that, unlike spaces bH1(Ω) and H1(Ω), the case

n = 2 is included.)

Exercise III.5.3 (Heywood 1976) Show that for any domain Ω ⊆ R
n, n ≥ 2, we

have bD1,2
0 (Ω) = D1,2

0 (Ω) if and only if the only vector v ∈ bD1
0(Ω) such that

Z

Ω

∇v : ∇ϕ = 0, for all ϕ ∈ D(Ω)

is the null vector.
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Our last objective in this section is to give a representation of functionals
on D1,q

0 (Ω) that identically vanish on D̂1,q
0 (Ω). As we shall see in the next

chapter, this question is tightly linked with the existence of the pressure field
associated to the motion of a viscous, incompressible fluid. We have (Pileckas
1983)

Theorem III.5.3 Assume Ω be such that problem (III.3.65)2 is solvable for

any f ∈ Lq(Ω) [respectively, f ∈ L̂q(Ω) ≡ Lq(Ω) / R, if Ω is bounded]. Then,
given any (bounded) linear functional F on D1,q

0 (Ω), 1 < q < ∞, identically

vanishing on D̂1,q
0 (Ω), there exists a uniquely determined

p ∈ Lq′
(Ω)

[
respectively, p ∈ L̂q′

(Ω)
]

such that F admits the following representation:

F(v) =

∫

Ω

p∇ · v, for all v ∈ D1,q
0 (Ω). (III.5.3)

Proof. Consider the operator

A : v ∈ D1,q
0 (Ω) → ∇ · v ∈ Lq(Ω).

Evidently, A is linear and bounded and, by assumption, its range R(A) co-

incides with the whole of Lq(Ω) (L̂q(Ω), for Ω bounded). By a well-known
theorem on adjoint equations (Banach closed range theorem), see, e.g., Brezis
(1983, Théorème II.18) we then have

[ker(A)]
⊥

= R(A∗), (III.5.4)

where ker(A) is the kernel of A, A∗ is its adjoint and ⊥ means annihilator,
cf. Exercise III.1.1. However, it is obvious that

ker(A) = D̂1,q
0 (Ω)

so that (III.5.4) delivers

[
D̂1,q

0 (Ω)
]⊥

= R(A∗)

and, consequently, all functionals F vanishing on D̂1,q
0 (Ω) must be in the

range of A∗. On the other hand, by definition, every element in R(A∗) is of

the form L(Av), where L is a functional on Lq(Ω) [respectively, L̂q(Ω), if Ω is
bounded]. We may then employ the Riesz representation theorem to obtain,

for some uniquely determined p ∈ Lq′
(Ω) [respectively, p ∈ L̂q′

(Ω)],

2 We require the problem in the form of (III.3.65) instead of (III.3.2) so that the
result in the theorem applies also to unbounded domains.
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F(v) = L(Av) =

∫

Ω

pAv =

∫

Ω

p∇ · v, v ∈ D1,q
0 (Ω),

which completes the proof of the theorem. ut
In view of the results established in Sections III.3 and III.4, from Theorem

III.5.3 we obtain the following.

Corollary III.5.1 Let Ω be a bounded or exterior domain of Rn, n ≥ 2, that
satisfies the cone condition, or Ω = Rn

+. Then, any bounded linear functional

F on D1,q
0 (Ω), 1 < q < ∞, identically vanishing on D̂1,q

0 (Ω) is of the form

(III.5.3) for some uniquely determined p ∈ Lq′
(Ω) [respectively, p ∈ L̂q′

(Ω),
if Ω is bounded].

Remark III.5.3 If Ω is an arbitrary domain in Rn, n ≥ 2, it is not said that
a representation of the type (III.5.4) holds in Ω. Actually, the assumptions of
Theorem III.5.3 certainly do not hold if Ω is not smooth enough. However,
since problem (III.3.65) is solvable in every ball B contained in Ω, we may
use Theorem III.5.3 to show the following result whose proof we leave to the
reader as an exercise.

Corollary III.5.2 Let Ω be an arbitrary domain of Rn, n ≥ 2. Suppose F
is a bounded linear functional on D1,q

0 (Ω′), 1 < q < ∞, identically vanishing

on D̂1,q
0 (Ω′), where Ω′ is any bounded domain of Ω with Ω′ ⊂ Ω. Then, there

exists p ∈ Lq′

loc(Ω) such that F admits the following representation:

F(ψ) =

∫

Ω

p∇ · ψ, for all ψ ∈ C∞
0 (Ω).

�

III.6 Approximation Problems in Spaces H1
q

and D
1,q
0

A problem often encountered in the applications is the following. Assume

v ∈ H1
q (Ω) ∩

[
∩k

i=1L
ri (Ω)

]
, 1 < q, ri <∞, i = 1, . . . , k.

Clearly, v can be approximated by a sequence {v′m} ⊂ D(Ω) (as a member
of H1

q (Ω)) and by a sequence {v′′m} ⊂ C∞
0 (Ω) (as a member of Lri (Ω)). The

question now is to establish if v can be approximated by the same sequence
in both spaces or, in other words, taking into account that D(Ω) ⊂ C∞

0 (Ω), if
there is a sequence {vm} ⊂ D(Ω) such that as m→ ∞

vm → v in H1
q (Ω) ∩

[
∩k

i=1L
ri (Ω)

]
. (III.6.1)

Of course this problem admits a trivial positive answer when the domain
Ω is bounded and q, ri are suitably related to each other. For example, take
k = 1 and assume that at least one of the following conditions is fulfilled
(r1 ≡ r):
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(i) r ≤ q;
(ii) q ≥ n;
(iii) q < n and r ≤ nq/(n− q).

Then (III.6.1) follows at once. Actually, denoting by {vm} ⊂ D(Ω) a sequence
converging to v in H1

q (Ω), in case (i) we have, by the Hölder inequality,

‖v − vm‖r ≤ c‖v − vm‖1,q → 0.

In case (ii) or (iii) the same conclusion can be drawn by using, instead of the
Hölder inequality, the embedding inequalities of Theorem II.3.2. Moreover,
the Sobolev inequality (II.3.7) also gives the result for arbitrary Ω, provided
1 < q < n and r = nq/(n− q).

What can be said in the general case when q, n, and ri are not necessarily
related to each other? The aim of this section is to show that for Ω locally
Lipschitz, it is always possible to find a sequence {vm} ⊂ D(Ω) satisfying
(III.6.1). An analogous result holds if we replace H1

q with D1,q
0 .

The proof will be achieved through several intermediate steps. The first
step is to introduce a suitable “cut-off” function. This function involves the
distance δ(x) of a point x ∈ Ω from the boundary ∂Ω. We need to differentiate
δ(x) but, in fact, δ(x) is in general not more differentiable than the obvious
Lipschitz-like condition |δ(x)− δ(y)| ≤ |x− y| . To overcome such a difficulty,
we introduce the so-called regularized distance in the sense of Stein (1970,
p.171). In this respect, we have the following lemma for whose proof we refer
the reader to Stein (1970, Chapter VI, Theorem 2).

Lemma III.6.1 Let Ω be a domain of Rnand set

δ(x) = dist (x, ∂Ω). (III.6.2)

Then there is a function ρ ∈ C∞(Ω) such that for all x ∈ Ω

(i) δ(x) ≤ ρ(x);

(ii) |Dαρ(x)| ≤ κ|α|+1 [δ(x)]
1−|α|

, |α| ≥ 0,

where κ|α|+1 depends only on α and n.

Remark III.6.1 A simple estimate for the constant κ1 is given by Stein
(1970, p.169 and p.171) and one has κ1 = (20/3)(12)n. Moreover, if Ω is
sufficiently smooth (depending on |α|), and x is sufficiently close to ∂Ω, one
can take ρ = δ and, consequently, κ1 = κ2 = 1. �

Owing to this result, we can prove the following.

Lemma III.6.2 Let Ω, δ be as in Lemma III.6.1. For any ε > 0 set

γ(ε) = exp(−1/ε).

Then, there exists a function ψε ∈ C∞(Ω) such that
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(i) |ψε(x)| ≤ 1, for all x ∈ Ω;
(ii) ψε(x) = 1, if δ(x) < γ2(ε)/2κ1;

(iii) ψε(x) = 0, if δ(x) ≥ 2γ(ε);
(iv) |∇ψε(x)| ≤ κ2ε/δ(x), for all x ∈ Ω,
(v) |Dαψε(x)| ≤ κ ε/δ|α|(x) , |α| ≥ 2 , ε ∈ (0, ε1], ε1 > 0 ,

where κ1 and κ2 are given in Lemma III.6.1,1 while κ = κ(α, n, ε1) .

Proof. Consider the following function of R into itself:

ϕε(t) =





1 if t < γ2(ε)

ε ln(γ(ε)/t) if γ2(ε) < t < γ(ε)

0 if t > γ(ε).

Clearly, choosing η = γ2/2, the mollifier Φε ≡ (ϕε)η of ϕε satisfies Φε(t) = 1
for t < γ2/2, Φε(t) = 0 for t > 2γ and

|Φ′
ε(t)| ≤ ε/t,

|d
kΦε

dtk
| ≤ c ε/tk , k ≥ 1 , ε ∈ (0, ε1] ,

for all t ∈ R, (III.6.3)

where c = c(k, ε1). In addition, |Φε(t)| ≤ 1. Setting

ψε(x) ≡ Φε(ρ(x)),

where ρ is the regularized distance of Lemma III.6.1, and recalling statements
(i) and (ii) of that lemma, we deduce

ψε(x) = 1 if δ(x) < γ2/2κ1

ψε(x) = 0 if δ(x) > 2γ.

Moreover, from (III.6.3) and Lemma III.6.1 it follows for all x ∈ Ω

|∇ψε(x)| ≤ κ2ε/ρ(x) ≤ κ2ε/δ(x)

|Dαψε(x)| ≤ κ ε/δ|α|(x) , |α| ≥ 2 ,

whenever ε ≤ ε1, for some ε1 > 0 and with κ = κ(α, n, ε1) . The result is
therefore completely proved. ut
1 Notice that, by Remark III.6.1,

γ(ε) < 2κ1, for all ε > 0.

Of course, whatever the estimate for κ1, we can always choose a larger value for
κ1 such that this latter inequality holds.
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Lemma III.6.3 Let Ω be a bounded, locally Lipschitz domain of Rn. Then
there exists c = c(Ω, q, n) such that for all u ∈W 1,q

0 (Ω), 1 < q <∞, we have

‖uδ−1‖q ≤ c|u|1,q

where δ is given in (III.6.2).

Proof. It is enough to prove the result for u ∈ C∞
0 (Ω). By (II.5.5)

‖u‖q,Ω′ ≤ c1|u|1,q

for any domain Ω′, with Ω
′ ⊂ Ω and where c1 = c1(Ω). To show the estimate

“near” the boundary, we recall that ∂Ω can be covered with a finite number
of cylinders of the type

Cσ =
{
x′ ∈ Dζ ⊂ Rn−1 : ζ(x′) − σ < xn < ζ(x′) + σ

}
,

where ζ is a Lipschitz function locally defining the boundary of Ω. Therefore,
setting Vσ = Ω ∩ Cσ, and noting that

xn − ζ(x′) ≤ c δ(x), x ∈ Vσ ,

we find

∫

Vσ

|u(x)δ−1(x)|q ≤ c

∫

Dζ

dx′
{∫ ζ(x′)+σ

ζ(x′)
|u(x′, xn)|q|xn − ζ(x′)|−qdxn

}

and the desired estimate follows from the elementary one-dimensional inequal-
ity ∫ ∞

0

|h(t)|qt−q ≤
(

q

q − 1

)∫ ∞

0

∣∣∣∣
dh

dt

∣∣∣∣
q

, h ∈ C∞
0 (R+),

which can be easily proved by integrating the identity

|h(t)|qt−q =
d

dt

[
t1−q

1 − q
|h(t)|q

]
− t1−q

1 − q

d

dt
|h(t)|q.

ut
We also have

Lemma III.6.4 Let Ω be as in Lemma III.6.3. Suppose

u ∈W 1,q
0 (Ω) ∩

[
∩k

i=1L
ri (Ω)

]

for some q, ri ∈ (1,∞), i = 1, . . . , k. Then, for any η > 0 there exists uη ∈
C∞

0 (Ω) such that

‖u− uη‖1,q +

k∑

i=1

‖u− uη‖ri < η.
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Proof. For simplicity, we show the result for k = 1 and set r1 = r. Given
ε > 0, we set

ϑε(x) = 1 − ψε(x),

where the function ψε(x) has been introduced in Lemma III.6.2. We then have
that |ϑε(x)| ≤ 1, ϑε(x) vanishes in a neighborhood Nε of ∂Ω, ϑε(x) = 1 for
δ(x) ≥ 2 exp(−1/ε) and

|∇ϑε(x)| ≤ ε/δ(x), for all x ∈ Ω. (III.6.4)

Putting
uε(x) = ϑε(x)u(x),

we at once recognize that uε(x) is of compact support in Ω and that

lim
ε→0

‖uε − u‖s = 0, s = r, q. (III.6.5)

Furthermore, from (III.6.4),

|uε − u|1,q ≤ ‖(1 − ϑε)∇u‖q + ε‖u/δ‖q

and so, by Lemma III.6.3, we obtain

|uε − u|1,q ≤ ‖(1 − ϑε)∇u‖q + cε|u|1,q,

with c independent of u and ε. Thus

lim
ε→0

|uε − u|1,q = 0. (III.6.6)

However, uε can be approximated by its regularizer (uε)ρ in both spaces
W 1,q(Ω) and Lr(Ω) and since, for ρ small enough, (uε)ρ ∈ C∞

0 (Ω), the lemma
follows from this and from (III.6.5) and (III.6.6). ut

We are now in a position to prove the main result.

Theorem III.6.1 Let Ω be a locally Lipschitz domain of Rn, n ≥ 2. Assume

v ∈ H1
q (Ω) ∩

[
∩k

i=1L
ri (Ω)

]

for some q, ri ∈ (1,∞), i = 1, . . . , k. Then, there exists a sequence {ϕm} ⊂
D(Ω) such that

lim
m→∞

‖vm − v‖1,q = lim
m→∞

k∑

i=1

‖vm − v‖ri = 0.
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Proof. Again, for simplicity, we shall treat the case k = 1 and set r1 = r.
Let us first consider the case Ω bounded. By Lemma III.6.4 there exists a
sequence {ϕm} ⊂ C∞

0 (Ω) satisfying

lim
m→∞

‖ϕm − v‖1,q = lim
m→∞

‖ϕm − v‖r = 0. (III.6.7)

Since
v, ∇ · v ∈ Lr(Ω),

and v has zero trace at the boundary, by Theorem III.2.4 we have

ϕm − v ∈ H̃0,r(Ω).

In addition,
∇ · (ϕm − v) = ∇ · ϕm ∈ C∞

0 (Ω),

and so, by Theorem III.3.4 there exists wm ∈ C∞
0 (Ω) such that, for all m ∈ N,

∇ ·wm = −∇ ·ϕm

‖wm‖1,q ≤ c ‖∇ · ϕm‖q

‖wm‖r ≤ c ‖ϕm − v‖r ,

where c is independent of wm, ϕm, and v. Setting

vm = ϕm +wm,

it follows that

‖v − vm‖1,q ≤ ‖ϕm − v‖1,q + ‖wm‖1,q ≤ ‖ϕm − v‖1,q + c‖∇ · ϕm‖1,q

‖v − vm‖r ≤ ‖ϕm − v‖r + ‖wm‖r ≤ (1 + c)‖ϕm − v‖r,

which by (III.6.7) completes the proof in the case where Ω is bounded. Assume
now that Ω is an exterior domain and denote by ζR ∈ C∞

0 (Rn) a “cut-off”
function that equals one in ΩR and zero in Ω2R with

|∇ζR| ≤ c1/R, (III.6.8)

with c1 independent of R. Let wR be a solution to the problem

∇ ·wR = −∇ · (ζRv)
wR ∈W 1,q

0 (ΩR,2R) ∩W 1,r
0 (ΩR,2R)

|wR|1,s,ΩR,2R ≤ c2‖∇ζR · v‖s, s = q, r.

(III.6.9)

By Theorem III.3.1 and Theorem III.3.4 such a solution exists and by Lemma
III.3.1 the constant c2 entering the estimate can be taken independent of R.
In view of (III.6.8) and (III.6.9), we also have
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|wR|1,s,ΩR,2R ≤ c3R
−1‖v‖s,ΩR,2R , s = q, r, (III.6.10)

where, again, c3 does not depend on R. Set

vR = ζRv +wR.

Clearly,
vR ∈W 1,q

0 (Ω2R) ∩ Lr(Ω2R), ∇ · vR = 0.

Since Ω2R is locally Lipschitz, from Subsection 4(a) it follows that

vR ∈ H1
q (Ω2R) ∩ Lr(Ω2R).

By the first part of the proof we may then state that for any ε > 0 there is
vε,R ∈ D(Ω) such that

‖vR − vε,R‖1,q + ‖vR − vε,R‖r < ε

and so for s = q, r

‖v − vε,R‖s ≤ ‖vR − vε,R‖s + ‖v − vR‖s < ε+ ‖(1 − ζR)v‖s + ‖wR‖s,ΩR,2R.
(III.6.11)

Obviously, for all sufficiently large R,

‖(1 − ζR)v‖s < ε. (III.6.12)

Moreover, from inequality (II.5.5) and (III.6.10) it follows that

‖wR‖s,ΩR,2R ≤ c4R|wR|1,s,ΩR,2R ≤ c5‖v‖s,ΩR,2R

with c5 independent of R and so, again for all sufficiently large R,

‖wR‖s,ΩR,2R < ε. (III.6.13)

From (III.6.11)–(III.6.13) we thus find that vε,R ∈ D(Ω) approaches v in
Lq ∩Lr. It remains to be shown that vε,R also approaches v in D1,q. However,
this is obtained at once since, as before, we prove

|v− vε,R|1,q < 2ε+ |wR|1,q,ΩR,2R < 2ε+ c3R
−1‖v‖q,ΩR,2R , (III.6.14)

and so for R large enough we deduce

|v − vε,R|1,q < 3ε

and the proof of the theorem is complete. ut

In an analogous manner, we can prove



III.6 Approximation Problems in Spaces H1
q and D1,q

0 225

Theorem III.6.2 Let Ω be a locally Lipschitz domain of Rn, n ≥ 2. Assume

v ∈ D1,q
0 (Ω) ∩

[
∩k

i=1L
ri (Ω)

]
,

for some q, ri ∈ (1,∞), i = 1, . . . , k. Then, there exists a sequence {vm} ⊂
D(Ω) such that

lim
m→∞

|vm − v|1,q = lim
m→∞

k∑

i=1

‖vm − v‖ri = 0.

Proof. The proof goes exactly as in Theorem III.6.12 except for one point
that demands a little more care. Precisely, again for k = 1 and with r1 = r,
once we arrive at (III.6.14), we cannot immediately conclude that for R large
enough

R−1‖v‖q,ΩR,2R < ε (III.6.15)

because we do not know that v ∈ Lq(Ω). To show (III.6.15) we have to argue
somewhat differently. If q ∈ (1, n), by the Hölder inequality we find

‖v‖q,ΩR,2R ≤ c1R‖v‖nq/(n−q),ΩR,

with c1 = c1(n, q) and since, by the Sobolev inequality,

‖v‖nq/(n−q),Ω <∞,

we conclude (III.6.15). If r ≥ q ≥ n the same conclusion holds since, in such
a case, by the Hölder inequality, it follows that

R−1‖v‖q,ΩR,2R ≤ c2R
n(1/q−1/r−1/n)‖v‖r,ΩR,2R ,

and (III.6.15) is recovered. Finally, if q ∈ [n,∞)∩ (r,∞), from Lemma II.3.3
(see also Exercise III.6.3) we find that if

u ∈ D1,q(Rn) ∩ Lr(Rn), (III.6.16)

then u ∈ Lq(Rn) and the following inequality holds

‖u‖q ≤ c|u|λ1,q‖u‖1−λ
r , (III.6.17)

with

λ =
n(q − r)

r(q − n) + nq
(< 1) (III.6.18)

and c = c(n, q, r). Since v ∈ D1,q(Rn) ∩ Lr(Rn), we apply this result to v
to deduce v ∈ Lq(Rn) and (III.6.15) again follows. The proof is therefore
completed. ut
2 Recall that for Ω bounded, H1

q (Ω) = D1,q
0 (Ω).
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Approximation problems in the spaces H1
q ∩

[
∩k

i=1W
1,ri

0 (Ω)
]

and in

the space H1
q ∩

[
∩k

i=1D
1,ri

0 (Ω)
]

[respectively, D1,q
0 ∩

[
∩k

i=1W
1,ri

0 (Ω)
]
] and

D1,q
0 ∩

[
∩k

i=1D
1,ri

0 (Ω)
]

can be treated by the same technique used before.

Their resolution is left to the reader in the following two exercises.

Exercise III.6.1 Under the hypothesis on Ω, q and ri stated in Theorem III.6.1,

show that any function v ∈ H1
q (Ω) ∩

ˆ
∩k

i=1W
1,ri
0 (Ω)

˜
[ respectively, H1

q (Ω) ∩ˆ
∩k

i=1D
1,ri
0 (Ω)

˜
], can be approximated in the space H1

q (Ω) ∩
ˆ
∩k

i=1W
1,ri
0 (Ω)

˜
[re-

spectively, in H1
q (Ω) ∩

ˆ
∩k

i=1D
1,ri
0 (Ω)

˜
] by functions from D(Ω).

Exercise III.6.2 Under the hypothesis on Ω, q, and ri stated in Theorem III.6.1,

show that any function v ∈ D1,q
0 (Ω) ∩

ˆ
∩k

i=1W
1,ri
0 (Ω)

˜
[respectively, D1,q

0 (Ω) ∩ˆ
∩k

i=1D
1,ri
0 (Ω)

˜
], 1 < q, ri < ∞, can be approximated in the space D1,q

0 (Ω) ∩ˆ
∩k

i=1W
1,ri
0 (Ω)

˜
[respectively, in D1,q

0 (Ω)∩
ˆ
∩k

i=1D
1,ri
0 (Ω)

˜
] by functions from D(Ω).

Exercise III.6.3 Prove the interpolation inequality of Nirenberg given in (III.6.16)–

(III.6.18). Hint: Use the “cut-off” method of Theorem II.6.3 to approximate any u

satisfying (III.6.16) with functions from C∞
0 (Rn). Successively, employ inequality

(II.3.5) together with the Hölder inequality.

III.7 Notes for the Chapter

Section III.1. As already pointed out, Lemma III.1.1 plays an important
role in the theory of the Navier–Stokes equations. It is then not surprising
that it has received the attention of many writers who proved it by several
methods and under more or less different assumptions on the regularity of u.
To our knowledge, a first, elementary demonstration of the result was pro-
posed by Hopf (1950/1951, pp.214-215) without, however, giving full details.
Hopf’s proof, which essentially aims at showing that the line integral of u on
every closed loop is zero, was clarified and completed by Prodi (1959) and
Ladyzhenskaya (1969). The assumption n = 3 implicitly made by these au-
thors is removed, along the same line of method, by Temam (1973, Chapter I,
§1.4). A less elementary proof based on de Rahm’s theorem on currents, which
assumes u to be only a distribution, is given by Lions (1969, pp. 67-69) and
Temam (1977, Chapter I, Proposition 1.1). Tartar gives an alternative proof,
with u in a negative Sobolev space, based on operator theory (see Temam
1977, Chapter I, Remark 1.9). A similar result is furnished by Giga & Sohr
(1989, Corollary 2.2(i)). For other proofs that avoid de Rahm’s theorem, see
also Fujiwara and Morimoto (1977) and Simon (1991, 1993).

The Helmholtz–Weyl decomposition of the vector space Lq(Ω) in domains
with a compact boundary has been the object of several investigations. In
addition to the papers quoted in Section III.1, we refer the reader to von
Wahl (1990b) and the bibliography of the work of Simader & Sohr (1992).
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We also would like to mention the paper of Fabes, Mendez & Mitrea (1998,
§§11,12) where sharp results are furnished for the validity of the decomposition
in bounded domains with lower regularity (locally Lipschitz). In particular,
in Theorem 12.2 of Fabes, Mendez & Mitrea, loc. cit. it is shown the exis-
tence of a bounded and Lipschitz domain of Rn, where the Helmholtz–Weyl
decomposition fails for all p 6∈ [3/2, 3].

Concerning the Helmholtz–Weyl decomposition in domains with noncom-
pact boundaries, we would like to mention the following important contribu-
tions. For the aperture domain (see (III.4.4)), its validity has been proved
by Farwig (1993) and Farwig and Sohr (1996). Miyakawa (1994) showed an
analogous result for semi-infinite cylinders and for infinite layers in Rn, n ≥ 2,
using Littlewood-Paley theory. Wiegner (1995) studied the case of a layer in
R3 by means of (partial) Fourier transforms. Thäter (1995) and Sohr and
Thäter (1998) proved the validity of the decomposition for infinite cylinders
of Rn, n ≥ 2, based on estimates for imaginary powers of the operator asso-
ciated to the associated Neumann problem. Finally, an elementary and deep
analysis of the decomposition in the case of infinite cylinders and layers of
Rn, n ≥ 2, can be found in the paper by Simader and Ziegler (1998). For
further and more recent contributions to this question, we refer to the article
of Farwig (2003) and the bibliography therein.

Decompositions of weighted Lebesgue spaces on exterior domains have
been studied by Specovius-Neugebauer (1990, 1995) and Fröhlich (2000).

Decompositions in Sobolev and Besov spaces are investigated in Fujiwara
and Yamazaki (2007).

Section III.2. The notion of trace on the boundary for functions in H̃q, for
q = 2, was introduced by Temam (1973, Chapter I), starting with identity
(III.2.2). The same question was independently addressed by Fujiwara & Mo-
rimoto (1977) for 1 < q <∞, who generalized the results of Temam by means
of a different (and less direct) approach.

Section III.3. The auxiliary problem considered in this section has also been
studied in detail by Cattabriga (1961) for n = 3 and q ∈ (1,∞); Ladyzhen-
skaya (1969, Chapter I, §2) for n = 2, 3 and q = 2; Nečas (1967, Chapitre 3,
Lemme 7.1) for n ≥ 2 and q = 2; Babuska & Aziz (1972, Lemma 5.4.2) for
n = q = 2 (see also Oden & Reddy 1976, Lemma 6.3.2); Solonnikov & Ščadilov
(1973) and Ladyzhenskaya & Solonnikov (1976) for n = 2, 3 and q = 2; Amick
(1976) for n ≥ 2 and q = 2; Bogovskĭi (1979, 1980) and Erig (1982), for n ≥ 2
and 1 < q <∞; Pileckas (1980b, 1983) for n = 2, 3 and 1 < q <∞; Giaquinta
& Modica (1982) for n ≥ 2 and q = 2; Solonnikov (1983) and Kapitanskĭi &
Pileckas (1984) for n ≥ 2 and q ∈ (1,∞); Arnold, Scott & Vogelius (1988)
for n = 2 and q ∈ (1,∞); von Wahl (1989, 1990a) for n = 3 and q ∈ (1,∞);
Borchers & Sohr (1990) for n ≥ 2 and q ∈ (1,∞),1; Bourgain and Brezis

1 Proposition d) of Theorem 2.4 of Borchers & Sohr (1990) is not correct as stated.
The corrected version is furnished in Corollary 2.2 of Farwig & Sohr (1994a); see
also Remark (iii) and the footnote at p. 274 of this latter paper.
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(2003) when n ≥ 2 and q ∈ (1,∞), and finally, by Durán and Lopéz Garćıa
(2010) for n = 2 and q ∈ (1,∞). The main difference among the results
proved by these authors relies either upon the method used to construct v
or upon the regularity assumptions made on Ω. In particular, the method
of Bogovskĭi is based on the explicit representation formula (III.3.8) which
adapts to the divergence operator a well-known formula of Sobolev (1963a,
Chapter 7, §4; specifically, see eq. (7.9)). A similar representation for the curl
operator has been given by Griesinger (1990a, 1990b). With the exception
of Solonnikov & Ščadilov (1973), Bogovskĭi (1980), Kapitanskĭi & Pileckas
(1984), and Borchers & Sohr (1990), all other mentioned authors consider the
case Ω bounded. However, once (III.3.1), (III.3.2) is solved for such domains,
the problem for Ω exterior can be directly handled by using the technique of
Theorem III.3.6. The case Ω = Rn

+ requires, apparently, a separate treatment
and will be considered in Section IV.3; see Corollary IV.3.1. In this respect,
we refer the reader to the papers of Cattabriga (1961), Solonnikov & Ščadilov
(1973) and Solonnikov (1973, 1983). These latter two papers deserve particu-
lar attention where explicit solutions are given (see Solonnikov 1973, formula
(2.38), and Solonnikov 1983, Lemma 2.1).

Problem (III.3.1), (III.3.2) can also be solved in Sobolev spaces W s,q
0 (Ω)

with s real, Bogovskĭi (1979, 1980), and in certain weighted Sobolev spaces
(Voldrich 1984). In this respect, as we already observed in Remark III.3.5,
problem (III.3.1), (III.3.2) can not be solved in (bounded) domains having an
external cusp. Nevertheless, Durán & López Garćıa (2010) have shown that,
for such domains, it can still be solved in suitable weighted Sobolev spaces,
with weights depending on the type of cusp.

For Ω exterior, results in weighted Sobolev spaces can be obtained by
using, in Theorem III.3.6, Stein’s Theorem II.11.5 instead of Theorem II.11.4.
In this regard, we refer the reader to the papers of Specovious-Neugebauer
(1986) and Lockhart & McOwen (1983). We finally mention that the same
type of problem can be analyzed for the equation curl v = f . In addition to
the already cited papers of Griesinger, we refer the interested reader to the
book of Girault & Raviart (1986) and to the works of Borchers & Sohr (1990),
von Wahl (1989, 1990a) and Bolik & von Wahl (1997).

Theorem III.3.4 is due to Galdi (1992a). A different proof of Theorem
III.3.5 (with slightly more stringent assumptions on the regularity of Ω, is
given in Farwig & Sohr (1994a, Corollary 2.2). Extensions of these results
to Sobolev spaces W s,q

0 (Ω) with s real and (suitably) negative are shown in
Geissert, Heck, and Hieber (2006, § 2).

The numerical value of the constant c appearing in (III.3.2)3 and (III.3.65)3
is very important for several applications, see, e.g., Chapters VI and XII. In
this respect, we refer the reader to the papers of Horgan & Wheeler (1978),
Horgan & Payne (1983), Velte (1990), and Stoyan (2001).

A different proof of Theorem III.3.7, originally due to Kapitanskĭi &
Pileckas (1984, Theorem 1), was provided, in a different context, by Dacorogna
(2002).
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Section III.4. An elementary proof of the coincidence of H1
q (Ω) and Ĥ1

q (Ω)
for Ω bounded was first given by Heywood (1976) for n = 2, 3 and q = 2. His
method, which can be easily extended to the cases n ≥ 2 and q ∈ [1,∞), is
a generalization of that used for a star-like domain. Actually, he introduces
a smooth transformation Tρ(x), x ∈ Ω, ρ ∈ (0, 1) that replaces the simple
contraction ρx used for the star-like case. For this procedure to hold it is,
of course, necessary that Ω have some regularity, and Heywood shows that
C2 smoothness is sufficient. However, as proved in Theorem 1 of Heywood’s
paper, the procedure would equally work with much less regularity. A proof of
the coincidence for n ≥ 2 and q = 2 using de Rahm’s theorem on currents was
previously furnished for Ω locally Lipschitz by Lions (1969, pp. 67-68; here
the domain must be locally Lipschitz even if it is not explicitly stated) and
by Temam (1977, Chapter I, Theorem 1.6). The same result is established by
Salvi (1982) using extensions of sequentially continuous functionals. Other,
different approaches are employed by Ladyzhenskaya & Solonnikov (1976) for
n = 2, 3 and q = 2 and, along the same lines, by Pileckas (1980b, 1983) for
arbitrary q ∈ [1,∞) and, for n ≥ 2 and q ∈ [1,∞), by Bogovskĭi (1980). In
particular, Bogovskĭi requires only that Ω is the union of a finite number of
domains each of which is star-shaped with respect to a ball (see Theorem
III.4.1); for example, Ω satisfies the cone condition. More recently, Wang &
Yang (2008) have shown coincidence for n = 2, 3 and q = 2, provided Ω has
only a kind of segment property. It is, however, still an open question to prove
(or disprove) the validity of the coincidence for bounded domains with no
regularity. In this respect, we wish to mention a result given in Šverák (1993),

Remark at p. 12, which shows Ĥ1(Ω) = H1(Ω), where Ω is any bounded open
set of R2 such that, denoting by B an open ball with B ⊃ Ω, we have that the
set B − Ω has a finite number of connected components. Probably, it is true
that Ĥ1(Ω) = H1(Ω) (or, equivalently, D̂1,2

0 (Ω) = D1,2
0 (Ω)), for any bounded

domain in Rn, n ≥ 2. It is worth emphasizing that should this not be true
for some bounded open connected set Ω], the Stokes problem formulated in
Ω] corresponding to zero body forces and zero boundary data would admit a
nonzero smooth solution; see Remark IV.1.2.

The case of an exterior domain has likewise been analyzed by Heywood
(1976), Ladyzhenskaya & Solonnikov (1976) for n = 2, 3 and q = 2, by Pileckas
(1980b, 1983) for n = 2, 3 and q ∈ (1,∞), and by Bogovskĭi (1980) for n ≥ 2

and q ∈ (1,∞). All these authors prove the coincidence of H1
q (Ω) and Ĥ1

q (Ω)
under the same regularity assumptions made on Ω for the corresponding
bounded case. A more elementary proof for n ≥ 2 and q ∈ [1,∞) that re-
quires Ωc be star-shaped is provided by Bogovskĭi & Maslennikova (1978)
and Maslennikova & Bogovskĭi (1978).

Lemma III.4.2 is due to me. I have been kindly informed by Professor K.
Pileckas that a similar result has been independently proved by Professor V. I.
Burenkov and it appears in note 5.3 to Chapter VI of the Russian translation
of the book of Stein (1970).



230 III The Function Spaces of Hydrodynamics

Section III.5. The papers mentioned in the notes to Section III.4 concerning
the coincidence of the spaces H1

q (Ω) and Ĥ1
q (Ω) also deal with the same

problem for D1,q(Ω) and D̂1,q(Ω).
The relation between linear functionals on D1,q

0 (Ω) vanishing on D1,q
0 (Ω)

and the existence of a pressure field for Stokes and Navier–Stokes problems
was first recognized by Solonnikov & Ščadilov (1973), who prove Corollary
III.5.1 for q = 2, n = 3 and Ω of class C2. The same result was rediscovered
thirteen years later by Guirguis (1986).

Section III.6. The results given here are due to Galdi (1992a). They will
be used in several questions concerning Navier–Stokes equations, such as the
validity of the energy identity in exterior domains (see Section X.2). Similar
results, with different techniques and much more regularity on the domain,
are contained in the works of Giga (1986) and Kozono & Sohr (1992a); see
also the Appendix of Masuda (1984) and Lemma 3.8 of Maremonti (1991).
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Steady Stokes Flow in Bounded Domains

Ora sia il tuo passo
più cauto: ad un tiro di sasso
di qui ti si prepara
una più rara scena.

E. MONTALE, Ossi di Seppia.

Introduction

We now undertake the study of the mathematical properties of the motion
of a viscous incompressible fluid. We shall begin with the simplest situation,
namely, that of a steady, infinitely slow motion occurring in a bounded region
Ω. The hypothesis of slow motion means that the ratio

|v · ∇v|
|ν∆v|

of inertial to viscous forces is vanishingly small, so that we can disregard the
nonlinear term into the full (steady) Navier–Stokes equations (I.0.31). If we
introduce reference length L and velocity V , this approximation amounts to
assume that the (dimensionless) Reynolds number

R =
V L

ν

is suitably small.
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The linearization procedure can be performed around a generic solution
v0, p0, say, of equations (I.0.1). In this chapter (and the next two) we shall
consider the case where v0 ≡ 0, p ≡ const., so that we recover the following
Stokes equations (see Stokes 1845)

∆v = ∇p+ f

∇ · v = 0

}
in Ω. (IV.0.1)

Here we have formally put, without loss, the coefficient of kinematic viscosity
ν equal to unity. To system (IV.0.1), we append the usual adherence condition
(I.1.1) at the boundary, that is,

v = v∗ at ∂Ω. (IV.0.2)

Since Ω is bounded, from (IV.0.1)2and Gauss theorem, it follows that the
prescribed velocity field v∗ must satisfy the compatibility condition:

∫

∂Ω

v∗ · n = 0. (IV.0.3)

The main objective of this chapter is to show existence, uniqueness, and
regularity along with appropriate estimates for solutions to problem (IV.0.1)–
(IV.0.3). In doing this, we shall be inspired by the work of Cattabriga (1961)
and Galdi & Simader (1990). Specifically, we first give a variational (weak)
formulation of the problem and introduce the concept of q-generalized solu-
tion (for q = 2, simply: generalized solution). These solutions are essentially
characterized by the property of being members of the space D1,q(Ω) and a
priori they do not possess enough regularity to be considered as solutions in
the ordinary sense. Following the work of Ladyzhenskaya (1959b), it is simple
to show the existence of a generalized solution to (IV.0.1)–(IV.0.3). However,
it is a much more difficult job to study its regularity, that is, to show that,
under suitable smoothness assumptions on f , v∗, and Ω, such a solution be-
longs, in fact, to the Sobolev space Wm,q(Ω) and that it obeys corresponding
estimates:

‖v‖m+2,q + ‖p‖m+1,q ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
, (IV.0.4)

with m ≥ 0 and q ∈ (1,∞).
Since system (IV.0.1), (IV.0.2) is elliptic in the sense of Douglis-Nirenberg

(see Solonnikov 1966, Temam 1977, pp. 33-34), the validity of a weaker form
of estimate (IV.0.4), namely,

‖v‖m+2,q + ‖p‖m+1,q ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖v‖q + ‖p‖−1,q

)

holding for q-generalized solutions, can be obtained directly from the gen-
eral theory of Agmon, Douglis, & Nirenberg (1964) and Solonnikov (1966)
(without, however, providing existence).
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Here, to reach our goal, we shall follow a classical approach due to Cat-
tabriga (1961) that relies on the ideas of Agmon, Douglis, & Nirenberg (1959).
This method consists in transforming the problem into analogous problems
in the whole space and in a half-space by means of the “localization pro-
cedure.” Now, in Rn and Rn

+, the task of proving the unique solvability of
(IV.0.1), (IV.0.2), and (IV.0.4) is rendered easy by the circumstance that one
can furnish an explicit solution to the problem. It is worth noticing that such
a procedure is completely similar to that employed for the Poisson equation
at the end of Section II.11 and that the only tool needed is the Calderón–
Zygmund Theorem II.11.4 and its variant as given in Theorem II.11.6. We
also wish to emphasize that the study of the Stokes problem in Rn and in
Rn

+ possesses an independent interest and that it will be fundamental for the
treatment of other (linear and nonlinear) problems when the region of flow is
either an exterior domain or a domain with a suitable unbounded boundary.

By the same arguments, we shall also show existence and uniqueness of
q-generalized solutions when q 6= 2 and shall derive corresponding estimates,
formally obtained by taking in (IV.0.4) m = −1 and q ∈ (1,∞).

We end with a final remark. As a rule, we shall treat in detail only the
physically interesting cases when the relevant region of motion is either a
three-dimensional or (for a plane flow) a two-dimensional domain. In par-
ticular, all results will be essentially proved for space dimension n = 2, 3.
However, whenever needed, we shall outline all the main steps to follow in
order to generalize the proof to n ≥ 4.

IV.1 Generalized Solutions. Existence and Uniqueness

In this section we shall prove some existence and uniqueness results for Stokes
flow. Following Ladyzhenskaya (1959b), we shall give an integral variational
formulation of the problem, which will then be easily solved by the classical
Riesz representation theorem.1 However, the solutions we shall obtain are a
priori not smooth enough to be considered as strict solutions of the starting
problem; for this reason, they are called generalized or weak. Nevertheless, in
the next sections we will show that provided the force, the velocity at the
boundary, and the region of motion are sufficiently regular, weak solutions
are, in fact, differentiable solutions of (IV.0.1)1,2 in the ordinary sense and
assume continuously the boundary data.

To justify the generalized (or weak or variational) formulation, we proceed
formally as follows. Let v, p be a classical solution to (IV.0.1)1,2, for example,

1 It should be observed that, in spite of its simplicity and elegance, the method of
resolution based on the Riesz theorem is not constructive. The more constructive
Galerkin method will be considered later, directly in the nonlinear context (see
also Chapter VII).
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v ∈ C2(Ω), p ∈ C1(Ω). Multiplying (0.11) by an arbitrary function ϕ ∈ D(Ω)
and integrating by parts we deduce 2

(∇v,∇ϕ) ≡
∫

Ω

∇v : ∇ϕ = −
∫

Ω

f ·ϕ ≡ −(f ,ϕ). (IV.1.1)

Thus, every classical solution to (IV.0.1)1 satisfies (IV.1.1) for all ϕ ∈ D(Ω).
Conversely, if v ∈ C2(Ω) and f ∈ C(Ω), from (IV.1.1) and Lemma III.1.1
we show the existence of p ∈ C1(Ω) verifying (IV.0.1)1. On the other hand,
we may think of a function v satisfying (IV.1.1) but which is not sufficiently
differentiable to be considered a solution to (IV.0.1)1 (for a suitable choice of
p). In this sense (IV.1.1) is a “weak” version of (IV.0.1)1. For further purposes,
we may and shall consider the more general situation in which the right-
hand side of (IV.1.1) is defined by a functional f from D−1,q

0 (Ω). We shall
then write 〈f ,ϕ〉 instead of (f ,ϕ) where, we recall, 〈·, ·〉 denotes the duality

pairing between W 1,q
0 (Ω) and W 1,q′

0 (Ω), 1/q + 1/q′ = 1 (see Section II.3).
As far as the regularity of a weak solution is concerned, we merely require
a priori v ∈ D1,q(Ω) for some q ∈ (1,∞), so that the solenoidal condition
will be satisfied according to generalized differentiation, while the boundary
condition (IV.0.2) is to be understood in the trace sense (see Theorem II.4.4
and Remark II.6.1). If, in particular, the velocity at the boundary is zero, we
require v ∈ D1,q

0 (Ω) which, along with the solenoidality condition, furnishes

v ∈ D̂1,q
0 (Ω); see Remark IV.1.2. We may then summarize all the above in

the following.

Definition IV.1.1. A field v : Ω → Rn is called a q-weak (or q-generalized)
solution to the Stokes problem (IV.0.1), (IV.0.2)3 if and only if

(i) v ∈ D1,q(Ω), for some q ∈ (1,∞);
(ii) v is (weakly) divergence-free in Ω;
(iii) v satisfies the boundary condition (IV.0.2) (in the trace sense) or, if the

velocity at the boundary is identically zero, v ∈ D1,q
0 (Ω);

(iv) v verifies the identity

(∇v,∇ϕ) = −〈f ,ϕ〉 (IV.1.2)

for all ϕ ∈ D1,q′

0 Ω), 1/q + 1/q′ = 1.

If q = 2, v will be called a weak (or generalized) solution.

Remark IV.1.1 Since Ω is bounded, D1,q
0 (Ω) and W 1,q

0 (Ω) are isomorphic;
see Remark II.6.3. Furthermore, if Ω is locally Lipschitz, D1,q(Ω) endowed
with a suitable norm, is isomorphic to W 1,q(Ω); see Remark II.6.1. Therefore,
if v∗ ≡ 0 we may equivalently require in (i) that v ∈W 1,q

0 (Ω), while, if v∗ 6≡ 0
and Ω is locally Lipschitz, (i) is equivalent to v ∈W 1,q(Ω). �

2 As agreed,we shall put, without loss of generality, ν = 1.
3 Solutions possessing a priori even less regularity than q-weak solutions (the so

called very weak solutions) will be briefly considered in the Notes for this Chapter.
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Remark IV.1.2 If the velocity at the boundary is zero, every q-weak so-
lution belongs to D̂1,q

0 (Ω). We recall that, in general, D̂1,q
0 (Ω) ⊇ D1,q

0 (Ω),
for each Ω ⊂ Rn, n ≥ 2, and each q ∈ (1,∞); see Section III.5. In this re-
gard, it is important to realize that if there exists a domain, Ω] such that
D̂1,2

0 (Ω]) 6= D1,2
0 (Ω]),4 one could find a nonzero generalized solution, v], to

the Stokes problem (IV.0.1)–(IV.0.2) with Ω ≡ Ω], corresponding to zero force
and zero boundary data. This fact is an immediate consequence of Exercise
III.5.3. Moreover, as it will be shown in Theorem IV.4.3, v] ∈ C∞(Ω) and we
can find a corresponding pressure field p] ∈ C∞(Ω), such that the pair (v], p])
satisfies the problem (IV.0.1)–(IV.0.2) in the ordinary sense! It is clear that
such a situation is difficult to explain from a physical point of view, in that
the flow (v], p]) should be driven merely by the “roughness” of the boundary
of the bounded domain where the motion occurs. In fact, if a mild degree of
regularity on the boundary is assumed, then v] = ∇p] = 0. These consid-
erations add more weight to the conjecture that D̂1,2

0 (Ω) = D1,2
0 (Ω) for any

bounded domain Ω, but, as we remarked several times in the previous chapter
(see, especially, the Notes to Section III.4), no proof of this fact is available
to date. �

In this section we shall establish existence and uniqueness of weak solu-
tions. The analogous questions for q-weak solutions, arbitrary q > 1, will be
considered in Section IV.6. Before performing this study, however, we wish to
make some preliminary considerations.

Definition IV.1.1 is apparently silent about the pressure field. Actually,
this is not true, as we will show. Assume, at first, v, p a classical solution and
multiply (IV.0.1)1 by ψ ∈ C∞

0 (Ω) (not necessarily solenoidal). Integrating by
parts we obtain, instead of identity (IV.1.2),

(∇v,∇ψ) = −〈f ,ψ〉 + (p,∇ · ψ). (IV.1.3)

Now, if f has a mild degree of regularity, to every q-weak solution we are
able to associate a “pressure field” p in such a way that (IV.1.3) holds and,
further, we can give a definition of q-weak solution equivalent to Definition
IV.1.1, using (IV.1.3) in place of (IV.1.2) as a consequence of the following
general result.

Lemma IV.1.1 Let Ω be an arbitrary domain of Rn, n ≥ 2, and let f ∈
W−1,q

0 (Ω′), 1 < q < ∞, for any bounded domain Ω′ with Ω′ ⊂ Ω. A vector
field v ∈W 1,q

loc (Ω) satisfies (IV.1.2) for all ϕ ∈ D(Ω) if and only if there exists
a “pressure field” p ∈ Lq

loc(Ω) such that (IV.1.3) holds for every ψ ∈ C∞
0 (Ω).

If, moreover, Ω is bounded and satisfies the cone condition and f ∈ D−1,q
0 (Ω),

v ∈ D1,q(Ω) then
p ∈ Lq(Ω).

4 By the results of Section III.5, Ω] should be less regular than a domain that is
the union of a finite number of domains each of which is star-shaped with respect
to a ball.
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Finally, if we normalize p by the condition
∫

Ω

p = 0, (IV.1.4)

the following estimate holds:

‖p‖q ≤ c (‖f‖−1,q + |v|1,q) . (IV.1.5)

Proof. We begin to prove the first part. It is enough to show that (IV.1.2)
implies (IV.1.3), the reverse implication being obvious. Let us consider the
functional

F(ψ) ≡ (∇v,∇ψ) + 〈f ,ψ〉
for ψ ∈ D1,q′

0 (Ω′). By assumption, F is bounded inD1,q′

0 (Ω′) and is identically

zero in D(Ω) and, therefore, by continuity, in D1,q′

0 (Ω′). If Ω is arbitrary (in
particular, has no regularity), from Corollary III.5.2 we deduce the existence
of p ∈ Lq

loc(Ω) verifying (IV.1.3) for all ψ ∈ C∞
0 (Ω). If Ω is bounded and

satisfies the cone condition, by assumption and Corollary III.5.1 there exists
a uniquely determined p′ ∈ Lq(Ω) with

∫

Ω

p′ = 0

such that
F(ψ) = (p′,∇ · ψ), (IV.1.6)

for all ψ ∈ D1,q′

0 (Ω). From (IV.1.3) and (IV.1.6) we find, in particular,

(p− p′,∇ · ψ) = 0, for all ψ ∈ C∞
0 (Ω),

implying p = p′+const. (see Exercise II.5.9), and so, if we normalize p by
(IV.1.4) we may take p = p′. Consider the problem

∇ · ψ = |p|q−2p− 1

|Ω|

∫

Ω

|p|q−2p ≡ g

ψ ∈W 1,q′

0 (Ω)

‖ψ‖1,q′ ≤ c1‖p‖q−1
q ,

(IV.1.7)

with Ω bounded and satisfying the cone condition. Since
∫

Ω

g = 0, g ∈ Lq′
(Ω), ‖g‖q′ ≤ c2‖p‖q−1

q ,

from Theorem III.3.1 we deduce the existence of ψ solving (IV.1.7). If we
replace such a ψ into (IV.1.6) and use (IV.1.4) together with the Hölder
inequality and inequality (II.3.22)2, we obtain (IV.1.5). The proof is therefore
completed. ut
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Remark IV.1.3 If we relax the normalization condition (IV.1.4) on p, in
place of (IV.1.5) one can show, as the reader will easily check, the inequality

inf
c∈R

‖p+ c‖q ≤ c (‖f‖−1,q + |v|1,q) .

�

We now pass to the proof of existence and uniqueness of weak solutions.

Theorem IV.1.1 Let Ω ⊆ Rn, n ≥ 2, be bounded and locally Lipschitz. For
any f ∈ D−1,2

0 (Ω) and v∗ ∈W 1/2,2(∂Ω) verifying
∫

∂Ω

v∗ · n = 0,

there exists one and only one weak solution v to the Stokes problem (IV.0.1),
(IV.0.2). Moreover, if we denote by p the corresponding pressure field associ-
ated to v by Lemma IV.1.1, the following estimate holds:

‖v‖1,2 + ‖p‖2 ≤ c
(
‖f‖−1,2 + ‖v∗‖1/2,2(∂Ω)

)
, (IV.1.8)

where c = c(n,Ω).

Proof. By the results of Exercise III.3.8 there exists a solenoidal extension
V ∈W 1,2(Ω) of v∗ such that

‖V ‖1,2 ≤ c1‖v∗‖1/2,2(∂Ω) (IV.1.9)

with c1 independent of V and v∗. We look for a generalized solution of the
form v = w + V where w ∈ D1,2

0 (Ω) satisfies the identity

(∇w,∇ϕ) = −〈f ,ϕ〉 − (∇V ,∇ϕ), (IV.1.10)

for all ϕ ∈ D1,2
0 (Ω). The right-hand side of (IV.1.10) defines a bounded linear

functional in D1,2
0 (Ω) and so, by the Riesz representation theorem, there exists

one and only one w ∈ D1,2
0 (Ω) verifying (IV.1.10). This shows existence of

a weak solution. To prove uniqueness, denote by v1 another weak solution
corresponding to the same data. Evidently, Theorem II.4.2 furnishes that u ≡
v−v1 is an element of D̂1,2

0 (Ω) and, therefore, by the results of Section III.5,
of D1,2

0 (Ω). On the other hand by (iv) of Definition IV.1.1 it follows that

(∇u,∇ϕ) = 0

for all ϕ ∈ D1,2
0 (Ω), implying u = 0 a.e. in Ω. To show estimate (IV.1.8),

we take ϕ = w into (IV.1.10), apply the Schwarz inequality and inequality
(II.3.22)2, and use (IV.1.9) and (II.5.1) together with (III.3.14) to obtain for
some c2 = c2(n,Ω)

‖w‖1,2 ≤ c2
(
‖f‖−1,2 + ‖v∗‖1/2,2(∂Ω)

)
. (IV.1.11)

Estimate (IV.1.8) then follows from (IV.1.4), (IV.1.9), and (IV.1.11). ut
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Remark IV.1.4 If v∗ ≡ 0, the existence of a generalized solution is estab-
lished without regularity assumptions on Ω. �

Exercise IV.1.1 Theorem IV.1.1 also remains valid if ∇ · v = g 6≡ 0, where g is
a suitably ascribed function. Specifically, show that for Ω, f , and v∗ satisfying the
assumption of that theorem and all g ∈ L2(Ω) such that

Z

Ω

g =

Z

∂Ω

v∗ · n

there exists one and only one weak solution v to the nonhomogeneous Stokes prob-
lem, that is, a field v : Ω → R

n satisfying (i), (iii), and (iv) of Definition IV.1.1,
with q = 2, and ∇·v = g (weakly). Show, in addition, that v and the corresponding
pressure field p obey the following estimate:

‖v‖1,2 + ‖p‖2 ≤ c
`
‖f‖−1,2 + ‖v∗‖1/2,2(∂Ω) + ‖g‖2

´
.

Hint: Look for a solution of the form v = w+V where w verifies (IV.1.7), while V

solves ∇ · V = g, in Ω, V = v∗ at ∂Ω and use the results of Exercise III.3.8.

IV.2 Existence, Uniqueness, and Lq-Estimates in the
Whole Space. The Stokes Fundamental Solution

Our next task is to establish interior and boundary inequalities for solutions to
the Stokes problem that will furnish, in particular, that generalized solutions
are in fact classical if the domain and data are sufficiently smooth. We first
derive these estimates in two special cases, namely, when either Ω = Rn or
Ω = Rn

+. The job here is easier because we are able to furnish solutions
of explicit form. To this end, let us introduce the fundamental solution for
the Stokes equation (IV.0.1), which plays the same role as the fundamental
solution of Laplace’s equation.1 Consider the second-order, symmetric tensor
field U and the vector field q defined by the relations

Uij(x− y) =

(
δij∆− ∂2

∂yi∂yj

)
Φ(|x− y|)

qj(x− y) = − ∂

∂yj
∆Φ(x− y),

(IV.2.1)

where x, y ∈ Rn, δij is the Kronecker symbol and Φ(t) is an arbitrary function
on R, which is smooth for t 6= 0. Noticing that ∂|x− y|/∂xi = −∂|x− y|/∂yi,
by a simple calculation from (IV.2.1) one has for x 6= y and all i, j = 1, . . . , n2

1 Actually, all the material presented in this and in the subsequent section will
be derived along the same lines of the one developed for the Dirichlet problem
for the Poisson equation at the end of Section II.7 (see Exercise II.11.9, Exercise
II.11.10, and Exercise II.11.11.

2 We recall that, according to Einstein’s convention, unless otherwise explicitly
stated, pairs of identical indices imply summation from 1 to n.
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∆Uij(x− y) +
∂

∂xi
qj(x− y) = δij∆

2Φ(x− y)

∂

∂xi
Uij(x− y) = 0.

(IV.2.2)

Choose now Φ as the fundamental solution to the biharmonic equation. So,
for n = 3,

Φ(|x− y|) = −|x− y|
8π

and the associated fields U and q become (Lorentz 1896)

Uij(x− y) = − 1

8π

[
δij

|x− y| +
(xi − yi)(xj − yj)

|x− y|3
]

qj(x− y) =
1

4π

xj − yj

|x− y|3 .
(IV.2.3)

Likewise, for n = 2,

Φ(|x− y|) = |x− y|2 log(|x− y|)/8π

and we have

Uij(x− y) = − 1

4π

[
δij log

1

|x− y| +
(xi − yi)(xj − yj)

|x− y|2
]

qj(x− y) =
1

2π

xj − yj

|x− y|2 .
(IV.2.4)

Moreover, with the above choice of Φ, from (IV.2.2) it follows that the fields
(IV.2.3) and (IV.2.4) satisfy

∆Uij(x− y) +
∂

∂xi
qj(x− y) = 0

∂

∂xi
Uij(x− y) = 0.

for x 6= y. (IV.2.5)

The pair U , q is called the fundamental solution of the Stokes equation.

Remark IV.2.1 In dimension n > 3 the fundamental solution is given by
(IV.2.1) with

Φ =





−(1/8π2) log |x− y| if n = 4

[
Γ (n/2− 2)/16πn/2

]
|x− y|4−n if n ≥ 4.

One thus has for all n ≥ 4
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Uij(x− y) = − 1

2n(n− 2)ωn

[
δij

|x− y|n−2 + (n− 2)
(xi − yi)(xj − yj)

|x− y|n
]

qj(x− y) =
1

nωn

xj − yj

|x− y|n .

�

From (IV.2.3) and (IV.2.4) (and Remark IV.2.1), we may formally compute
the asymptotic properties of U and q. In particular, the following estimates,
as either |x| → 0 or |x| → ∞, are readily established:

U(x) = O(log |x|) if n = 2,

U(x) = O(|x|−n+2) if n > 2,

DαU(x) = O(|x|−n−|α|+2), |α| ≥ 1, n ≥ 2,

Dαq(x) =O(|x|−n−|α|+1), |α| ≥ 0, n ≥ 2.

(IV.2.6)

Let us now consider the following nonhomogeneous Stokes problem

∆v = ∇p+ f

∇ · v = g

}
in Rn, (IV.2.7)

where f and g are prescribed functions from C∞
0 (Rn). Using (IV.2.3) and

(IV.2.4) it is not difficult to prove the existence of solutions to (IV.2.7), veri-
fying suitable Lq-estimates. To reach this goal, we introduce the Stokes volume
potentials

u(x) =

∫

Rn

U(x− y) ·F (y)dy

π(x) = −
∫

Rn

q(x− y) · F (y)dy,

(IV.2.8)

where F ∈ C∞
0 (Rn). Since
∫

Rn

U(x − y) · F (y)dy =

∫

Rn

U(z) · F (x− z)dz

∫

Rn

q(x − y) · F (y)dy =

∫

Rn

q(z) · F (x− z)dz

one has u, π ∈ C∞(Rn). Moreover, it is easy to show that u, π is a solution
to (IV.2.7) with g ≡ 0 and f ≡ F . Actually, it is obvious that ∇·u = 0; also,
using (IV.2.1) and Exercise II.11.3, we deduce

∆u(x) −∇π(x) = ∆

∫

Rn

∆Φ(|x− y|)F (y)dy

= ∆(E ∗ F )(x) = F (x).

(IV.2.9)
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We shall now look for a solution v, p to (IV.2.7) of the form v = u+h, p = π
where u and π are volume potentials corresponding to F ≡ f −∆h and

h = ∇(E ∗ g). (IV.2.10)

Since ∆h = ∇g ∈ C∞
0 (Rn) and

∇ · h = g, (IV.2.11)

from (IV.2.9) and (IV.2.11) we may conclude that v, p is a solution to (IV.2.7).
Furthermore, from (IV.2.6) one shows as |x| → ∞ 3

v(x) = O(log |x|) if n = 2,

v(x) = O(|x|−n+2) if n > 2,

Dαv(x) = O(|x|−n−|α|+2), |α| ≥ 1, n ≥ 2,

Dαp(x) = O(|x|−n−|α|+1), |α| ≥ 0, n ≥ 2.

(IV.2.12)

Let us now derive some Lq-inequalities for v, p in terms of g and f . From
(IV.2.10) and the Calderón–Zygmund Theorem II.7.4 we have

|h|`+1,q ≤ c|g|`,q, for all ` ≥ 0 (IV.2.13)

with c = c(n, q). Next, consider the identity with |α| = `

DijD
αuk(x) =

∫

Rn

DiUk`(x− y)DjD
αF`(y)dy

= lim
ε→0

∫

|x−y|≥ε

DijUk`(x− yDαF`(y)dy

+lim
ε→0

∫

|x−y|=ε

DiUk`(x− yDαF`(y)nj(y)dσy ,

(IV.2.14)

where nj is the jth component of the unit outer normal to the sphere |x−y| =
ε. From (IV.2.3) and (IV.2.4) one has that DiUk` is homogeneous of degree
1 − n, so that by Lemma II.11.1, DijUk` is a singular kernel. Furthermore,
again by that lemma, it follows that

lim
ε→0

∫

|x−y|=ε

DiUk`(x− y)DαF`(y)nj (y)dσy = Aijk`D
αF`(x)

with Aijk` a constant fourth-order tensor. Combining this formula with
(IV.2.14) gives

3 More detailed estimates will be given in Section V.3.
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DijD
αuk(x) = lim

ε→0

∫

|x−y|≥ε

DijUk`(x− y)DαF`(y)dy +Aijk`D
αF`(x),

where the integral is to be understood in the Cauchy principal value sense.
We may now employ in this identity the Calderón–Zygmund theorem and
(IV.2.13) to obtain for all ` ≥ 0 and all q > 1

|u|`+2,q ≤ c1 (|f|`,q + |g|`+1,q) , (IV.2.15)

where c1 = c1(n, q). Likewise, one proves

|π|`+1,q ≤ c2 (|f |`,q + |g|`+1,q) . (IV.2.16)

From (IV.2.13), (IV.2.15), and (IV.2.16) we thus obtain the following estimate
for the solution v, p, valid for all ` ≥ 0 and all q > 1

|v|`+2,q + |p|`+1,q ≤ c (|f |`,q + |g|`+1,q) (IV.2.17)

with c = c(n, q).

Other estimates can be obtained directly from (IV.2.8) and (IV.2.10), by
noting that

|DiD
αu(x)| + |Dαπ(x)| ≤ c1

∫

Rn

|DαF (y)|
|x− y|n−1

dy

|Dαh(x)| ≤ c2

∫

Rn

|Dαg(y)|
|x− y|n−1 dy.

If 1 < q < n, we may thus apply the Sobolev Theorem II.7.3 to obtain

|v|`+1,s1 + |p|`,s1 ≤ c3 (|f|`,q + |g|`+1,q) , s1 =
nq

n− q
. (IV.2.18)

Likewise, if 1 < q < n/2, from (IV.2.18) and (II.6.17) we have

|v|`,s2 ≤ c4 (|f |`,q + |g|`+1,q) , s2 =
nq

n− 2q
. (IV.2.19)

Assume now f and g merely belonging to Wm,q(Rn) and Dm+1,q(Rn),
respectively, m ≥ 0 and q ∈ (1,∞). We can approximate them with sequences
{fk}, {gk} ⊂ C∞

0 (Rn). Denoting by {vk, pk} the corresponding sequence
of solutions to (IV.2.7), we see that each solution satisfies (IV.2.17) for all
` ∈ [0, m] and, if 1 < q < n [respectively, 1 < q < n/2], it satisfies also
(IV.2.18) [respectively, (IV.2.19)]. Employing these estimates together with
the weak compactness property of spaces Ḋm,q (see Exercise II.6.2), one easily
shows the existence of two fields v and p such that

v ∈ B ≡
m⋂

`=0

D`+2,q(Rn), p ∈ P ≡
m⋂

`=0

D`+1,q(Rn)
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and
lim

k→∞
(Dαvk,ψ) = (Dαv,ψ) , 0 ≤ |α| ≤ m+ 2

lim
k→∞

(
Dβ∇pk,ψ

)
=
(
Dβ∇p,ψ

)
0 ≤ |β| ≤ m

for all ψ ∈ Lq′
(Rn). This implies, in particular, that the pair v, p satisfies

(IV.2.7) a.e. in Rn along with estimates (IV.2.17)–(IV.2.19). Furthermore, by
Lemma II.6.1, we have

v ∈ Wm+2,q(BR), p ∈Wm+1,q(BR),

for all R > 0.
Let now v1, p1 denote another solution to (IV.2.7) corresponding to the

same data as v, p, with |v1|`+2,q finite, for some ` ∈ [0, m]. It is then easy to
show that |v1 − v|`+2,q = |p1 − p|`+1,q = 0.4 In fact, setting z = v1 − v and
τ = p1 − p, we obtain

∆z = ∇τ

∇ · z = 0
(IV.2.20)

a.e. in Rn. It follows at once that
∫

Rn

∇τ · ∇ψ = 0

for any ψ ∈ C∞
0 (Rn). SinceDα∇τ ∈ Lq(Rn), |α| = `, by a well-known result of

Caccioppoli (1937), Cimmino (1938a, 1938b), and Weyl (1940) we then deduce
that τ is harmonic, and hence smooth, in the whole space. As a consequence,
by Exercise II.11.11 it follows that Dα∇τ = 0. Therefore, (IV.2.20)1 furnishes
∆Dαz = 0 and, again by Exercise II.11.11, we have |z|`+2,q = 0, which is
what we wanted to prove.

We collect the results obtained so far in the following.

Theorem IV.2.1 Given

f ∈Wm,q(Rn), g ∈ Dm+1,q(Rn), m ≥ 0, 1 < q <∞, n ≥ 2,

there exists a pair of functions v, p such that v ∈ Wm+2,q(BR), p ∈
Wm+1,q(BR) for any R > 0, satisfying a.e. the nonhomogeneous Stokes sys-
tem (IV.2.7). Moreover, for all ` ∈ [0, m], |v|`+2,q and |p|`+1,q are finite and
we have

|v|`+2,q + |p|`+1,q ≤ c (|f|`,q + |g|`+1,q) . (IV.2.21)

If, in particular, n/2 ≤ q < n, then |v|`+1,s1 and |p|`,s1, s1 = nq/(n− q), are
finite, and we have

4 Notice that if v is a solution to (IV.2.7) having |v|`+2,q finite, then |p|`+1,q is
finite too.
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|v|`+1,s1 + |p|`,s1 + |v|`+2,q + |p|`+1,q ≤ c (|f |`,q + |g|`+1,q) . (IV.2.22)

Furthermore, if 1 < q < n/2, then |v|`,s2, s2 = nq/(n − 2q), is finite and the
following inequality holds

|v|`,s2 + |v|`+1,s1 + |p|`,s1 + |v|`+2,q + |p|`+1,q ≤ c (|f|`,q + |g|`+1,q) . (IV.2.23)

In the above inequalities, c = c(n, q, `). In addition, if f , g ∈ C∞
0 (Rn), then

v, p ∈ C∞(Rn) and they have for large |x| the asymptotic behavior indicated
in (IV.2.12). Finally, if v1, p1 is another solution to (IV.2.6) corresponding to
the data f , g with |v1|`+2,q finite for some ` ∈ [0, m], then |v1 − v|`+2,q = 0
and |p1 − p|`+1,q = 0.

The last part of this section is devoted to show existence and uniqueness
of q-weak solutions to (IV.2.7). The results we obtain are similar to those of
Theorem IV.1.1 and Exercise IV.1.1, with the difference that now we consider
the problem in the general context of spaces D1,q

0 , 1 < q <∞.
To this end, we give the following

Definition IV.2.1 A vector field v is a q-generalized solution to (IV.2.7) if
and only if

(i) v ∈ D1,q
0 (Rn);

(ii) (∇v,∇ϕ) = − [f ,ϕ], for all ϕ ∈ D1,q′

0 (Rn);
(iii) (v,∇ϕ) = −(g, ϕ), for all ϕ ∈ C∞

0 (Rn).

Lemma IV.1.1 implies the following result.

Lemma IV.2.1 Let f ∈ W−1,q
0 (BR), for all R > 0. Then, to every q-

generalized solution in the sense of Definition IV.1.2, we may associate a
pressure field p ∈ Lq(BR), all R > 0, such that

(∇v,∇ψ) − (p,∇ · ψ) = −[f ,ψ], for all ψ ∈ C∞
0 (Rn). (IV.2.24)

If, in particular, f ∈ D−1,q
0 (Rn), then p ∈ Lq(Rn) , and the following estimate

holds

‖p‖q ≤ c (|v|1,q + ‖f‖−1,q) .

We then have

Theorem IV.2.2 Given

f ∈ D−1,q
0 (Rn), g ∈ Lq(Rn), 1 < q <∞, n ≥ 2,

there exists at least one q-generalized solution, v to (IV.2.7). Moreover, de-
noting by p the pressure field associated to v by Lemma IV.2.1, we have

|v|1,q + ‖p‖q ≤ c (|f |−1,q + ‖g‖q) . (IV.2.25)
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If q ∈ (1, n), then v ∈ Lnq/(n−q)(Rn) and the following inequality holds

‖v‖nq/(n−q) + |v|1,q + ‖p‖q ≤ c (|f |−1,q + ‖g‖q) . (IV.2.26)

Finally, if v1 is a q1-generalized solution (1 < q1 < ∞, q1 possibly different
from q) corresponding to the same f and g, it follows that v1 = v + c1 a.e.
in Rn, for some constant vector c1, with c1 = 0 if q < n and q1 < n, and,
denoting by p1the pressure field associated to v1 by Lemma IV.2.1, we have
also p1 = p+ const. a.e. in Rn.

Proof. We begin to observe that if we prove the existence of a q-generalized
solution satisfying (IV.2.25), then the validity of (IV.2.26) follows from this
equation and Theorem II.7.6. We next notice that it is enough to show the
existence result for f , g ∈ C∞

0 (Rn) (fi satisfying (II.8.10) when q′ ≥ n, for
all i = 1, . . . , n). The general case will then follow by a standard density ar-
gument that uses (IV.2.25), the weak compactness property of spaces D1,q

0

(see Exercise II.6.2), Theorem II.8.1 and the density of C∞
0 (Rn) in Lq(Rn).

Actually, given f ∈ D−1,q
0 (Rn), g ∈ Lq(Rn), let {fk}, {gk} ⊂ C∞

0 (Rn) be two
sequences approximating f and g. If existence of a solution {vk, pk} is estab-
lished for each fk and gk, by (IV.2.25) and the weak compactness property of
D1,q

0 and Lq , 1 < q <∞ (see Exercise II.6.2 and Theorem II.2.4(ii)), we may

find two fields v ∈ D1,q
0 (Rn) and p ∈ Lq(Rn) such that, for all φ ∈ Lq′

(Ω),

lim
k→∞

(Di(vk)j , φ) = (Divj , φ), lim
k→∞

(pk, φ) = (p, φ), i, j = 1, . . .n,

and which, by Theorem II.2.4(i), obey (IV.2.25). Furthermore, since for any
k ∈ N

(∇vk,∇ψ) − (pk,∇ · ψ) = −[fk,ψ], for all ψ ∈ C∞
0 (Rn),

we take the limit k → ∞ into this identity and use the density properties of
C∞

0 into D−1,q
0 and Lq, thus proving existence in the general case. Therefore,

we need to show existence for smooth f and g only. In such a case, we know
that a solution to the problem is given by v = v1 + v2 + h, p = p1 + p2,
where h is defined in (IV.2.10) and v1 = U ∗ f , v2 = U ∗∆h, p1 = −q ∗ f ,
p2 = −q ∗∆h. From (IV.2.13) we obtain

|v2|1,q + |h|1,q ≤ c1‖g‖q (IV.2.27)

with c1 = c1(n, q). On the other hand, for fixed ρ > 0 and arbitrary ϕ ∈
Lq′

(Bρ) we have (extending ϕ to zero in Bc
ρ)

‖Di(v1)j‖q,Bρ = sup
‖ϕ‖q′≤1

|(Di(v1)j, ϕ)|

= sup
‖ϕ‖q′≤1

∣∣∣∣
∫

Rn

fr(y)

[∫

Rn

DiUrj(x− y)ϕ(x)dx

]
dy

∣∣∣∣
(IV.2.28)
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for all i, j = 1, . . . , n. From Theorem II.7.6 and the Calderón–Zygmund the-
orem it is easy to show that, for any i and j, the function φr ≡ DiUrj ∗ ϕ
belongs to D1,q′

0 (Rn) and that

‖∇φr‖q′,Rn ≤ c2‖ϕ‖q′,Bρ ,

where c2 = c2(n, q). From this inequality, (IV.2.28), and the fact that fr

satisfies (II.8.10) if q′ ≥ n, we deduce

‖∇v1‖q,Bρ ≤ c3|f |−1,q

which, since c3 is independent of ρ, in the limit ρ→ ∞ yields

|v1|1,q ≤ c3|f |−1,q. (IV.2.29)

with c3 = c3(n, q). As a consequence, (IV.2.25) follows from (IV.2.27),
(IV.2.29), and Lemma IV.2.1, and the existence proof is accomplished. It
is worth emphasizing that the solution v, p just considered for f , g ∈ C∞

0 (Rn)
is a smooth solution to (IV.2.7) and that it satisfies

v ∈ D1,r
0 (Rn), p ∈ Lr(Rn) for all r ∈ (1,∞).

With this in mind, we shall now show the uniqueness part. Let v1 be a q1-
generalized solution to (IV.2.7), corresponding to the same f and g. Setting

w ≡ v1 − v,

from the definition of s-generalized solution it follows that

(∇w,∇φ) = 0, for all φ ∈ D1,q′
1

0 (Rn) ∩ D1,q′

0 (Rn)

(w,∇ϕ) = 0, for all ϕ ∈ C∞
0 (Rn).

(IV.2.30)

By what we have shown, given F ∈ C∞
0 (Rn), corresponding to f ≡ F , g ≡

φ ≡ 0 there exists a smooth solution u, τ to (IV.2.7), which further satisfies

(u, τ ) ∈ D1,r
0 (Rn) × Lr(Rn), for all r ∈ (1,∞). (IV.2.31)

If r ≤ n/(n − 1), the function F must verify (II.8.10). We now multiply
(IV.2.7)1, written for u and τ , by ψRw where ψR is the Sobolev “cut-off”
function defined in (II.7.1). Integrating by parts over Rn, with the help of
Exercise II.4.3, we deduce for all sufficiently large R:

∫

Rn

ψR∇u : ∇w = −
∫

Rn

(∇ψR · ∇u ·w − τ∇ψRw) − (F ,w). (IV.2.32)

By the Hölder inequality, we have
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∣∣∣∣
∫

Rn

(∇ψR · ∇u ·w − τ∇ψRw)

∣∣∣∣ ≤
(
|u|1,q′

1
+ ‖τ‖q′

1

)
‖∇ψRv1‖q1, eΩR

+(|u|1,q′ + ‖τ‖q′) ‖∇ψRv‖q, eΩR
,

(IV.2.33)

where Ω̃R is defined in (II.7.3) and contains the support of ∇ψR. As shown
in the proof of Theorem II.7.1,

‖∇ψRv1‖q1
eΩR

+ ‖∇ψRv‖q, eΩR
→ 0 as R→ ∞ (IV.2.34)

and so, letting R → ∞ into (IV.2.32), from (IV.2.31), (IV.2.33), and (IV.2.34)
it follows that

(∇u,∇w) = (F ,w). (IV.2.35)

Because of (IV.2.30), we may now take ϕ = u into (IV.2.30) and use (IV.2.35)
to find

(F ,w) = 0, (IV.2.36)

which, by the arbitrarity of F , in turn implies w ≡ 0 a.e. in Ω, if both q1
and q are strictly less than n. Otherwise, since F has to satisfy (II.8.10), we
obtain w =const. a.e. in Ω. From (IV.2.24) we then recover τ = const. a.e.
in Ω, which completes the proof of the theorem. ut

IV.3 Existence, Uniqueness, and Lq-Estimates in a
Half-Space. Evaluation of Green’s Tensor

In this section we shall prove results similar to those of Theorem IV.2.1 and
Theorem IV.2.2 for the inhomogeneous Stokes problem in the half-space Rn

+,
n ≥ 2. Here the situation is complicated by the fact that the domain has a
boundary, even if a simple one. We begin to study the problem

∆W = ∇S

∇ ·W = 0

}
in Rn

+

W = Φ at Σ ≡ {x ∈ Rn : xn = 0},

(IV.3.1)

where Φ ∈ Cm(Σ) for some m ≥ 1, Φ = O(log |ξ|) as |ξ| → ∞,1 and DαΦ ∈
C(Σ), 1 ≤ |α| ≤ m. To this end, we introduce with Odqvist (1930, §2) the
Stokes double-layer potentials (for the half-space)

Wj(x) = 2

∫

Σ

Φi(y)

[
−δikqj(x− y) +

∂Uij(x− y)

∂yk
+
∂Ukj(x− y)

∂yi

]
nkdσy

S(x) = −4

∫

Σ

Φi(y)
∂qk(x− y)

∂yi
nkdσy,

(IV.3.2)

1 We could allow Φ to “grow” faster. Such a weaker assumption, however, would
be unessential for further purposes.
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where n (= −en) is the outer normal to Σ.2 Recalling the expressions (IV.2.3)
and (IV.2.4) of the Stokes fundamental solution, (IV.3.2) can be rewritten as

Wj(x) =

∫

Σ

Kij(x
′ − y′, xn)Φi(y

′)dy′

S(x) = −Di

∫

Σ

k(x′ − y′, xn)Φi(y
′)dy′

(IV.3.3)

with z′ = (z1, . . . , zn−1) and

Kij(x
′ − y′, xn) =

2

ωn

xn(xi − yi)(xj − yj)

(|x′ − y′|2 + x2
n)(n+2)/2

, yn = 0,

k(x′ − y′, xn) =
4

nωn

xn

(|x′ − y′|2 + x2
n)n/2

, yn = 0.

(IV.3.4)

We easily show that W and S are C∞ solutions to (IV.3.1)1,2. In fact, it is
clear that W and S are smooth; in addition, since q is harmonic (for x 6= y)
from (IV.2.5) and (IV.3.2)1 we find

∆Wj(x) = −2

∫

Σ

Φi(y)

[
∂2qj(x − y)

∂yk∂xi
+
∂2qj(x− y)

∂xk∂yi

]
nkdσy

and, by (IV.2.2)2 ,

∂Wj(x)

∂xj
= 2

∫

Σ

Φi(y)

[
−δik

∂qj(x− y)

∂xj
+
∂2Uij(x− y)

∂xj∂yk
+
∂2Ukj(x− y)

∂xj∂yi

]
nkdσy

= −2

∫

Σ

Φn(y)
∂qj(x− y)

∂xj
dσy .

However, it is immediately checked that

∂qi

∂xj
=
∂qj

∂xi
,
∂qi

∂yj
=
∂qj

∂yi
,
∂qi

∂yj
= − ∂qi

∂xj
,
∂qi

∂xi
=
∂qi

∂yi
= 0 , x 6= y ,

and so,we deduce that (IV.3.1)1,2 are satisfied. Also, for all x′ ∈ Rn−1 we can
prove

lim
xn→0

W (x′, xn) = Φ(x′). (IV.3.5)

Actually, for fixed ξ ∈ Rn−1, we take an n− 1-dimensional ball Cε, centered
at ξ such that

sup
y∈Cε

|Φ(ξ) −Φ(y)| < ε. (IV.3.6)

By a direct calculation based on (IV.3.4)1, one shows that the following rela-
tions hold:
2 The functions (IV.3.2) are the analogue of the familiar Poisson integral for the

Dirichlet problem for Laplace equation in the half-space, considered at the end
of Section II.11.
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(i)

∫

Cε

Kij(ξ − y′, xn)dy′ = δij + o(1) as xn → 0,

(ii)

∫

Σ

|Kij(ξ − y′, xn)|dy′ ≤ c

with c independent of xn and ξ. Likewise, using the growth properties of Φ,
we obtain

(iii)

∫

Σ−Cε

Kij(ξ − y′, xn)Φi(y
′)dy′ = o(1) as xn → 0.

Therefore, using (i) and (iii) we recover as xn → 0

Wj(ξ, xn) − Φj(ξ) =

∫

Cε

Kij(ξ − y′, xn)Φi(y
′)dy′ − Φj(ξ)

+

∫

Σ−Cε

Kij(ξ − y′, xn)Φi(y
′)dy′

=

∫

Cε

Kij(ξ − y′, xn)[Φi(y
′) − Φi(ξ)]dy

′ + o(1),

which, in view of (IV.3.6) and (ii), in turn implies

lim sup
xn→0

|W (ξ, xn) −Φ(ξ)| ≤ c ε.

By the arbitrarity of ε, we deduce (IV.3.5).
We wish to determine some Lq-estimates for W and S in terms of Φ

analogous to those derived for the Dirichlet problem for the Laplace equation
at the end of Section II.11, and which for problem (IV.3.1) were proved for
the first time by Cattabriga (1961). To be specific, we shall deal with the case
n = 3, the general case being treated similarly. For |α| ≤ m, from (IV.3.3) we
have

D′αWj(x) =

∫

Σ

Kij(x
′ − y′, xn)D′αΦi(y

′)dy′

D′αS(x) = −Di

∫

Σ

k(x′ − y′, xn)D′αΦi(y
′)dy′,

(IV.3.7)

where

D′α ≡ ∂|α|

∂xα1

1 ∂xα2

2 . . . ∂x
αn−1

n−1

, α1 + α2 + . . .+ αn−1 = |α|. (IV.3.8)

We observe that from (IV.3.4) it follows that Kij(x
′, x3), i, j = 1, 2, 3, and

k(x′, x3) are of class C∞ for x3 > 0, with bounded derivatives of any order in
the hemisphere {|x|2 = 1, x3 > 0}. Moreover, since
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Kij(x
′, x3) =

3

2π

xi

|x|
xj

|x|
x3

|x|
|x|2 ≡

Ωij

(
x′

|x| ,
x3

|x|

)

|x|2

k(x′, x3) =
1

π

x3

|x|
|x|2 ≡

ω

(
x′

|x| ,
x3

|x|

)

|x|2

and observing that

Ωij(x
′, 0) = ω(x′, 0) = 0 for all x′ 6= 0,

we conclude that Kij and k satisfy all assumptions of Theorem II.11.6. So, if
DαΦ is in Lq(Σ) and has finite 〈〈DαΦ〉〉1−1/q,q norm, 1 < q <∞, we obtain

∇D′αW , D′αS ∈ Lq(Rn
+)

together with the following estimate

|D′αW |1,q + ‖D′αS‖q ≤ c 〈〈DαΦ〉〉1−1/q,q, (IV.3.9)

where c depends only on q, n (=3), and α. A similar inequality also valid for
x3-derivatives can be easily obtained using (IV.3.9) and the fact that W , S
is a solution to (IV.3.1). Let us consider the case |α| = 1. Differentiating
(IV.3.1)2 with respect to x3 and employing (IV.3.9), we have

‖D2
3W3‖q ≤ ‖D3D2W2‖q + ‖D3D1W1‖q ≤ 2c〈〈∇Φ〉〉1−1/q,q. (IV.3.10)

Moreover, setting

W ′ = (W1,W2), ∆′ =
∂2

∂x2
1

+
∂2

∂x2
2

, ∇′ =

(
∂

∂x1
,
∂

∂x2

)

from (IV.3.1)1 we obtain

∆W3 = D3S

D2
3W

′ = −∆′W ′ + ∇′S

and thus, again by (IV.3.9),

‖D2
3W

′‖q + ‖D3S‖q ≤ 8c〈〈∇Φ〉〉1−1/q,q,

which, along with (IV.3.10), proves the desired estimate; that is,

|W |2,q + |S|1,q ≤ c〈〈∇Φ〉〉1−1/q,q,

where c depends only on n, α, and q. More generally, if |α| ≥ 1, one can use
a similar argument (which we leave to the reader) to show the inequality
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|W |k+1,q + |S|k,q ≤ c
∑

|α|=k

〈〈DαΦ〉〉1−1/q,q, (IV.3.11)

where 0 ≤ k ≤ m. If q ∈ (1, n) we may obtain a sharper estimate. In fact,
from Theorem II.6.3(i) and (IV.3.11), we deduce, in particular, the existence

of constant vectors W (α) such that
∑

|α|=k

‖DαW −W (α)‖nq/(n−q) ≤ c
∑

|α|=k

〈〈DαΦ〉〉1−1/q,q .

However, by direct inspection, from (IV.3.3)1 and (IV.3.5)1, we have DαW →
0 as xn → ∞, |α| ≥ 0 which, in turn, implies (as the reader will easily show)

W (α) = 0. Therefore, we conclude

|W |k,nq/(n−q) + |W |k+1,q + |S|k,q ≤ c
∑

|α|=k

〈〈DαΦ〉〉1−1/q,q, if q ∈ (1, n) .

(IV.3.12)

The results proved so far continue to hold if we weaken somewhat the
regularity assumptions made on Φ. For later purposes (see Section IV.5) it is
interesting to consider the case when

Φ ∈Wm,q(Σ) with
∑

|α|=m

〈〈DαΦ〉〉1−1/q,q <∞.

Under these hypotheses it is simple to show that (IV.3.2) is still a C∞-solution
of (IV.3.1)1,2 though, of course, the boundary value is now attained a priori
in a way less regular than (IV.3.5), that is (see Exercise IV.3.1),

lim
xn→0

∫

C
|W (x′, xn) −Φ(x′)|qdx′ = 0, (IV.3.13)

where C is any compact subset of Σ. Furthermore, since by the results of
Exercise II.10.1 it follows that 〈〈DαΦ〉〉1−1/q,q is finite for all |α| ∈ [0, m], we
conclude that

Dα∇W , DαS ∈ Lq(Rn
+),

and that inequality (IV.3.11) holds for these values of α.

We may thus summarize all previous results in the following.

Lemma IV.3.1 Let Φ ∈ Cm(Σ), m ≥ 1, with Φ(ξ) = O(log |ξ|) as |ξ| →
∞ and DαΦ ∈ C(Σ), 1 ≤ |α| ≤ m. Then the functions W , S defined by
(IV.3.3), (IV.3.4) are of class C∞ in Rn

+ and satisfy there (IV.3.1) and (IV.3.5).
Moreover, if Φ ∈ Dk,q(Σ) and

∑
|α|=k〈〈DαΦ〉〉1−1/q,q is finite for some integer

k ∈ [0, m], 1 < q <∞, then

(i) |W |k+1,q and |S|k,q are finite, and, if q ∈ (1, n), also |W |k,nq/(n−q) is finite ;
(ii)W , S satisfy inequalities (IV.3.11), (IV.3.12).
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Likewise, let

Φ ∈Wm,q(Σ) with
∑

|α|=m

〈〈DαΦ〉〉1−1/q,q <∞.

Then W , S satisfy (IV.3.1), (IV.3.13) and statements (i) and (ii) hold for all
integers k ∈ [0, m].

Exercise IV.3.1 Show the validity of condition (IV.3.13). Hint: Use the same ar-

guments adopted in the proof of (IV.3.5).

We shall next consider the problem

∆w = ∇s+ f

∇ ·w = g

}
in Rn

+

v = 0 at Σ,

(IV.3.14)

where f , g ∈ C∞
0 (Rn

+) and shall prove the existence of a solution verifying
suitable estimates in terms of the data. This will be done by reducing (IV.3.14)
to (IV.3.1) and then using Lemma IV.3.1. First, we make extensions fr and
gr of f and g to the whole of Rn in the way suggested in Exercise II.3.10, so
that f r, gr ∈ Cr+1

0 (Rn) for sufficiently large r and

‖Dβf r‖q,Rn ≤ c‖Dβf‖q,Rn
+

‖Dβgr‖q,Rn ≤ c‖Dβg‖q,Rn
+

0 ≤ |β| ≤ r + 1, (IV.3.15)

where c depends only on r, n, and q. Successively, we look for a solution of
the form

w = w1 + W̃ , s = s1 + S̃ , (IV.3.16)

where w1, s1 is the solution to (IV.2.7) with f ≡ f r and g ≡ gr, and whose

existence is ensured by Theorem IV.2.1, while W̃ , S̃ solve

∆W̃ = ∇S̃

∇ · W̃ = 0



 in Rn

+

W̃ = −w1 at Σ.

(IV.3.17)

We shall show that Φ ≡ −w1|Σ satisfies the assumptions of the first part

of Lemma IV.3.1. Therefore, by that lemma, W̃ , S̃ will obey, in particular,
estimate (IV.3.11). From Theorem IV.2.1 it follows that Φ ∈ C∞(Σ). More-
over, Φ(ξ) = O(log |ξ|) and DαΦ ∈ C0(Σ) for all |α| ∈ [1, s] if n = 2, while
Φ ∈ Cm(Σ) for all m ∈ [0, s] if n = 3. Let us now prove that for any |α| ∈ [1, s]
and any q > 1
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DαΦ ∈ Lq(Σ),

〈〈DαΦ〉〉1−1/q <∞,
(IV.3.18)

so that all the hypotheses of the first part of Lemma IV.3.1 are fulfilled.
Recalling that w1 is given by (IV.2.8)1 with F ≡ fr −∆hr = fr−∇gr where
hr is given by (IV.2.10) with gr in place of g, from (IV.2.12)2 we find

DαΦ(x′) = O(|x′|−n+1) as |x′| → ∞.

This property, along with the fact that DαΦ ∈ C0(Σ), implies (IV.3.18)1. On
the other hand, using Theorem II.10.2 and Theorem IV.2.1, it follows that,
for all |α| ≥ 0,

〈〈Dα∇w1〉〉1−1/q,q ≤ c ‖Dα∇w1‖q,Rn
+

≤ c (‖Dαf r‖q,Rn + ‖Dαgr‖q,Rn) .
(IV.3.19)

We may thus apply Lemma IV.3.1 and use (IV.3.16), (IV.3.19), (IV.3.15), and
Theorem IV.2.1 to obtain for all ` ≥ 0

|w|`+2,q + |s|`+1,q ≤ |w1|`+2,q + |s1|`+1,q + |W̃ |`+2,q + |S̃|`+1,q

≤ c (|f|`,q + |g|`+1,q) ,
(IV.3.20)

where c depends only on q, `, and n. As in the proof of the previous lemma,
we observe that, if q ∈ (1, n), from Theorem II.6.3, the fact that Dαw → 0 as
xn → ∞, |α| ≥ 0, and (IV.3.20), we deduce that |w|`+1,nq/(n−q) is finite and
that

|w|`+1,nq/(n−q) ≤ c (|f|`,q + |g|`+1,q) . (IV.3.21)

By using exactly the same procedure employed for Theorem IV.2.1, based
on the density of C∞

0 (Rn
+) in W l,t(Rn

+), inequalities (IV.3.20) and (IV.3.21),

and the functional properties of spaces Ḋm,q(Rn
+), we can extend the results

just proved to the case where

f ∈ Wm,q(Rn
+), g ∈ Dm+1,q(Rn

+) , m ≥ 0 , 1 < q <∞ . (IV.3.22)

Clearly, the corresponding solution, that we continue to denote by w, s, is
such that

w ∈
m⋂

`=0

D`+2,q(Rn
+), s ∈

m⋂

`=0

D`+1,q(Rn
+), (IV.3.23)

and, if q ∈ (1,∞),

w ∈
m⋂

`=0

D`+1,nq/(n−q)(Rn
+) . (IV.3.24)

Thus, in particular, by Lemma II.6.1,
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w ∈ Wm+2,q(C), s ∈Wm+1,q(C),

for all (open) cubes C ⊂ Rn
+. Finally, w and s satisfy (IV.3.20), and, if q ∈

(1, n), (IV.3.21) for all ` ∈ [0, m], and w has zero trace at the boundary.

We have therefore proved

Lemma IV.3.2 For any f , g in the class defined by (IV.3.22), there exists a
solution w, s a.e. to the nonhomogeneous Stokes system (IV.3.14) such that

w ∈Wm+2,q(C), s ∈Wm+1,q(C) ,

for all open cubes C ⊂ Rn
+. Moreover, w, s satisfy (IV.3.23) and, if q ∈ (1, n),

also (IV.3.24). In addition, for every ` ∈ [0, m], the following inequality holds:

|w|`+2,q + |s|`+1,q ≤ c (|f |`,q + |g|`+1,q) . (IV.3.25)

If q ∈ (1, n), we also have:

|w|`+1,nq/(n−q) + |w|`+2,q + |s|`+1,q ≤ c (|f |`,q + |g|`+1,q) . (IV.3.26)

In the above inequalities, c = c(n, `, q).

The next step is to prove uniqueness for such solutions. In this respect,
the general result proved in the following theorem is appropriate.

Theorem IV.3.1 Let u ∈Wm+2,q(C), π ∈Wm+1,q(C) (m ≥ 0, C arbitrary
open cube in Rn

+, n ≥ 2) be a solution a.e. to the Stokes system (IV.3.14)
with f ≡ g ≡ 0. Assume |u|`+2,q finite for some ` ≥ 0 and some q ∈ (1,∞).
Then

|u|`+2,q = |π|`+1,q = 0.

In particular, if ` = 0, then

u = axn, π = const.

with a = (a1, . . . , an−1, 0) constant vector.

Proof. To fix the ideas, we shall consider the case n = 3 and ` = 0, the general
case being handled in a completely analogous way. As in the proof of Theorem
IV.2.1, we obtain at once that π is harmonic throughout the half-space. Let
uε′ and πε′be the regularizations of u and π, respectively, with respect to
x′ = (x1, x2). It is readily shown that, for all ε′ > 0, uε′ and πε′ satisfy the
same boundary-value problem as u, π and that

w ≡ D′2uε′ , s ≡ D′2πε′

with D′ defined in (IV.3.8), are solutions to the following problem
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∆w = ∇s

∇ ·w = 0

}
in R3

+

w = 0 at Σ ≡ R2 × {0}.

(IV.3.27)

By assumption and the properties of mollifiers one shows

w, s, D2w,∇s ∈ Lq(R3
+)

and, therefore, by a simple interpolation,

w ∈ W 2,q(R3
+);

(see Exercise IV.3.2). Let now f ∈ C∞
0 (R

3

+) and let v, p be the corresponding
solution determined in Lemma IV.3.2 with g ≡ 0. Evidently,

v1 ≡ D′2v, p1 ≡ D′2p

solve (IV.3.14) with f replaced by D′2f and g ≡ 0. Moreover,

v1 ∈W 2,q′
(R3

+), p1 ∈ W 1,q′
(R3

+).

We next multiply (IV.3.27)1 by v1, integrate by parts, and use Theorem III.1.2
to obtain

0 =

∫

R3
+

w ·D′2f =

∫

R3
+

D′2w · f .

Since f is arbitrary from C∞
0 (R

3
+) and w ∈ Lq(R3

+), from this relation and
(IV.3.27) we derive, in particular, for all x ∈ R3

+ and all ε′ > 0

w(x) ≡ D′2uε′(x) = 0

D′2πε′(x) = cε′ ,
(IV.3.28)

where cε′ depends only on ε′. Since πε′ is harmonic throughout R3
+ with ∇πε′ ∈

Lq(R3
+) we deduce with the help of (IV.3.28)2 that πε′ must be constant

with respect to x, for all ε′ > 0, which finally gives π = const. This being
established, from

∆uε′ = ∇πε′

it follows that uε′ is harmonic throughout the half-space. Recalling that
D2u ∈ Lq(R3

+) and uε′ = 0 at Σ, from the property of mollifiers and Re-
mark II.11.3 it is easy to show that D2u ≡ 0, i.e., u = u0 +U0 · x, where u0

andU0 are a constant vector and a constant 3×3 matrix, respectively. Since u
is zero at Σ and ∇ ·u = 0 in R3

+ one obtains, in conclusion, u = x3(a1, a2, 0),
for some a1, a2 ∈ R. The proof of the theorem is thus complete. ut
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On the strength of the results shown so far, we can prove the following
theorem, which represents the analogue of Theorem IV.2.1 for the half-space.

Theorem IV.3.2 Let Σ = {x ∈ Rn : xn = 0}. For every

f ∈ Wm,q(Rn
+), g ∈ Dm+1,q(Rn

+)

and
Φ ∈Wm+1,q(Σ) with

∑

|α|=m+1

〈〈DαΦ〉〉1−1/q,q finite,

m ≥ 0, 1 < q <∞, n ≥ 2, there exists a pair of functions v, p such that

v ∈ Wm+2,q(C), p ∈Wm+1,q(C),

for all open cubes C ⊂ Rn
+, solving a.e. the following nonhomogeneous Stokes

system
∆v = ∇p+ f

∇ · v = g

}
in Rn

+

v = Φ at Σ.

(IV.3.29)

Moreover, for all ` ∈ [0, m], the seminorms |v|`+2,q and |p|`+1,q are finite and
we have

|v|`+2,q + |p|`+1,q ≤ c
(
|f|`,q + |g|`+1,q +

∑

|α|=`+1

〈〈Dαφ〉〉1−1/q,q

)
. (IV.3.30)

If, in particular, q ∈ (1, n), then also |v|`+1,nq/(n−q) is finite, and, for all
` ∈ [0, m], we have

|v|`+1,nq/(n−q)+|v|`+2,q+|s|`+1,q ≤ c
(
|f |`,q+|g|`+1,q+

∑

|α|=`+1

〈〈Dαφ〉〉1−1/q,q

)
.

(IV.3.31)
In the above inequalities c = c(n, q,m). Furthermore, if v1, p1 is another
solution to (IV.3.29) corresponding to the same data and, for some ` ∈ [0, m],
|v1|`+2,q is finite, then |v − v1|`+2,q = |p − p1|`+1,q = 0. In particular, if
` = 0, there exists a vector a = (a1, . . . , an−1, 0) such that v = v1 + axn,
p = p1+const. Finally, if ` = 0, q ∈ (1, n) and |v1|1,nq/(n−q) is finite,3 then
a = 0.

Proof. A solution to (IV.3.29) is given by v = W + w, p = S + s, where
W , S and w, s are given in Lemma IV.3.1 and Lemma IV.3.2. Then, from
those lemmas, we deduce that v, p possesses all the properties claimed in the

3 Notice that, by Theorem II.6.3(i), we can find a uniquely determined c ∈ R
n such

that ‖∇v1 + c‖nq/(n−q) is finite. So, the request is that c = 0.
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statement. This concludes the proof of existence. Concerning uniqueness, in
view of Theorem IV.3.1 we have only to discuss the case when a = 0. But this
is obvious, since, under the stated assumptions, ∇(v − v1) ∈ Lnq/(n−q)(Rn

+).
The proof of the theorem is complete. ut

Exercise IV.3.2 Let u ∈ Lq(Rn
+) with D2u ∈ Lq(Rn

+), 1 < q < ∞. Show that

∇u ∈ Lq(Rn
+). Hint: Use Ehrling’s inequality (II.5.20) on every unitary cube in R

n
+.

Our next task is to prove existence of q-generalized solutions to problem
(IV.3.29). In complete analogy with Definition IV.2.1, by this latter we mean
a field v such that

(i) v ∈ D1,q(Rn
+);

(ii) (∇v,∇ϕ) = −[f ,ϕ], for all ϕ ∈ D1,q′

0 (Rn
+);

(iii) (v,∇ϕ) = −(g, ϕ), for all ϕ ∈ C∞
0 (Rn

+);
(iv) v obeys (IV.3.29)3 in the trace sense (see (IV.3.13)).

In view of Lemma IV.1.1, if f ∈ W−1,q
0 (C), for all open cubes C ⊂ Rn

+,
then, to every q-generalized solution we may associate a pressure field p ∈
Lq

loc(R
n
+) such that

(∇v,∇ψ) − (p,∇ ·ψ) = −[f ,ψ], for all ψ ∈ C∞
0 (Rn).

Moreover, if f ∈ D−1,q
0 (Rn

+), then p ∈ Lq(Rn
+).

We have

Theorem IV.3.3 Given

f ∈ D−1,q
0 (Rn

+), g ∈ Lq(Rn
+)

and
Φ ∈ Lq(Σ) with 〈〈Φ〉〉1−1/q,q finite,

1 < q <∞, n ≥ 2, there exists at least one q-generalized solution to (IV.3.29).
Moreover, this solution satisfies the inequality

|v|1,q + ‖p‖q ≤ c
(
|f |−1,q + ‖g‖q + 〈〈φ〉〉1−1/q,q

)
, (IV.3.32)

where the constant c depends only on q and n. Finally, if v1 is a q1-generalized
solution (1 < q1 <∞, q1 possibly different from q) corresponding to the same
f , g, and Φ, it follows that v1 ≡ v a.e. in Rn

+ and, consequently, denoting
by p1the pressure field associated to v1 by Lemma IV.1.1, we also have p1 ≡
p+ const a.e. in Rn

+.

Proof. We first show existence. As we know, if f , g ∈ C∞
0 (Rn

+), a smooth
solution to (IV.3.29) is given by

v = v1 +W , p = p1 + S,
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where
v1i(x) = hi(x) + Uik ∗ (fsk −Dkgs)(x) ≡ hi(x) + Ai(x)

Wi(x) =

∫

Σ

Kij(x
′ − y′, xn)Aj(y

′, 0)dy′

+

∫

Σ

Kij(x
′ − y′, xn)[Φj(y

′) − hj(y
′, 0)]dy′

≡ Bi(x) + bi(x)

p1(x) = −qi ∗ (fsi −Digs)(x)

S(x) = Dj

∫

Σ

k(x′ − y′, xn)Aj(y
′, 0)dy′

−
∫

Σ

k(x′ − y′, xn)[Φj(y
′) − hj(y

′, 0)]dy′.

Moreover, h is defined in (IV.2.10) while fs and gs are smooth extensions of
f and g to Rn satisfying (IV.3.15). Since h(y′, 0) ∈ Lq(Σ), by Lemma IV.3.1
we find

|b|1,q ≤ c1
(
〈〈φ〉〉1−1/q,q + ‖g‖q

)
. (IV.3.33)

Let us now estimate the term A+B. For fixed ϕ ∈ C∞
0 (Bρ), we have

I ≡ (D`(Ai +Bi), ϕ) ≡
∫

Rn
+

ϕ(x)D`

{∫

Rn

Uik(x− y)[fsk(y) −Dkgs(y)]dy

−
∫

Σ

Kij(x
′ − η′, xn)Aj(η

′, 0)dη′
}

=

∫

Rn
+

ϕ(x)D`

{∫

Rn

Uik(x− y)[fsk(y) −Dkgs(y)]dy

−
∫

Σ

Kij(x
′η′, x3)

[∫

Rn

Uik(η′ − y′, yn)[fsk(y)−Dkgs(y)]dy

]
dη′
}
dx

and, therefore, after integration by parts, we arrive at

I =

∫

Rn

[fsk(y) −Dkgs(y)]D`zikdy (IV.3.34)

with

zik(y)=

∫

Rn
+

{
Uik(x− y) −

∫

Σ

Kij(x
′−η′, x3)Ujk(η′ − y′, yn)dη′

}
ϕ(x)dx.

Denote by Zik(x, y) the function in curly brackets in this integral. It is easy
to show that, for every fixed y ∈ R

n
−, it holds that
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Zik(x, y) = 0, for all x ∈ Rn
+. (IV.3.35)

Actually, for y ∈ R
n

−, by what we already proved in this section and the
properties of the tensor U , both

Uik(x− y)

and ∫

Σ

Kij(x
′ − η′, xn)Ujk(η′ − y′, yn)dη′

as functions of x solve the Stokes system in Rn
+ and assume the same value

at Σ. Moreover, they both have second derivatives that are summable in Rn
+

to the qth power, 1 < q <∞. Therefore, by Theorem IV.3.1, their difference
d(x) (say) can be at most a (suitable) linear function of xn. However, as is
immediately seen, d(x) tends to zero as xn tends to infinity and (IV.3.35) is
therefore established. Setting

ζ`ik(y) ≡ D`zik(y),

from (IV.3.35) we obtain, in particular,

ζ`ik(y) = 0, for all y ∈ R
n

−. (IV.3.36)

We shall show next that ζ`ik ∈ D1,q(Rn
+) and

|ζ`ik|1,q ≤ c‖ϕ‖q,Bρ (IV.3.37)

for some c independent of ρ. To this end, we observe that

ζ`ik = D`

∫

Rn

Uik(x− y)ϕ(x)dx +D`

∫

Σ

Ujk(η′ − y′, yn)χij(η
′, 0)dη′

≡ ζ(1) + ζ(2),
(IV.3.38)

where

χij(η
′, ηn) =

∫

Rn
+

Kij(x
′ − η′, xn − ηn)ϕ(x)dx. (IV.3.39)

By the Calderón–Zygmund theorem, we have

|ζ(1)|1,q ≤ c1‖ϕ‖q,Bρ (IV.3.40)

with c1 = c1(q, n). Moreover, it is not difficult to show the following two
statements:

(i) Ujk(η′−y′ , yn) satisfies the assumptions made on the kernel k in Theorem
II.11.6;

(ii)χij(η
′, 0) ∈ Lq(Σ).
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We may therefore apply Theorem II.11.6 to deduce

|ζ(2)|1,q ≤ c2 max
i,j

〈〈χij(η
′, 0)〉〉1−1/q,q (IV.3.41)

with c2 = c2(q, n). Applying the trace Theorem II.10.2, from (IV.3.41) we
recover

|ζ(2)|1,q ≤ c3 max
i,j

|χij|1,q. (IV.3.42)

However, employing Lemma II.11.1, it readily follows that for each fixed m, i,
and j the kernels DmKij are linear combinations of kernels, each satisfying
the hypotheses of the Calderón–Zygmund theorem, so that from (IV.3.39) it
follows that

|χij|1,q ≤ c4‖ϕ‖q,Bρ ,

with c4 = c4(q, n). This inequality, together with (IV.3.42), furnishes

|ζ(2)|1,q ≤ c5‖ϕ‖q,Bρ ,

which, along with (IV.3.40), proves (IV.3.37). In view of Theorem II.7.7, from
(IV.3.36) and (IV.3.37) we conclude

ζ`ik ∈ D1,q
0 (Rn

+)

|ζ`ik|1,q ≤ c6‖ϕ‖q,Bρ

(IV.3.43)

for a constant c6 independent of ρ. With a view to (IV.3.43) and (IV.3.36),
from equation (IV.3.34) we derive

|I| ≡ |(D`(Ai + Bi), ϕ) ≤ c7|fs −∇gs|−1,q,Rn
+
‖ϕ‖q,Bρ

≤ c7

(
|f |−1,q,Rn

+
+ ‖g‖q,Rn

+

)
‖ϕ‖q,Bρ ,

so that, by the arbitrariness of ϕ and ρ, we obtain

|A+B|1,q ≤ c8 (|f|−1,q + ‖g‖q) . (IV.3.44)

From (IV.2.13), (IV.3.33), and (IV.3.44) we then conclude

|v|1,q ≤ c9
(
|f |−1,q + ‖g‖q + 〈〈φ〉〉1−1/q,q

)
.

By similar argument one shows

‖p‖q ≤ c9
(
|f|−1,q + ‖g‖q + 〈〈φ〉〉1−1/q,q

)

and thus the existence proof is complete, at least for smooth f and g. If
f and g merely satisfy the assumptions formulated in the theorem, we can
easily establish existence by means of the estimate (IV.3.32) and the usual
density argument which, this time, makes use of Theorem II.8.1. The proof
of uniqueness is entirely analogous to that given in Theorem IV.2.2 and it is
therefore omitted. The theorem is completely proved. ut
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A simple, interesting consequence of Theorem IV.3.3 is the following.

Corollary IV.3.1 Given

g ∈ Lq(Rn
+) ∩ Lq1 (Rn

+), 1 < q, q1 <∞,

there exists v ∈ D1,q
0 (Rn

+) ∩D1,q1

0 (Rn
+) such that

∇ · v = g in Rn
+

|v|1,r ≤ c ‖g‖r, r = q, q1,
(IV.3.45)

where c = c(n, r).

In the last part of this section we shall provide the Green’s tensor (of the
first kind) for the Stokes system in the half-space. We look for a tensor field
G(x, y) = {Gij(x, y)} and for a vector field g(x, y) = {gj(x, y)} such that for
all j = 1, . . . , n:

∆xGij(x, y) +
∂gj(x, y)

∂xi
= 0, x, y ∈ Rn

+, x 6= y

∂Gij(x, y)

∂xi
= 0, x, y ∈ Rn

+

Gij(x, y) = 0, x ∈ Σ ≡Rn−1×{0}, y ∈ Rn
+

lim
|x|→∞

Gij(x, y) = 0, y ∈ Rn
+,

and, moreover, as |x− y| → 0

Gij(x, y) = Uij(x − y) + o(1), gj(x, y) = qi(x− y) + o(1),

where U , q is the Stokes fundamental solution (IV.2.3), (IV.2.4). The pair
G, g is the Green’s tensor for the Stokes problem in the half-space and is the
vector counterpart of the Green’s function for the Laplace operator given in
(III.1.35). We can provide an explicit form of G and g, see, e.g., Maz’ja,
Plamenevskǐi, & Stupyalis (1974, Appendix 1), and one has for j = 1, . . . , n
and y∗ = (y1, . . . ,−yn)

Gij(x, y) = Uij(x− y) − Uij(x− y∗) +Wij(x, y), i = 1, . . .n− 1

Gnj(x, y) = Unj(x− y) + Unj(x− y∗) +Wnj(x, y),

gi(x, y) = qi(x− y) − qi(x− y∗) − ti(x, y), i = 1, . . .n− 1

gn(x, y) = qn(x − y) + qn(x− y∗) − tn(x, y)
(IV.3.46)
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where Wij(x, y), ti(x, y) satisfy for all j = 1, . . . , n 4

Wij(x, y) = −
∫

Σ

Knj(x
′ − η′, xn)[Uin(η′ − y′,−yn)

−Uin(η′ − y′, yn)]dη′, i = 1, . . . , n− 1

Wnj(x, y) = −
∫

Σ

Knj(x
′ − η′, xn)[Unn(η′ − y′,−yn)

−Unn(η′ − y′, yn)]dη′,

ti(x, y) = −Dn

∫

Σ

k(x′ − η′, xn)[Uin(η′ − y′,−yn)

−Uin(η′ − y′, yn)]dη′, i = 1, . . . , n− 1

tn(x, y) = −Dn

∫

Σ

k(x′ − η′, xn)[Unn(η′ − y′,−yn)

−Unn(η′ − y′, yn)]dη′,

(IV.3.47)

where the kernels Kij and k are defined in (IV.3.4). In particular, one finds
for n = 3:

Wij(x, y) =
x3y3
4π

∂2

∂xj∂yi

(
1

|x− y∗|

)
, i, j = 1, 2,

W3j(x, y) = −x3

4π

∂

∂xj

(
1

|x− y∗|

)
+
x3y3
4π

∂2

∂xj∂y3

(
1

|x− y∗|

)
, j = 1, 2,

Wi3(x, y) = − y3
4π

∂

∂yi

(
1

|x− y∗|

)
+
x3y3
4π

∂2

∂x3∂yi

(
1

|x− y∗|

)
, i = 1, 2,

W33(x, y) =
1

4π|x− y∗| −
x3

4π

∂

∂x3

(
1

|x− y∗|

)
− y3

4π

∂

∂y3

(
1

|x− y∗|

)

+
x3y3
4π

∂2

∂x3∂y3

(
1

|x− y∗|

)
,

ti(x, y) =
y3
2π

∂2

∂x3∂yi

(
1

|x− y∗|

)
, i = 1, 2,

t3(x, y) = − 1

2π

∂

∂x3

(
1

|x− y∗|

)
+
y3
2π

∂2

∂x3∂y3

(
1

|x− y∗|

)
,

(IV.3.48)

4 Uij(x−y∗) is regular for all x, y ∈ R
n
+. Notice that, unlike the analogous Green’s

function for the Laplace operator, the function

Uij(x− y) − Uij(x− y∗)

cannot be taken as the Green tensor for the Stokes problem, since the solenoidality
condition is not satisfied. Thus, we must modify it by adding functions Wij .
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while, for n = 2:

W11(x, y) =
x2y2
2π

∂2

∂x1∂y1

(
ln

1

|x− y∗|

)
,

W21(x, y) = −x2

2π

∂

∂x1

(
ln

1

|x− y∗|

)
+
x2y2
4π

∂2

∂x1∂y2

(
ln

1

|x− y∗|

)
,

W12(x, y) = − y2
2π

∂

∂y1

(
ln

1

|x− y∗|

)
+
x2y2
2π

∂2

∂x2∂y1

(
ln

1

|x− y∗|

)
,

W22(x, y) =
1

2π
ln

1

|x− y∗| −
x2

2π

∂

∂x2

(
ln

1

|x− y∗|

)

− y2
2π

∂

∂y2

(
ln

1

|x− y∗|

)
+
x2y2
2π

∂2

∂x2∂y2

(
ln

1

|x− y∗|

)
,

t1(x, y) = − y2
2π

∂2

∂x2∂y1

(
ln

1

|x− y∗|

)
,

t2(x, y) = − y2
2π

∂2

∂x2∂y2

(
ln

1

|x− y∗|

)
.

(IV.3.49)
From (IV.3.46)–(IV.3.49) we wish to single out some estimates for G, g that
will be useful later. Precisely, by a simple computation, we find for n = 3,

|DαGij(x, y) ≤ |x− y|−1−|α|

|Dαgi(x, y) ≤ |x− y|−2−|α|
(IV.3.50)

and for n = 2,

|Dαgi(x, y)| + |DkD
αGij(x, y)| ≤ c|x− y|−1−|α|, (IV.3.51)

where |α| ≥ 0, c = c(n) and Dα, Dk are acting either on x or y.

Exercise IV.3.3 Starting from (IV.3.46), (IV.3.47), prove the following estimates
for all n ≥ 3 and all |α| ≥ 0

|DαGij(x, y)| ≤ c|x− y|−n−|α|+2

|Dαgi(x, y)| + |DkD
αGij(x, y)| ≤ c|x− y|−n−|α|+1 .

(IV.3.52)

IV.4 Interior Lq-Estimates

In this section we will investigate the properties of generalized solutions “far”
from the boundary of the region of motion by means of the results established
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in Section IV.2 for solutions in the whole space. Actually, we consider a pair
of functions v, p with v ∈ W 1,1

loc (Ω), ∇ · v = 0 in the generalized sense and
p ∈ L1

loc(Ω) satisfying identity (IV.1.3) for allψ ∈ C∞
0 (Ω) and shall show that,

for suitable f , the fields v, p obey certain Lq-inequalities that imply, among
other things, that any weak solution is in fact of class C∞(Ω), provided f
enjoys the same property.

We begin to prove some preliminary results. First of all, the regularizations,
vε, pε, of v and p, respectively, obey the Stokes equation in any subdomain
Ω0 with Ω0 ⊂ Ω. This result is a straightforward consequence of the following
very general one.

Lemma IV.4.1 Let Ω be an arbitrary domain of Rn, n ≥ 2. Suppose that
v ∈ L1

loc(Ω) obeys the conditions

(v, ∆ϕ) = 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) ,

(v,∇ψ) = 0 , for all ψ ∈ C∞
0 (Ω),

(IV.4.1)

where f satisfies either (i) f ∈ L1
loc(Ω), or (ii) f ∈ D−1,q

0 (ω), for all ω with
ω ⊂ Ω, and some q > 1. Then, for any domain Ω0 with Ω0 ⊂ Ω, we have

∆vε = ∇p(ε) + gε

∇ · vε = 0

}
in Ω0 , (IV.4.2)

for some p(ε) ∈ C∞(Ω), and where g = f , in case (i), while, in case (ii),
gε = ∇ ·F ε, where F ∈ Lq(Ω0) satisfies 〈f ,χ〉 = (F ,∇χ), for all χ ∈ D(Ω0)
(see Theorem II.1.6 and Theorem II.8.2).

Proof. Let ϕ ∈ D(Ω0). Then ϕε ∈ D(Ω), whenever ε < dist (Ω0, ∂Ω), and can
be thus replaced in (IV.4.1)1. Using this latter relation, by a straightforward
calculation that uses Exercise II.3.2, we then show

(∆vε − gε,ϕ) = 0 , for all ϕ ∈ D(Ω0) .

Therefore, (IV.4.2)1 follows from this equation and from Lemma III.1.1. The
second equation in (IV.4.2) can be proved from (IV.4.1) in exactly the same
way. ut

The previous result trivially implies the following one.

Lemma IV.4.2 Let Ω be an arbitrary domain of Rn, n ≥ 2, and let v, p with
v ∈ W 1,1

loc (Ω), ∇ · v = 0, and p ∈ L1
loc(Ω) satisfy (IV.1.3) for all ψ ∈ C∞

0 (Ω)
and with f ∈ L1

loc(Ω). Then the regularizations, vε, pε,

∆vε = ∇pε + fε

∇ · vε = 0

}
in Ω0 , (IV.4.3)

for all domains Ω0 with Ω0 ⊂ Ω.
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Employing Theorem IV.2.1 and Lemma IV.4.2 we shall show the following
interior regularity result.

Theorem IV.4.1 Let Ω be an arbitrary domain in Rn, n ≥ 2. Let v be
weakly divergence-free with ∇v ∈ Lq

loc(Ω), 1 < q < ∞,1 and satisfying
(IV.1.2) for all ϕ ∈ D(Ω). Then, if

f ∈Wm,q
loc (Ω), m ≥ 0,

it follows that
v ∈Wm+2,q

loc (Ω), p ∈ Wm+1,q
loc (Ω)

where p is the pressure field associated to v by Lemma IV.1.1. Further, the
following inequality holds:

|v|m+2,q,Ω′ + |p|m+1,q,Ω′ ≤ c (‖f‖m,q,Ω′′ + ‖v‖1,q,Ω′′−Ω′ + ‖p‖q,Ω′′−Ω′ )
(IV.4.4)

where Ω′, Ω′′ are arbitrary bounded subdomains of Ω with Ω′ ⊂ Ω′′, Ω′′ ⊂ Ω,
and c = c(n, q,m,Ω′, Ω′′).

Proof. Consider a “cut-off” function ϕ ∈ C∞(Rn) that is one in Ω′ and zero
outside Ω′′.2 Choosing in (IV.4.4) Ω0 ⊃ Ω′′ and multiplying (IV.4.3) by ϕ,
after a simple manipulation we obtain that the functions

u = ϕvε, π = ϕpε

satisfy
∆u = ∇π + f 1 + fc

∇ ·u = g,
(IV.4.5)

where
f1 = ϕf ε, fc = −pε∇ϕ+ 2∇ϕ · ∇vε + vε∆ϕ

g = ∇ϕ · vε.
(IV.4.6)

Problem (IV.4.5) can be considered in the whole of Rn, by extending vε, pε

and fε to zero outside Ω′′. Since D2u ∈ Lq(Rn) we may apply Theorem
IV.2.1 with m = 0 to deduce the following estimate

‖D2u‖q + ‖∇π‖q ≤ c1 (‖ϕfε‖q + ‖∇(∇ϕ · vε)‖q

‖∇ϕ · ∇vε‖q + ‖vε∆ϕ‖q + ‖pε∇ϕ‖q) ,
(IV.4.7)

where c1 = c1(n, q). From (IV.4.6), (IV.4.7) and from the properties of ϕ we
obtain

1 Notice that, by Lemma II.6.1, v ∈ Lq
loc(Ω). The assumption on v can be weak-

ened. We shall show this directly for the nonlinear case in Chapter IX.
2 For instance, we may choose ϕ as the regularization (χΩ′)ε of the characteristic

function of the domain Ω′ and take ε sufficiently small.
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‖D2vε‖q,Ω′ + ‖∇pε‖q,Ω′ ≤ c (‖fε‖q + ‖vε‖1,q,Ω′′−Ω′ + ‖pε‖q,Ω′′−Ω′) .

Letting ε → 0 into this inequality and recalling the properties of the molli-
fier (II.2.9) along with the definition of weak derivative, one thus proves the
theorem for m = 0. The general case is now treated by induction. Assuming
that the theorem holds for m = ` − 1, ` ≥ 1, we shall show it for m = `. By
hypothesis we then have

v ∈W `+1,q
loc (Ω), p ∈ W `,q

loc (Ω)

and, moreover,

|v|`+1,qΩ] + |p|`,q,Ω] ≤ c
(
‖f‖`,q,Ω′′ + ‖v‖1,q,Ω′′−Ω] + ‖p‖q,Ω′′−Ω]

)
(IV.4.8)

where Ω′ ⊂ Ω], Ω] ⊂ Ω′′. We now choose ϕ in (IV.4.5) as a C∞ function
that is one in Ω′ and zero outside Ω]. Applying Theorem IV.2.1 to solutions
to (IV.4.5) and recalling (IV.4.8) we thus deduce

|vε|`+2,q,Ω′ + |pε|`+1,q,Ω′ ≤ c1
(
‖f‖`,q,Ω] + ‖vε‖`+1,q,Ω]−Ω′ + ‖pε‖q,Ω]−Ω′

)

≤ c1 (‖f‖`,q,Ω′′ + ‖v‖1,q,Ω′′−Ω′ + ‖p‖q,Ω′′−Ω′) .

This inequality, in the limit ε→ 0, then proves the validity of the theorem for
arbitrary m ≥ 0. ut

Remark IV.4.1 It is of some interest to observe that if Ω′′ − Ω′ satisfies
the cone condition, the term containing the pressure on the right-hand side of
(IV.4.4) can be removed, provided we modify p by the addition of a suitable
constant. Furthermore, if Ω′′′ ⊃ Ω′′ with Ω′′′ −Ω′′ satisfying the cone condi-
tion, then the term ‖v‖1,q,Ω′′−Ω′ can be replaced by ‖v‖q,Ω′′′−Ω′′ ; see Remark
IV.4.2. �

The next result provides a sharpened version of that just proved. In this
respect, we observe that if v ∈ W 1,r

loc (Ω) satisfies (IV.1.2) for all ϕ ∈ D(Ω),

with f ∈ W−1,q
0 (ω), for all bounded subdomains ω with ω ⊂ Ω, and where

a priori r 6= q, by Lemma IV.1.1 we can associate to v a pressure field p
satisfying (IV.1.2) with p ∈ Lµ

loc(Ω), µ = min(r, q). We have

Theorem IV.4.2 Let Ω satisfy the assumption of Theorem IV.4.1. Assume
v is weakly divergence-free with ∇v ∈ Lr

loc(Ω), 1 < r < ∞, and satisfies
identity (IV.1.3). Then, if

f ∈Wm,q
loc (Ω), m ≥ 0, 1 < q <∞,

it follows that
v ∈Wm+2,q

loc (Ω), p ∈Wm+1,q
loc (Ω),

where p is the pressure field associated to v by Lemma IV.1.1.
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Proof. By Theorem IV.4.1, it is enough to show

∇v ∈ Lq
loc(Ω).3 (IV.4.9)

If r ≥ q the assertion is obvious. Therefore, take q > r. Then f ∈ Lr
loc(Ω)

and, by Theorem IV.4.1 and the embedding Theorem II.3.4, we deduce

v ∈W 1,r1

loc (Ω)

with r1 = nr/(n − r) (> r) if r < n and for arbitrary r1 > 1 if r ≥ n. In the
latter case (IV.4.9) follows. If q ≤ r1 < n we again draw the same conclusion.
So, assume 1 < r1 < q. Then f ∈ Lr1

loc(Ω), and Theorem IV.4.1 and Theorem
II.3.4 imply

v ∈W 1,r2

loc (Ω),

with r2 = nr1/(n − r1) = nr/(n − 2r) (> r1) if 1 < r1 < n and arbitrary
r2 > 1, whenever r1 ≥ n. If either r2 ≥ q or r1 ≥ n, (IV.4.9) follows; other-
wise we iterate the above procedure a finite number of times until (IV.4.9) is
established. ut

Combining the result just proved with Theorem II.3.4 (specifically, in-
equality (II.3.18)) we at once obtain the following theorem concerning interior
regularity of q-weak solutions.

Theorem IV.4.3 Let v be a q-weak solution to the Stokes problem (IV.0.1),
(IV.0.2) corresponding to f ∈ C∞(Ω). Then, v, p ∈ C∞(Ω) where p is the
pressure field associated to v by Lemma IV.1.1.

Intermediate regularity results are directly obtainable from Theorem IV.4.1
and the embedding Theorem II.3.4 and are left to the reader as an exercise.
Other regularity results in Hölder norms can be obtained from the results of
Section IV.7.

Exercise IV.4.1 (Ladyzhenskaya 1969). In the case where q = 2, Theorem IV.4.1 is

obtained in an elementary way. Denote by ϕ the “cut-off” function of that theorem,

multiply (IV.4.3)1) by ϕ2∆vε and integrate by parts to show (IV.4.4) with m = 0,

q = 2. (Observe that if ζ ∈ C2
0 (Ω), ‖D2ζ‖2 = ‖∆ζ‖2.) Use then the induction

procedure to prove the general case m ≥ 0.

Exercise IV.4.2 Show that Theorem IV.4.1 also holds when ∇ · v = g 6≡ 0, pro-
vided g ∈ Wm+1,q

loc (Ω). In such a case, the term

‖g‖m+1,q,Ω′′

must be added to the right-hand side of (IV.4.4).

We shall next consider interior estimates for q-generalized solutions. Specif-
ically, we have the following theorem.

3 See footnote 1 in this section.
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Theorem IV.4.4 Let Ω,Ω′, Ω′′, and v be as in Theorem IV.4.1. Suppose
f ∈ W−1,q

0 (ω), for all bounded domains ω with ω ⊂ Ω. Then the following
inequality holds:

‖v‖1,q,Ω′ + ‖p‖q,Ω′ ≤ c (‖f‖−1,q,Ω′′ + ‖v‖q,Ω′′−Ω′ + ‖p‖−1,q,Ω′′−Ω′) ,
(IV.4.10)

where p is the pressure field associated to v by Lemma IV.1.1.

Proof. Let ϕ be as in Theorem IV.4.1 and set

u = ϕv, π = ϕp .

From the assumption and Lemma IV.1.1, we know that (v, p) satisfies (IV.1.3)

for all ψ ∈ D1,q′

0 (Ω′′). Therefore, choosing into this relation ψ = ϕφ, φ ∈
D1,q′

0 (Rn), we then readily deduce that u, π satisfy the identities

(∇u,∇φ) − (π,∇ · φ) = −[f1,φ], for all φ ∈ D1,q′

0 (Rn),

(u,∇χ) = −(g, χ), for all χ ∈ D1,q′

0 (Rn)

(IV.4.11)

with
f1 = fϕ − p∇ϕ+ 2∇ϕ · ∇v + v∆ϕ

[fϕ,φ] := 〈f , ϕφ〉

g = ∇ϕ · v.

(IV.4.12)

Applying Theorem IV.2.2 to the above problem we then obtain that u and π
obey the inequality

|u|1,q + ‖π‖q ≤ c(|f1|−1,q + ‖g‖q). (IV.4.13)

On account of (IV.4.12), it follows that

|f1|−1,q ≤ c1
(
|fϕ|−1,q + |p∇ϕ+ 2∇ϕ · ∇v + v∆ϕ|−1,q

)
(IV.4.14)

and
‖g‖q ≤ ‖∇ϕ · v‖q ≤ c2‖v‖q,Ω′′−Ω′ . (IV.4.15)

Let φ be arbitrary element from D1,q′

0 (Rn). We distinguish the two cases:

(i) n/(n− 1) < q <∞,
(ii) 1 < q ≤ n/(n− 1).

In case (i), q′ < n and so, from the Sobolev inequality (II.3.7), we derive

‖φ‖q′,Ω′′−Ω′ ≤ c3|φ|1,q′,

which, after a simple calculation, allows us to show that
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|fϕ|−1,q + |p∇ϕ+ 2∇ϕ · ∇v + v∆ϕ|−1,q

≤ c4 (‖f‖−1,q,Ω′′ + ‖v‖q,Ω′′−Ω′ + ‖p‖−1,q,Ω′′−Ω′) .
(IV.4.16)

In case (ii) choosing ψ = ϕei into (IV.1.3) delivers

(∇vi,∇ϕ)− (p,Diϕ) = − [fi, ϕ] , for all i = 1, . . . , n.

As a consequence, observing that

∫

Rn

(2∇ϕ · ∇v + v∆ϕ) =

∫

Rn

∇ϕ · ∇v

we find

[fϕ − p∇ϕ+ 2∇ϕ · ∇v + v∆ϕ,φ] = [fϕ − p∇ϕ+ 2∇ϕ · ∇v + v∆ϕ,φ+C],
(IV.4.17)

for any constant vector C. Choosing

C = − 1

|M|

∫

M
φ, M ≡ Ω′′ −Ω′,

from Poincaré’s inequality (II.5.10) we deduce

‖φ+C‖q′,M ≤ c5|φ|1,q′ . (IV.4.18)

Since
∣∣[fϕ − p∇ϕ + 2 ∇ϕ · ∇v+ v∆ϕ,φ+C]|

≤ c5 (‖f‖−1,q,Ω′′ + ‖v‖q,M + ‖p‖−1,q,M) ‖φ+C‖q′,M
(IV.4.19)

from (IV.4.17)–(IV.4.19)we conclude, also in case (ii), the validity of (IV.4.16).
The theorem becomes then a consequence of (IV.4.13)–(IV.4.16) and of the
properties of the function ϕ. ut

Remark IV.4.2 If, in the previous theorem, we modify p by the addition of
a constant, then we can remove the term involving the pressure on the right-
hand side of (IV.4.10), providedΩ′′−Ω′ satisfies the cone condition. Therefore,
under these conditions, we obtain, in particular, the following estimate

‖v‖1,q,Ω′ + inf
k∈R

‖p+ k‖q,Ω′ ≤ c (‖f‖−1,q,Ω′′ + ‖v‖q,Ω′′−Ω′) . (IV.4.20)

To see this, set, for simplicity,D = Ω′′−Ω′, and let g ∈W 1,q
0 (D) be arbitrary.

Moreover, let φ ∈ C∞
0 (D) be a fixed function with

∫
D φ = |D|. We then

consider the problem

∇ · ψ = g − φ gD , ψ ∈W 2,q
0 (D) , ‖ψ‖2,q ≤ c ‖g‖1,q . (IV.4.21)
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In view of Theorem III.3.3, (IV.4.21) has at least one solution. We thus replace
this solution in relation (IV.1.3) and integrate by parts to obtain

(p+ k, g) = 〈f ,ψ〉 − (v, ∆ψ) , (IV.4.22)

where k = −(pφ)D. Thus, from (IV.4.22), with the help of the estimate in
(IV.4.21), and by the arbitrariness of g, we at once deduce

‖p+ k‖−1,q,D ≤ c (‖f‖−1,q,D + ‖v‖q,D) ,

which is what we wanted to prove. �

The result to follow is a sharpened version of the preceding one. In this
respect, we recall that if v ∈ W 1,r

loc (Ω) satisfies (IV.1.2) for all ϕ ∈ D(Ω)

with f ∈ W−1,q
0 (ω), ω as in Theorem IV.4.4 and a priori r 6= q, we can

always associate with v a pressure field p satisfying (IV.1.3). In particular,
p ∈ Lµ

loc(Ω) where µ = min(r, p). We have

Theorem IV.4.5 Let Ω be an arbitrary domain in Rn, n ≥ 2. Suppose
v ∈ W 1,r

loc (Ω), 1 < r < ∞, is weakly divergence-free and satisfies (IV.1.2) for

all ϕ ∈ D(Ω). Then, if f ∈W−1,q
0 (ω), 1 < q <∞, for all bounded domains ω

with ω ⊂ Ω it follows that

v ∈W 1,q
loc (Ω), p ∈ Lq

loc(Ω),

where p is the pressure field associated to v by Lemma IV.1.1.

Proof. If r ≥ q there is nothing to prove. We then take q > r. Consider
problem (IV.4.11)–(IV.4.12). If r ≥ n, by the embedding Theorem II.3.4 we
easily deduce

v ∈ Lq
loc(Ω), p ∈W−1,q

0 (ω)

for all bounded ω with ω ⊂ Ω. and consequently, repeating the reasonings
used in the proof of Theorem IV.4.4 we obtain, in particular,

|f1|−1,t ≤ c (‖f‖−1,t,Ω′′ + ‖v‖t,Ω′′ + ‖p‖−1,t,Ω′′)

‖g‖t ≤ c‖v‖t,Ω′′

(IV.4.23)

with t = q. Therefore, by Theorem IV.2.2, we deduce the assertion of the
theorem. If r < n, again by Theorem II.3.4, we obtain

v ∈ Lr1

loc(Ω), p ∈ W−1,r1

0 (ω), r1 = rn/(r − n)

and so the assertion again follows from (IV.4.23) with t = r1 and Theorem
IV.2.2 if r1 ≥ q. If r1 < q, from (IV.4.23) it still follows that

f1 ∈ D−1,r1

0 (Rn)

and so, using once more Theorem IV.2.2,
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v ∈W 1,r1

loc (Ω), p ∈ Lr1

loc(Ω) (r1 > r).

This “bootstrap” argument becomes of the same type as that of Theorem
IV.4.2 and then, proceeding as in the proof of that theorem, we arrive at the
desired conclusion. ut
Exercise IV.4.3 Show that Theorem IV.4.4 continues to hold if ∇ · v = g 6≡ 0,
where g ∈ Lq

loc(Ω). The inequality in the theorem is then modified by adding the
term

‖g‖q,Ω′′

to its right-hand side.

Exercise IV.4.4 It is just worth noting that interior estimates of the type proved in
Theorem IV.4.1 and Theorem IV.4.4 are also valid for the “scalar” case, namely, the
Poisson equation ∆u = f . In fact, let u ∈ W 1,q

loc (Ω), q ∈ (1,∞), satisfy (∇u,∇ψ) =
〈f,ψ〉 for all ψ ∈ C∞

0 (Ω). Show that, if f ∈ Wm,q
loc (Ω), m ≥ −1, then necessarily

u ∈ Wm+2,q
loc (Ω), and the following estimate holds

‖u‖m+2,q,Ω′ ≤ c (‖f‖m,q,Ω′′ + ‖u‖q,Ω′′ ) ,

for all Ω′′ and Ω′ as in the above theorems, and with c independent of v and f .

IV.5 Lq-Estimates Near the Boundary

We wish now to determine Lq-estimates analogous to those of Theorem IV.4.1,
but in a subdomain of Ω abutting a suitably smooth portion σ of the bound-
ary. This will then allow us, in particular, to obtain regularity results for
generalized solutions up to the boundary. Following the method outlined by
Cattabriga (1961) and based on the work of Agmon, Douglis, & Nirenberg
(1959), the strategy we shall adopt is to introduce a suitable change of vari-
ables so that, locally “near” the boundary, the Stokes problem goes over into
a similar problem in the half-space. The desired estimate will then follow
directly from Theorem IV.3.2 and Theorem IV.3.3.

Assume Ω has a boundary portion σ of class C2. Without loss, we may
rotate the coordinate system with the origin at a point x0 ∈ σ in such a way
that, if we denote by ζ = ζ(x1, . . . , xn−1) the function representing σ,

∇ζ(0) = 0. (IV.5.1)

(This means that the axes x1, . . . , xn−1 are in the tangent plane at σ, at
the point x0.) Next, we denote by Ω0 any bounded subdomain of Ω with
σ = ∂Ω0 ∩ ∂Ω and consider a pair of functions

v ∈W 2,q(Ω0), p ∈W 1,q(Ω0), 1 < q <∞,

solving a.e. the Stokes problem in Ω0 corresponding to f ∈ Lq(Ω0) and
v∗ ∈ W 2−1/q,q(σ). If we direct the positive xn-axis into the interior of Ω,
for sufficiently small d > 0 the cylinder
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ω = {x ∈ Ω : |x′| < d, ζ < xn < ζ + 2d}

is contained in Ω0. Let ϕ ∈ C∞(Rn) with ϕ = 0 in Ω − ω and ϕ = 1 in ω′

with
ω′ = {x ∈ Ω : |x′| < δ, ζ < xn < ζ + 2δ, δ < d} .

If we make the change of variables

y′i = x′i, yn = xn − ζ, (IV.5.2)

the functions v, p, f , v∗, and ϕ go over into v̂, p̂, f̂ , v̂∗, and ϕ̂, respectively,
while ω and ω′ are transformed into the cubes

ω̂ = {y ∈ Rn : |y′| < d, 0 < yn < 2d}

and
ω̂′ = {y ∈ Rn : |y′| < δ, 0 < yn < 2δ} ,

respectively. Moreover, setting

u = ϕ̂v̂, π = ϕ̂p̂

and extending all the fields to zero outside ω̂, after a simple calculation we
find1

∆u = ∇π + F

∇ · u = g

}
in Rn

+

u = Φ at Σ ≡ Rn−1×{0},

(IV.5.3)

where

Fi ≡ ϕ̂f̂i +Dj(bjiπ) +Dj(ajkDkui) + αip̂+ βv̂i + γjDj v̂i

g ≡ Dj(cjiui) + ηiv̂i

Φi ≡ ϕ̂v̂∗i

(IV.5.4)

and ajk, bjk, cjk, αj, β, γj , and ηj are continuously differentiable functions
in the closure of ω̂. Moreover, the functions ajk, bjk, and cjk are bounded by
A|∇ζ| with a constant A independent of d, while αj, β, γj , and ηj are zero
outside ω̂. Notice that by (IV.5.1)

1 Notice that if f and bf are related by transformation (IV.5.2),

∂f

∂xi
=
∂ bf
∂yi

− ∂ bf
∂yn

∂ζ

∂xi
, i = 1, . . . n− 1;

∂f

∂xn
=

∂ bf
∂yn

;

and
∂ bf
∂yi

=
∂f

∂xi
− ∂f

∂xn

∂ζ

∂yi
, i = 1, . . . n− 1.
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ajk(0) = bjk(0) = cjk(0) = 0. (IV.5.5)

From (IV.5.4) we readily obtain

‖F ‖q,Rn
+
≤ c1

(
‖f̂‖q,bω + ‖p̂‖q,bω

+‖v̂‖1,q,bω + a‖D2u‖q,Rn
+

+ b‖∇π‖q,Rn
+

)

‖g‖1,q,Rn
+
≤ c2

(
‖v̂‖1,q,bω + c‖D2u‖q,Rn

+

)
,

(IV.5.6)

where c1 and c2 can be taken independent of d, while

a = max
j,k

max
bω

(ajk)

b = max
j,k

max
bω

(bjk)

c = max
j,k

max
bω

(cjk).

Furthermore,
Φ ∈W 1,q(Σ), 〈〈∇Φ〉〉1−1/q,q <∞,

see Exercise IV.5.1, and
D2u ∈ Lq(Rn

+).

We may thus applyTheorem IV.3.2 with m = 0 to system (IV.5.3) to deduce,
in particular, that u and π satisfy inequality (IV.3.30). We then have

‖f̂‖q,bω + ‖v̂‖1,q,bω + ‖p̂‖q,bω ≤ c3 (‖f‖q,ω + ‖v‖1,q,ω + ‖p‖q,ω) (IV.5.7)

and, by Exercise IV.5.1, (II.4.19), and the properties of the function ϕ, we
have also

〈〈∇Φ〉〉1−1/q,q ≤ c4‖ϕ̂v̂∗‖2−1/q,q(Σ) ≤ c5‖v∗‖2−1/q,q(σ), (IV.5.8)

where c3, c4, and c5 do not depend on d, f , v, p, and Φ. Collecting (IV.5.6)–
(IV.5.8) and using (IV.3.30) we deduce

[1 − c6(a+ c)]‖D2u‖q,Rn
+

+(1 − c7b)‖∇π‖q,Rn
+

≤ c8
(
‖f‖q,ω + ‖v∗‖2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)
,

(IV.5.9)
where, again, c6, c7, and c8 do not depend on d, f , v, p, and Φ. Recalling
(IV.5.5), we can take d as small to satisfy the conditions

(a + c) < 1/c6, b < 1/c7.

Thus, from (IV.5.9) and the obvious inequalities:
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‖w‖`,q,ω′ ≤ ‖ϕw‖`,q,ω ≤ c9‖ϕ̂ŵ‖`,q,Rn
+
≤ c10‖ϕw‖`,q,ω (IV.5.10)

holding for all ` ≥ 0 and for a suitable choice of c9, c10, we finally obtain

‖v‖2,q,ω′+ ‖p‖1,q,ω′

≤ c11

(
‖f‖q,ω + ‖v∗‖2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)
,

with c11 independent of v, p, f and v∗. It is now easy to generalize this
estimate to the case when

v ∈Wm+2,q(Ω0), p ∈Wm+2,q(Ω0), m > 0.

The corresponding assumptions on the data are then

f ∈Wm,q(Ω0), v∗ ∈ Wm+2−1/q,q(σ) (IV.5.11)

and, further, σ of class Cm+2. To this end, it is sufficient to use Theorem
IV.3.2 in its generality along with an inductive argument entirely analogous
to that employed in Theorem IV.4.1. If we do this we obtain

‖v‖m+2,q,ω′+ ‖p‖m+1,q,ω′

≤ c12

(
‖f‖m,q,ω + ‖v∗‖m+2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)

(IV.5.12)
which is the general estimate we wanted to show.

Following Cattabriga (1961), we shall now prove that for (IV.5.12) to hold
it is enough to assume only

v ∈W 1,q(Ω0), p ∈ Lq(Ω0). (IV.5.13)

More precisely, suppose v, p is such a pair of fields satisfying identity (IV.1.3)
for all ψ ∈ C∞

0 (Ω0) and some f , along with the condition v = v∗ at σ
(in the trace sense). Then if f and v∗ verify (IV.5.12) for m ≥ 0 and σ is
of class Cm+2 it follows that the norms of v and p on the left-hand side
of (IV.5.13) are finite and (IV.5.13) holds. We shall prove this assertion for
m = 0, the general case being treated by a simple iteration and therefore left
to the reader. By performing on v and p the same kind of transformation
made previously to arrive at (IV.5.3), we can deduce that this time u and π
are q-generalized solutions to the inhomogeneous Stokes problem in the half-
space (see the definition before Theorem IV.3.3) corresponding to the data
F , g and Φ defined in (IV.5.4)3. In particular we have

(∇u,∇ψ) − (π,∇ ·ψ) = −(F ,ψ), for all ψ ∈ D1,q′

0 (Rn
+). (IV.5.14)

Replace ψ by the difference quotient ∆hψ, where the variation is taken with
respect to any of the first n− 1 coordinates, see Exercise II.3.13. Since
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∫

Rn
+

∆hψiw = −
∫

Rn
+

ψi∆
−hw,

we immediately deduce that ∆hu and ∆hπ are again a q-generalized solution
corresponding to the free terms ∆hF , ∆hg and to the boundary data ∆hΦ.
Recalling that

‖∆hw‖q ≤ ‖∇w‖q,

see Exercise II.3.13(iii), from (IV.5.4) and (IV.5.7) it follows that

|∆hF |−1,q,Rn
+
≤ c1 (‖f‖q,ω + ‖p‖q,ω + ‖v‖1,q,ω

+a‖∆h∇u‖q,Rn
+

+ b‖∆hπ‖q,Rn
+

)

‖∆hg‖q,Rn
+
≤ c2

(
‖v‖1,q,ω + c‖∆h∇u‖q,Rn

+

)

with c1, c2 independent of d and h. Since

∆hu ∈ D1,q(Rn
+), ∆hπ ∈ Lq(Rn

+),

we may use this latter inequality, the results of Exercise IV.5.1 and estimate
(IV.3.32) together with the property

∇∆hu = ∆h∇u

to deduce

[1 − c1(a+ c)]‖∆h∇u‖q,Rn
+

+(1 − c1b)‖∆hπ‖q,Rn
+

≤ c3
(
‖f‖q,ω + ‖v∗‖2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)

(IV.5.15)
with c3 independent of h and d. Taking d so small that

(a + c) < 1/c1, b < 1/c2,

from (IV.5.15) it follows that

‖∆h∇u‖q,Rn
+
+‖∆hπ‖q,Rn

+
≤ c4

(
‖f‖q,ω + ‖v∗‖2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)
,

with c4 independent of h. From the properties of the difference quotient (see
Exercise II.3.13), we then conclude that ∇′∇u and ∇′π exist2 and belong to
Lq(Rn

+). Moreover,

‖∇′∇u‖q,Rn
+

+ ‖∇′π‖q,Rn
+
≤ c4

(
‖f‖q,ω + ‖v∗‖2−1/q,q(σ) + ‖v‖1,q,ω + ‖p‖q,ω

)
.

(IV.5.16)
From (IV.5.3)2 and (IV.5.16) it is not hard to show

2 We recall that ∇′ is defined below (IV.3.10).
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u ∈ D2,q(Rn
+), π ∈ D1,q(Rn

+). (IV.5.17)

To fix the ideas, consider the case n = 3. From (IV.5.16) and (IV.5.3)2II.1.8
it follows that

(D2
3u3 + c3iD

2
3ui) ∈ Lq(Rn

+). (IV.5.18)

Moreover, integrating (IV.5.14) by parts and again employing (IV.5.16) one
can prove for all i = 1, 2, 3,

[(1 + a33)D
2
3ui − (δ3i + b3i)D3π] ∈ Lq(Rn

+). (IV.5.19)

Conditions (IV.5.18) and (IV.5.19) then yield

(1 + a33) {[c31 D
2
3u1 + c32D

2
3u2 + (1 + c33)D

2
3u3

]

− D3π [c31b31 + c32 + (1 + b33)(1 + c33)]} ∈ Lq(Rn
+).
(IV.5.20)

Because of (IV.5.5) we can choose d so small that the coefficient of D3π is
strictly positive. From (IV.5.18) and (IV.5.20) we thus derive

D3π ∈ Lq(Rn
+), (IV.5.21)

which, in view of (IV.5.19), gives

D2
3ui ∈ Lq(Rn

+). (IV.5.22)

From (IV.5.16), (IV.5.21), and (IV.5.22) we then conclude the validity of
(IV.5.17). On the other hand, from (IV.5.10), (IV.5.13) and (IV.5.17) we can
finally assert

v ∈W 2,q(ω′), p ∈W 1,q(ω′),

which is what we wanted to show.

The results obtained so far can then be summarized in the following

Theorem IV.5.1 Let Ω be an arbitrary domain in Rn, n ≥ 2, with a bound-
ary portion σ of class Cm+2, m ≥ 0. Let Ω0 be any bounded subdomain of Ω
with ∂Ω0 ∩ ∂Ω = σ. Further, let

v ∈W 1,q(Ω0), p ∈ Lq(Ω0), 1 < q <∞,

be such that

(∇v,∇ψ) = −〈f ,ψ〉 + (p,∇ ·ψ), for all ψ ∈ C∞
0 (Ω0),

(v,∇ϕ) = 0 for all ϕ ∈ C∞
0 (Ω0),

v = v∗ at σ.

Then, if
f ∈Wm,q(Ω0), v∗ ∈Wm+2−1/q,q(σ),

we have
v ∈Wm+2,q(Ω′), p ∈Wm+1,q(Ω′),

for any Ω′ satisfying:
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(i) Ω′ ⊂ Ω0;
(ii)∂Ω′ ∩ ∂Ω is a strictly interior subregion of σ.

Finally, the following estimate holds

‖v‖m+2,q,Ω′+ ‖p‖m+1,q,Ω′

≤ c
(
‖f‖m,q,Ω0 + ‖v∗‖m+2−1/q,q(σ) + ‖v‖1,q,Ω0 + ‖p‖q,Ω0

)
,

(IV.5.23)
where c = c(m, n, q, Ω′, Ω0).

Remark IV.5.1 A consideration similar to that made in Remark IV.4.1 ap-
plies also to the estimate (IV.5.23). �

From this theorem and Theorem IV.4.3 we thus obtain, in particular, the
following result concerning global regularity of q-generalized solutions.

Theorem IV.5.2 Let v be a q-generalized solution to the Stokes problem
(IV.0.1), (IV.0.2). Then if Ω is of class C∞, f ∈ C∞(Ω) and v∗ ∈ C∞(∂Ω),3it
follows that v, p ∈ C∞(Ω), where p is the pressure field associated to v by
Lemma IV.1.1.

As in the case of interior regularity, intermediate smoothness results can be
obtained from Theorem IV.4.1, Theorem IV.5.1, and the embedding Theorem
II.3.4. We leave them to the reader as an exercise. Regularity in Hölder spaces
can be obtained from the results of Section IV.7.

Exercise IV.5.1 (Agmon, Douglis, & Nirenberg 1959). Let Ω ⊂ R
n have a smooth

boundary portion σ and let φ ∈ Wm−1/q,q (σ), m ≥ 1, 1 < q < ∞, be of compact
support in σ. Perform the change of variables (IV.5.2) for a sufficiently regular ζ,

and denote by bφ, bφ, bσ the transforms of φ and σ under this change, so that bφ can
be considered defined in the whole of R

n−1 and of compact support in bσ. Show the
existence of a constant c independent of φ such that

c−1‖φ‖m−1/q,q(σ) ≤ ‖bφ‖m−1/q,q(Rn−1 ) ≤ c‖φ‖m−1/q,q(σ).

Hint: Let Ω1 = Ω ∩B, with ∂Ω1 ∩ ∂Ω = σ and B a ball centered at x0 ∈ σ. Denote
by bΩ1 the transform of Ω1. By Theorem II.10.2, we may find v ∈ Wm,q(Rn

+), of

compact support in the closure of bΩ1 and such that v = bφ at bσ, v = 0 at ∂ bΩ1 − bσ,
and, moreover,

‖v‖m,q,Rn
+

≤ c1‖bφ‖m−1/q,q(Rn−1 ).

If u is the transform of v under the inverse of (IV.5.2), one has u = φ at σ and

‖v‖m,q,Rn
+

≤ c1‖u‖m,q,Ω1 ≤ c2‖v‖m,q,Rn
+

≤ c3c1‖bφ‖m−1/q,q(Rn−1 ),

which proves the first inequality. The second one is proved analogously.

3 Namely, v∗ is infinitely differentiable along the boundary.
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Exercise IV.5.2 Show that Theorem IV.5.1 also holds when ∇ · v = g 6≡ 0, g ∈
Wm+1,q (Ω0), provided we add the term

‖g‖m+1,q,Ω0

on the right-hand side of (IV.5.20).

Exercise IV.5.3 Let Ω, σ and Ω0, and Ω′ be as in Theorem IV.5.1. Let u ∈
W 1,q(Ω0), q ∈ (1,∞), satisfy the following condition

(∇u,∇ψ) = −〈f, ψ〉 , for all ψ ∈ C∞
0 (Ω0)

u = u∗ at σ .

Show that, if f ∈ Wm,q(Ω0), u∗ ∈ Wm+2−1/q,q (σ), m ≥ 0, then necessarily u ∈
Wm+2,q (Ω′), and the following estimate holds

‖u‖m+2,q,Ω′ ≤ c (‖f‖m,q,Ω0 + ‖u∗‖m+2−1/q,q,(σ)) ,

with c independent of u, f and u∗.

We conclude this section by giving an estimate near the boundary involving
the Lq-norm of ∇v and p. Specifically we have

Theorem IV.5.3 Let Ω be an arbitrary domain in Rn, n ≥ 2, with a bound-
ary portion σ of class C1.4 Let, further, Ω′, Ω0, v, and p be as in Theorem
IV.5.1. Then if

f ∈W−1,q
0 (Ω0), v∗ ∈W 1−1/q,q(σ),

the following inequality holds:

‖v‖1,q,Ω′+ ‖p‖q,Ω′

≤ c
(
‖f‖−1,q,Ω0 + ‖v∗‖1−1/q,q(σ) + ‖v‖q,Ω0 + ‖p‖−1,q,Ω0

)
.

(IV.5.24)

Proof. Transforming v and p into u and π, respectively, as before, we readily
obtain that u and π obey (IV.5.3), (IV.5.4) in the weak form. Successively,
we apply the results of Theorem IV.3.3 to u, π and derive, in particular, that
they obey the inequality

|u|1,q + ‖π‖q ≤ c1 (|F |−1,q + ‖g‖q) . (IV.5.25)

Recalling (IV.5.4) and (IV.5.10) it is not difficult to show that

|F |−1,q,Rn
+
≤ c2

(
‖f‖−1,q,ω + ‖p‖−1,q,ω + ‖v‖q,ω + a ‖∇u‖q,Rn

+
+ b‖π‖q,Rn

+

)

‖g‖q,Rn
+
≤ c3

(
‖v‖q,ω + c‖∇u‖q,Rn

+

)
.

(IV.5.26)
Therefore, (IV.5.24) becomes a consequence of (IV.5.25), (IV.5.26), and
(IV.5.10). ut
4 Notice that we only need σ of class C1. In fact the result can be extended to σ

Lipschitz but with “not too sharp” corners; see Galdi, Simader, & Sohr (1994).
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Remark IV.5.2 A consideration similar to that made in Remark IV.4.2 ap-
plies also to the estimate (IV.5.24). �

Exercise IV.5.4 Show that Theorem IV.5.3 continues to hold if ∇ · v = g 6≡ 0,
where g ∈ Lq(Ω0). The inequality (IV.5.21) is then modified by adding the term

‖g‖q,Ω0

on its right-hand side.

IV.6 Existence, Uniqueness, and Lq-Estimates in a
Bounded Domain

The interior and boundary inequalities demonstrated in Section IV.4 and Sec-
tion IV.5 allow us to derive Lq-estimates for q-generalized solutions holding
for the whole of Ω, in the case where Ω is bounded and suitably regular.
Specifically, setting

‖w‖k,q/R = inf
c∈R

‖w + c‖k,q (IV.6.1)

we have

Lemma IV.6.1 Let v be a q-generalized solution to the Stokes problem
(IV.0.1), (IV.0.2) in a bounded domain Ω of Rn, n ≥ 2, of class Cm+2, m ≥ 0,
corresponding to

f ∈Wm,q(Ω), v∗ ∈Wm+2−1/q,q(∂Ω).

Then,
v ∈Wm+2,q(Ω), p ∈Wm+1,q(Ω),

where p is the pressure field associated to v by Lemma IV.1.1. Moreover, the
following inequality holds:

‖v‖m+2,q + ‖p‖m+1,q/R ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
(IV.6.2)

with c = c(m, n, q, Ω).

Proof. By covering Ω with a finite number of open balls, from Theorem IV.4.1
and Theorem IV.5.1 we deduce

v ∈Wm+2,q(Ω), p ∈ Wm+1,q(Ω)

and the validity of the inequality

|v|m+2,q + |p|m+1,q ≤ c1
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖p‖q + ‖v‖1,q

)
.

We add to both sides of this inequality the Lq-norms of all derivatives of v
[respectively, of p] up to the order m+1 [respectively, m] and employ Ehrling’s
inequality (II.5.20) to derive
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‖v‖m+2,q + ‖p‖m+1,q ≤ c2
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖p‖q + ‖v‖q

)
.

(IV.6.3)
Clearly, (IV.6.3) remains unaffected if we replace p with p+ c, for any c ∈ R.
Thus, taking the infc∈R of both sides of this new inequality, we obtain

‖v‖m+2,q + ‖p‖m+1,q/R ≤ c2
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

+‖p‖q/R + ‖v‖q

)
.

(IV.6.4)

It is easy to show that, provided the solution is unique, we can drop the last
two terms on the right-hand side of (IV.6.4). In fact, it is enough to show the
existence of a constant c3 independent of the data and the particular solution
such that

‖v‖q + ‖p‖q/R ≤ c3
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
. (IV.6.5)

If (IV.6.5) were not true, a sequence would exist such as

{vk} ⊂Wm+2,q(Ω), {pk} ⊂Wm+1,q(Ω),

with
‖vk‖q + ‖pk‖q/R = 1, for all k ∈ N,

while the right-hand side of (IV.6.5) tends to zero. By (IV.6.3) we then have

‖vk‖m+2,q + ‖pk‖m+1,q/ R

uniformly bounded in k and therefore we may select a subsequence which, by
the compactness result of Exercise II.5.8, converges strongly to limits

u ∈W 1,q(Ω), π ∈ Lq(Ω),

respectively, with
‖u‖q + ‖π‖q/R = 1.

However, this last relation is easily contradicted. Actually, it is immediately
shown that u is a q-generalized solution to the Stokes problem in Ω cor-
responding to f ≡ v∗ ≡ 0 and so, by the uniqueness hypothesis, u ≡ 0,
π = const. The proof of the lemma is therefore completed, once we have
shown the following result. ut

Lemma IV.6.2 Let Ω be a bounded, C2-smooth domain of Rn. If v is a q-
weak solution to the Stokes problem (IV.0.1), (IV.0.2) corresponding to zero
data, then v ≡ 0, p ≡ const. a.e. in Ω, where p is the pressure field associated
to v by Lemma IV.1.1.

Proof. If q ≥ 2, by the uniqueness part of Theorem IV.1.1 we already know
that the previous statement is true (even assuming less smoothness on Ω). If
q < 2, from the first part of Lemma IV.6.1 we have



IV.6 Existence, Uniqueness, and Lq-Estimates in a Bounded Domain 281

v ∈W 2,q(Ω), p ∈W 1,q(Ω),

and so, by the embedding Theorem II.3.2, it follows that

v ∈W 1,r1(Ω), p ∈ Lr1 (Ω), r1 = nq/(n− q).

Now, if r1 ≥ 2 we are finished; otherwise, by the first part of Lemma IV.6.1
we have

v ∈ W 2,r1(Ω), p ∈W 1,r1(Ω),

and so, again by Theorem II.3.2, it follows that

v ∈W 1,r2(Ω), p ∈ Lr2 (Ω), r2 = nq/(n− 2q) (> r1).

If r2 ≥ 2 the proof is achieved; otherwise,

v ∈W 2,r2(Ω), p ∈ W 1,r2(Ω)

and we continue this procedure as many times as needed until we arrive to
show, after a finite number of steps,

v ∈W 1,2(Ω).

The lemma is therefore completely proved. ut

We now turn our attention to the question of existence of q-generalized
solutions. When q = 2 the answer is already furnished in (IV.1.1). In the
general case we argue as follows. Given

f ∈Wm,q(Ω), v∗ ∈Wm+2−1/q,q(∂Ω), 1 < q <∞,

with ∫

∂Ω

v∗ · n = 0, (IV.6.6)

let us approximate them with sequences {fk}, {v∗k} of sufficiently smooth
functions. We can always assume

∫

∂Ω

v∗k ·n = 0.1

1 Actually, let {vk} be a sequence of smooth functions tending to v∗ in
W 2−1/q,q (∂Ω), and let φ be a smooth function with

R
∂Ω

φ = 1. The sequence

v∗k = vk − φ

Z

∂Ω

vk · n, k ∈ N

is smooth, tends to v in W 2−1/q,q(∂Ω), and satisfies
Z

∂Ω

v∗k · n = 0.
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Denote by
{vk}, {pk}

the corresponding solutions whose existence is ensured by Theorem IV.1.1.
From Lemma IV.6.1 we have for all k ∈ N:

vk ∈W 2,2(Ω), pk ∈W 1,2(Ω).

If n = 2, the embedding Theorem II.3.4 tells us

vk ∈W 1,r(Ω), pk ∈ Lr(Ω), for any r ∈ (1,∞)

and so Lemma IV.6.1 ensures

vk ∈W 2,q(Ω), pk ∈W 1,q(Ω)

and estimate (IV.6.1) holds. We then let k → ∞ and use (IV.6.1) to obtain
for some v ∈W 2,q(Ω), p ∈W 1,q(Ω)

vk → v in W 2,q(Ω),

pk → p in W 1,q(Ω).

Clearly, v, p solve a.e. the Stokes system (IV.0.1) corresponding to f , while
v equals v∗ at the boundary in the trace sense. For n > 2, we have

vk ∈W 1,r(Ω), pk ∈ Lr(Ω), for any r ∈ (1, 2n/(n− 2)).

Thus, if 2 < n ≤ 4, we again use Lemma IV.6.1 and Theorem II.3.4 to deduce

v ∈W 2,q(Ω), p ∈W 1,q(Ω).

We then proceed as in the case where n = 2. For n > 4, by a double application
of Lemma IV.6.1 and Theorem II.3.4 we have

vk ∈ W 1,r(Ω), pk ∈ Lr(Ω), for any r ∈ (1, 2n/(n− 4))

and, by the same token, we recover existence if 4 < n ≤ 6, and so forth.
Existence of solutions for all 1 < q <∞ and any space dimension can therefore
be fully established.

By means of a similar procedure, we may also show existence of q-weak
solutions corresponding to arbitrary

f ∈W−1,q
0 (Ω), v∗ ∈W 1−1/q,q(∂Ω), 1 < q <∞,

with v∗ satisfying (IV.6.3) and Ω of class C2. In fact, if v is a q-weak solution,
from Theorem IV.4.4 and Theorem IV.5.3 we derive

‖v‖1,q + ‖p‖q ≤ c
(
‖f‖−1,q + ‖v∗‖1−1/q,q(∂Ω) + ‖v‖q + ‖p‖−1,q

)
(IV.6.7)
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where c = c(n, q, Ω) and p is the pressure field associated to v by Lemma
IV.1.1. From (IV.1.3) it is apparent that the inequality just obtained remains
unaffected if we replace p with p+ c, c ∈ R. We then recover

‖v‖1,q + ‖p‖q/R ≤ c
(
‖f‖−1,q + ‖v∗‖1−1/q,q(∂Ω) + ‖v‖q + ‖p‖−1,q/R

)
.

The last two terms on the right-hand side of this relation can be increased by
the data:

‖v‖q + ‖p‖−1,q/R ≤ C
(
‖f‖−1,q + ‖v∗‖1−1/q,q(∂Ω)

)
, (IV.6.8)

with C = C(q, n, Ω). This can be proved by the same contradiction argument
used to show (IV.6.5). In fact, if (IV.6.8) were not true, there would exist a
sequence of solutions

{vk, pk} ⊂W 1,q(Ω) × (Lq(Ω) / R)

with

‖vk‖q + ‖pk‖−1,q/R = 1, for all k ∈ N,

corresponding to data {fk, v∗k} converging to zero in the space W−1,q(Ω) ×
W 1−1/q,q(∂Ω). However, by the compactness results of Theorem II.5.3 and
Exercise II.5.8, we find

{v, p} ∈W 1,q(Ω) × Lq(Ω) (IV.6.9)

such that

vk converges to v weakly in W 1,q(Ω), strongly in Lq(Ω)

pk converges to p weakly in Lq(Ω) / R, strongly in W−1,q(Ω).

Since v, p is a solution to the Stokes problem with f ≡ v∗ ≡ 0, by Lemma
IV.6.2 it follows that, as k → ∞,

v ≡ 0, p = const, in Ω,

and therefore (IV.6.9) cannot hold. We then conclude the validity of the in-
equality

‖v‖1,q + ‖p‖q ≤ c
(
‖f‖−1,q + ‖v∗‖1−1/q,q(∂Ω)

)
.

By means of this relation, we may argue as before to prove existence of q-
generalized solutions.

The results shown so far in this section are collected in the following main
theorem.

Theorem IV.6.1 Let Ω be a bounded domain of Rn, n ≥ 2. The following
properties hold.
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(a) Suppose Ω of class Cm+2, m ≥ 0. Then, for any

f ∈ Wm,q(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω) , 1 < q <∞ ,

with ∫

∂Ω

v∗ · n = 0,

there exists one and only one pair v, p2 such that
(i) v ∈Wm+2,q(Ω), p ∈Wm+1,q(Ω);
(ii)v, p verify the Stokes system (IV.0.1) a.e. in Ω and v satisfies (IV.0.2)

in the trace sense.
In addition, this solution obeys the inequality

‖v‖m+2,q + ‖p‖m+1,q/R ≤ c1
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
, (IV.6.10)

where c1 = c1(n,m, q, Ω).
(b)Suppose Ω of class C2. Then, for every

f ∈ W−1,q
0 (Ω), v∗ ∈ W 1−1/q,q(∂Ω) , 1 < q <∞ ,

there exists one and only one q-generalized solution v to the Stokes prob-
lem (IV.0.1), (IV.0.2). This solution satisfies the inequality

‖v‖1,q + ‖p‖q/R ≤ c2
(
‖f‖−1,q + ‖v∗‖1−1/q,q(∂Ω)

)
, (IV.6.11)

where p is the pressure field associated to v by Lemma IV.1.1.

Exercise IV.6.1 Let u ∈ H1
q (Ω), 1 < q < ∞, with Ω a C2-smooth bounded

domain. Show that there exists c = c(n, q, Ω) such that

‖u‖1,q ≤ c sup
ϕ∈H1

q′ (Ω),ϕ 6=0

 |(∇u,∇ϕ)|
‖ϕ‖1,q′

ff
. (IV.6.12)

Hint: The map ϕ ∈ H1
q′(Ω) ⊂ W 1,q′

0 (Ω) → (∇u,∇ϕ) defines a linear functional.

Therefore, by the Hahn-Banach Theorem II.1.7, there is f ∈ W−1,q
0 (Ω) such that

〈f ,ϕ〉 = (∇u,∇ϕ), ϕ ∈ H1
q′ (Ω) and with ‖f‖−1,q equal to the right-hand side of

(IV.6.12). Consider then the Stokes problem with v∗ ≡ 0 and f ≡ f and apply the

results of Theorem IV.6.1(b).

Exercise IV.6.2 Suppose v, p solves the Stokes problem (IV.0.1) with Ω ≡ BR,
and suppose also v ∈ Wm+2,q (Ω), f ∈ Wm,q (Ω), for some m ≥ 0, q ∈ (1,∞), and
v∗ ≡ 0. Show that there exists a constant c independent of R such that

|v|m+2,q ≤ c ‖f‖m,q .

2 p is determined up to a constant that may be fixed by requiring pΩ = 0. In such
a case, the term ‖p‖m+1,q/R can be replaced by ‖p‖m+1,q .
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Exercise IV.6.3 Show that the first [respectively, second] part of Theorem IV.6.1
continues to hold if ∇ · v = g 6≡ 0, with g ∈ Wm+1,q (Ω) [respectively, g ∈ Lq(Ω)]
and Z

Ω

g =

Z

∂Ω

v∗ · n.

Inequality (IV.6.10) [respectively, (IV.6.11)] is then accordingly modified by adding
to its right-hand side the term

‖g‖m+1,q , [respectively, ‖g‖q ].

Hint: Use Exercise IV.4.2, Exercise IV.5.2, Exercise IV.4.3, and Exercise IV.5.4,

together with the reasonings employed to arrive at Theorem IV.6.1.

We end this section by proving a further useful estimate satisfied by
the pressure field p, in addition to those already provided by (IV.6.10) and
(IV.6.11). Specifically, we have

Theorem IV.6.2 Let Ω be a bounded domain of Rn, n ≥ 2, of class C2,
and let (v, p) ∈ W 2,q(Ω) ×W 1,q(Ω) be a solution to (IV.0.1), corresponding
to f ∈ Hq(Ω), for some q ∈ (1,∞).3 Furthermore, we normalize p by the
condition pΩ = 0. Then, given ε > 0, there exists c = c(Ω, n, q, r, ε) such that

‖p‖q ≤ c |v|1,q + ε ‖v‖2,r ,

for any r ∈ [q(n−1)/n, q], if q > n/(n−1), and any r ∈ (1, q], if q ≤ n/(n−1).

Proof. We dot-multiply both sides of (IV.0.1) by ∇ϕ, ϕ ∈W 1,q′
(Ω), to obtain

∫

Ω

∆v · ∇ϕ =

∫

Ω

∇p · ∇ϕ , for all ϕ ∈ W 1,q′
(Ω) . (IV.6.13)

We then choose ϕ as the solution to the following Neumann problem

∆ϕ = g − gΩ in Ω ,
∂ϕ

∂n

∣∣∣∣
∂Ω

= 0 ,

∫

Ω

ϕ = 0 , (IV.6.14)

where g ∈ Lq′
(Ω). From a classical result of Agmon, Douglis & Nirenberg

(1959, §15), it follows that this problem has one and only one solution ϕ ∈
W 2,q′

(Ω), which, in addition, satisfies the estimate

‖ϕ‖2,q′ ≤ c ‖g‖q′ , (IV.6.15)

for some c = c(Ω, q, n). Thus, integrating by parts on the right-hand side of
(IV.6.13), using (IV.6.14), and the condition pΩ = 0, we obtain

∫

Ω

∆v · ∇ϕ = −
∫

Ω

p g . (IV.6.16)

3 In view of the Helmholtz–Weyl decomposition Theorem III.1.2, we may assume,
without loss, f ∈ Hq(Ω), instead of f ∈ Lq(Ω).
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On the other hand, integrating by parts the left-hand side of this latter relation
we find

∫

Ω

∆v·∇ϕ =

∫

Ω

[∇ · (∇v · ∇ϕ) −∇v : ∇∇ϕ] =

∫

∂Ω

n·∇v·∇ϕ−
∫

Ω

∇v : ∇∇ϕ .

From this equation and (IV.6.16), we may conclude

∫

Ω

p g =

∫

Ω

∇v : ∇∇ϕ−
∫

∂Ω

n · ∇v · ∇ϕ . (IV.6.17)

From the Hölder inequality and (IV.6.15), we have

∣∣∣∣
∫

Ω

∇v : ∇∇ϕ
∣∣∣∣ ≤ c |v|1,q‖g‖q′ . (IV.6.18)

Moreover, again by the Hölder inequality, the trace Theorem II.4.1, and
(IV.6.15), we find

∣∣∣∣
∫

∂Ω

n · ∇v · ∇ϕ
∣∣∣∣ ≤ ‖∇v‖r,∂Ω‖∇ϕ‖r′,∂Ω ≤ c ‖∇v‖r,∂Ω‖ϕ‖2,q′

≤ c ‖∇v‖r,∂Ω‖g‖q′ ,

where r′ ∈ [q′, q′(n− 1)/(n− q′)], if q′ < n and r′ ∈ [q′,∞), if q′ ≥ n. (These
conditions are equivalent to those given for the exponent r in the statement
of the theorem.) Finally, on the right-hand side of this last displayed relation,
we employ the inequality given in Exercise II.4.1, to obtain

∣∣∣∣
∫

∂Ω

n · ∇v · ∇ϕ
∣∣∣∣ ≤ (cε |v|1,q + ε ‖v‖2,r) ‖g‖q′ . (IV.6.19)

Since g is an arbitrary element of Lq′
(Ω), the theorem follows from (IV.6.17)–

(IV.6.19) and Theorem II.2.2. ut

By combining the previous result with inequality (IV.6.10), we immedi-
ately obtain the following

Corollary IV.6.1 Let Ω, v, p, f and r be as in Theorem IV.6.2. Then, for
any ε > 0 there exists c = c(Ω, n, q, r, ε) such that

‖p‖q ≤ c |v|1,q + ε
(
‖f‖r + ‖v∗‖2−1/r,r(∂Ω)

)
,

where v∗ is the trace of v at ∂Ω.4

4 In view of the trace Theorem II.4.4, v∗ ∈W 2−1/q,q (∂Ω), as a consequence of the
assumption v ∈ W 2,q(Ω).
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IV.7 Existence and Uniqueness in Hölder Spaces.
Schauder Estimates

Existence and uniqueness results similar to those proved in Lemma IV.6.1 and
Theorem IV.6.1 can also be obtained in Hölder spaces Ck,λ(Ω), together with
corresponding estimates (Schauder estimates). The procedure is the same as
the one used for Sobolev spaces Wm,q(Ω); that is, one first shows existence,
uniqueness, and the validity of corresponding estimates for solutions in Rn

and Rn
+ and, subsequently, one specializes the results to a (sufficiently smooth)

bounded domain by means of the “localization procedure” used in the proof
of Lemma IV.6.1.

However, to obtain existence in Rn and Rn
+, instead of the Calderón–

Zygmund Theorem II.11.4 and Theorem II.11.6, we have to employ their
counterparts in Hölder spaces, namely, the Hölder-Lichtenstein-Giraud the-
orem; see, e.g., Bers, John, & Schechter (1964, pp. 223-224), and Theorem 3.1
of Agmon, Douglis, & Nirenberg (1959), respectively.

Since estimates in Hölder norms will not play any relevant role in this
book, we shall not give details of their derivation, limiting ourselves to quote
the main results without proofs. In this regard, it should be observed that
they can be obtained, as a particular case, from the work of Agmon, Douglis,
& Nirenberg (1964) and Solonnikov (1966) since, as already observed, the
Stokes system is elliptic in the sense of Douglis-Nirenberg. Thus, from the
uniqueness Lemma IV.6.2 and the results of Agmon, Douglis, & Nirenberg
(1964, Theorem 9.3 and Remarks 1 and 2 that follow the theorem) we have

Theorem IV.7.1 Let Ω be a bounded domain in Rn, n ≥ 2, of class Cm+2,λ,
m ≥ 0, λ ∈ (0, 1), and let v, p be a solution to the Stokes problem (IV.0.1),
(IV.0.2) with

v ∈ C2,λ(Ω), p ∈ C1,λ(Ω).

Then, if
f ∈ Cm,λ(Ω), v∗ ∈ Cm+2,λ(∂Ω),

we have
v ∈ Cm+2,λ(Ω), p ∈ Cm+1,λ(Ω),

and the following estimate holds:

‖v‖Cm+2,λ + inf
c∈R

‖p+ c‖Cm+1,λ ≤ c
(
‖f‖Cm,λ + ‖v∗‖Cm+2,λ(∂Ω)

)
, (IV.7.1)

where c = c(m, λ,Ω, n).

Concerning existence, we have (Solonnikov 1966, Theorem 3.1),

Theorem IV.7.2 Let Ω be a bounded domain of Rn, n ≥ 2,1of class C2,λ,
λ ∈ (0, 1). Then, given

1 Actually, in Solonnikov’s paper the result is proved for n = 3. However, the
technique employed there can be extended to the case where n ≥ 2.
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f ∈ C2,λ(Ω), v∗ ∈ C2,λ(∂Ω),

there exists one and only one solution v, p2 to (IV.0.1), (IV.0.2) such that

v ∈ C2,λ(Ω), p ∈ C1,λ(Ω).

Remark IV.7.1 Theorem IV.7.1 and Theorem IV.7.2 continue to hold when
g ≡ ∇ · v 6≡ 0. In such a case, one has to assume

g ∈ Cm+1,λ(Ω)

and to add the term
‖g‖Cm+1,λ

on the right-hand side of (IV.7.1), while for Theorem IV.7.2 we have to take
g ∈ C1,λ(Ω). �

IV.8 Green’s Tensor, Green’s Identity and
Representation Formulas

Theorem IV.6.1 allows us, in particular, to construct the Green’s tensor solu-
tion for the Stokes problem in a bounded domain Ω. Actually, for fixed y ∈ Ω,
let us consider the functions Aij(x, y), ai(x, y) such that for all i, j = 1, . . . , n

∆xAij(x, y) +
∂aj(x, y)

∂xi
= 0, x ∈ Ω,

∂Aij(x, y)

∂xi
= 0, x ∈ ∂Ω

Aij(x, y) = Uij(x− y), x ∈ ∂Ω.

(IV.8.1)

From Theorem IV.6.1, we know that Aij(x, y), ai(x, y) exist and, for Ω of
class Cm+2, they satisfy

‖Aij‖m+2,q + ‖ai‖m+1,q/R ≤ cy(ω, n,m, q),

where cy does not depend on y for all y exceeding a fixed distance d from ∂Ω.
In analogy with the Laplace operator, we define

Gij(x, y) = Uij(x− y) −Aij(x, y)

gj(x, y) = qi(x− y) − ai(x, y),
(IV.8.2)

2 p is determined up to a constant that may be fixed by requiring
R

Ω
p = 0. In such

a case, the norm involving p on the left-hand side of (IV.7.1) can be replaced by
‖p‖Cm+1,λ .
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which is the Green’s tensor solution for the Stokes problem in the bounded
domainΩ (Odqvist 1930, §5). It is not difficult to show (Odqvist 1930, p. 358)
that the tensor field G satisfies the following symmetry condition

Gij(x, y) = Gji(y, x). (IV.8.3)

Moreover, from (IV.8.1), (IV.8.2), and the properties of the tensor U it follows,
in particular, for any n > 2, that

|Gij(x, y)| ≤ cd|x− y|2−n, |DkGij(x, y)| ≤ cd|x− y|1−n (IV.8.4)

for all x ∈ Ω and for all y ∈ Ω with dist (y, ∂Ω) ≥ d > 0, cd → ∞ as d → 0.
By using (IV.8.3) analogous estimates can be obtained interchanging the roles
of x and y. If n = 3 and Ω is of class C1,λ, λ ∈ (0, 1), relations (IV.8.4) can
be extended to all x, y ∈ Ω and one has

|Gij(x, y)| ≤ c |x− y|−1, |DkGij(x, y)| ≤ c |x− y|−2, x, y ∈ Ω, (IV.8.5)

with a constant c = c(Ω); see Odqvist (1930, Satz XVIII) and Cattabriga
(1961, pp. 335-336). Observe that estimates (IV.8.5) formally coincide with
the same estimates in the case of a half-space; see (IV.3.50). Extension of
(IV.8.5) to higher dimension can be obtained by the results of Solonnikov
(1970). We also refer the reader to this paper for further evaluations related
to G, g.

We shall next derive several useful representation formulas for solutions
to the Stokes problem. To this end, we recall that the Cauchy stress tensor
T ≡ {Tij = Tij(v, p)} associated with a flow v, p is given by

Tij = −pδij + 2Dij , (IV.8.6)

where

Dij = Dij(v) ≡ 1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
(IV.8.7)

is the stretching tensor. If u, π are sufficiently regular vector and scalar fields,
respectively, and assuming that Ω is a bounded domain of class C1, we may
integrate by parts to obtain the identities

∫

Ω

∇ · T (v, p) · u = −
∫

Ω

T (v, p) : ∇u+

∫

∂Ω

u · T (v, p) · n

∫

Ω

∇ · T (u, π) · v = −
∫

Ω

T (u, π) : ∇v +

∫

∂Ω

v · T (u, π) · n,
(IV.8.8)

where n is the unit outer normal at ∂Ω. By the symmetry of T and taking v
and u solenoidal,

∫

Ω

T (v, p) : ∇u =

∫

Ω

T (u, π) : ∇v.
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Therefore, from this relation, (IV.2.2), and the identity

∇ · T = −∇p+∆v (IV.8.9)

and the analogous one for u and π, we obtain
∫

Ω

[(∆v−∇p)·u−(∆u−∇π)·v] =

∫

∂Ω

[u·T (v, p)−v ·T (u, π)]·n. (IV.8.10)

Relation (IV.8.10) is the Green’s identity for the Stokes system. By using stan-
dard procedures, it is easy to derive from (IV.8.10) a representation formula
for v and p (Odqvist 1930, §2). In fact, we choose for fixed j and x ∈ Ω

u(y) = uj(x− y) ≡ (U1j , U2j, . . . , Unj)

π(y) = qj(x− y),
(IV.8.11)

where U , q is the fundamental solution (IV.2.3), (IV.2.4), and substitute them
into (IV.8.10) with Ω replaced by Ωε ≡ Ω−Bε(x). Setting f = ∆v−∇p, we
obtain

∫

Ωε

f (y) · uj(x− y)dy =

∫

∂Ω

[uj(x− y) · T (v, p)(y)

−v(y) · T (uj, qj)(x− y)] · ndσy

+

∫

∂Bε(x)

[uj(x− y) · T (v, p)(y)

−v(y) · T (uj, qj)(x− y)] · ndσy.
(IV.8.12)

Clearly,

lim
ε→0

∫

Ωε

f(y) · uj(x− y)dy =

∫

Ω

f(y) ·uj(x− y)dy

lim
ε→0

∫

∂Bε

uj(x− y) · T (v, p)(y) · ndσy = 0.

(IV.8.13)

Moreover, since

Tk`(uj , qj) =
1

ωn

(xk − yk)(x` − y`)(xj − yj)

|x− y|n+2
, (IV.8.14)

by a simple calculation one shows

lim
ε→0

∫

∂Bε

v(y) · T (uj, qj)(x− y) · n(y)dσy = −vj(x) (IV.8.15)

and so from (IV.8.11)–(IV.8.15) we finally deduce the following representation
formula for vj , j = 1, . . . , n, valid for all x ∈ Ω:
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vj(x) =

∫

Ω

Uij(x− y)fi(y)dy −
∫

∂Ω

[Uij(x− y)Ti`(v, p)(y)

−vi(y)Ti`(uj , qj)(x − y)]n`(y)dσy .

(IV.8.16)

To give a similar representation for the pressure p, we begin to observe that
for f smooth enough (e.g., Hölder continuous) the volume potentials

Wj(x) =

∫

Ω

Uij(x− y)fi(y)dy,

S(x) = −
∫

Ω

qj(x− y)fi(y)dy

are (at least) of class C2(Ω) and C1(Ω), respectively (Odqvist 1930, Satz 1;
see also Section IV.7) and that, moreover, it is (see Exercise IV.8.1)

∆W (x) −∇S(x) = f(x), x ∈ Ω. (IV.8.17)

We next observe that from (IV.8.16)

∂p

∂xj
+fj = ∆vj = ∆Wj +

∫

∂Ω

[vi∆Ti`(uj, qj)−(∆Uij)Ti`(v, p)]n`, (IV.8.18)

which, by (IV.8.17) and (IV.2.5)1 in turn implies

∂p

∂xj
=

∂S

∂xj
+

∫

∂Ω

[
∂qi

∂xj
Ti`(v, p) + vi∆Ti`(uj, qj)

]
n`.

Observing that qj is harmonic (for x 6= y) we also have

∆Ti`(uj , qj) = −δi`∆qj +
∂

∂x`
∆Uij +

∂

∂xi
∆U`j = −2

∂2qj

∂xi∂x`
,

for x 6= y, which, once substituted into (IV.8.18) and upon using the relation
∂qj/∂x` = ∂q`/∂xj, yields for all x ∈ Ω

p(x) = −
∫

Ω

qi(x− y)fi(y)dy+

∫

∂Ω

[qj(x − y)Ti`(v, p)(y)

−2vi(y)
∂q`(x− y)

∂xi
]n`(y)dσy.

(IV.8.19)

Identity (IV.8.19) gives the representation formula for the pressure.

Exercise IV.8.1 Prove the validity of equation (IV.8.17). Hint: Set w = E ∗ f
(f ≡ 0 in Ωc). From potential theory it is well known that, for f Hölder continuous,

it is (at least) w ∈ C2(Ω) and, moreover, ∆w = f in Ω, see Kellog (1929, Chapter

VI, §3).
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Formulas (IV.8.16) and (IV.8.19) can be easily extended to derivatives of
arbitrary order. Actually, observing that for any multi-index α

∆(Dαv) −∇(Dαp) = Dαf ,

one readily shows, for all x ∈ Ω,

Dαvj(x) =

∫

Ω

Uij(x− y)Dαfi(y)dy −
∫

∂Ω

[Uij(x− y)Ti`(D
αv, Dαp)(y)

−Dαvi(y)Ti`(uj , qj)(x− y)]n`(y)dσy

(IV.8.20)
and

Dαp(x) = −
∫

Ω

qi(x− y)Dαfi(y)dy+

∫

∂Ω

[qj(x− y)Ti`(D
αv, Dαp)(y)

−2Dαvi(y)
∂q`(x− y)

∂xi
n`(y)]dσy.

(IV.8.21)
Relations (IV.8.20) and (IV.8.21) were obtained under the assumption of

suitable regularity on v and p. Nevertheless, it is not difficult to extend them
to the case when velocity and pressure fields belong to suitable Sobolev spaces.
Precisely, we have

Theorem IV.8.1 Let Ω be a bounded domain of Rn, n ≥ 2, of class Cm+2,
m ≥ 0, and let v ∈ Wm+2,q(Ω), p ∈ Wm+1,q(Ω) be a solution to (IV.0.1)
corresponding to f ∈ Wm,q(Ω), 1 < q < ∞. Then, v and p obey (IV.8.20)
and (IV.8.21), respectively, for all |α| ∈ [0, m] and almost all x ∈ Ω.

Proof. We prove (IV.8.20), the proof of (IV.8.21) being entirely analogous.
Let v∗ be the trace of v on ∂Ω. From Theorem II.4.4 we then have v∗ ∈
Wm+2−1/q,q(∂Ω). Denote by {fk}, {v∗k} two sequences of smooth functions
approximating f and v∗, respectively, in the spaces to which they belong, and
by {vk, pk} the corresponding solutions to (IV.0.1) and (IV.0.2). By what we
have seen, for all |α| ∈ [0, m], these solutions obey (IV.8.20) and (IV.8.21)
with vk in place of v and with f k in place of f . Denote by (IV.8.20)k these
relations and let k → ∞. In this limit, from Lemma IV.6.1 we obtain

vk → v in Wm+2,q(Ω)

pk → p in Wm+1,q(Ω).
(IV.8.22)

Set

Vj(b) =

∫

Ω

Uij(x− y)Dαbi(y)dy

Bj(b, s) =

∫

∂Ω

[Dαbi(y)Ti`(uj , qj)(x− y)

−Uij(x− y)Ti`(D
αb, Dαs)(y)]n`(y)dσy
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and

P (b) =

∫

Ω

qi(x − y)Dαbi(y)dy

β(b, s) =

∫

∂Ω

[qi(x− y) Ti`(D
αb, Dαs)(y)

−2

∫

∂Ω

Dαbi(y)
∂q`(x− y)

∂xi
n`(y)dσy

and assume first q > n/2. From the estimates (IV.2.6) for U we have, if n > 2,

I1 ≡ |Vj(fk) − Vj(f)| ≤ c‖|x− y|2−n‖q/(q−1)‖fk − f‖m,q ≤ c1‖fk − f‖m,q

(IV.8.23)
while, if n = 2,

I1 ≤ c‖ log |x− y|‖q/(q−1)‖fk − f‖m,q ≤ c2‖fk − f‖m,q. (IV.8.24)

Moreover, for any fixed x ∈ Ω, from Theorem II.4.1 it follows for all q > 1
that

|Bj(vk, pk) − Bj(v, p)| ≤ c3
(
‖vk − v‖m+1,q(∂Ω) + ‖pk − p‖m,q(∂Ω)

)

≤ c4 (‖vk − v‖m+2,q,Ω + ‖pk − p‖m+1,q,Ω)
(IV.8.25)

where c4 depends on dist (x, ∂Ω) ≡ d (c3 → ∞ as d → 0). Also, from the
embedding Theorem II.3.4, we have Dαv ∈ C(Ω) and, as k → ∞,

Dαvk → Dαv in C(Ω). (IV.8.26)

Relations (IV.8.22)–(IV.8.26) show (IV.8.20) if q > n/2, and then for all q > 1
if n = 2. Assume now 1 < q ≤ n/2, n > 2. Let Ω′ be any subdomain of Ω

with Ω
′ ⊂ Ω. Using the Minkowski inequality several times we obtain

‖Dαvj − Vj(f) −Bj(v, p)‖q,Ω′ ≤ ‖vk − v‖m,q,Ω′ + ‖Vj(fk) − Vj(f )‖q,Ω′

+‖Bj(vk, pk) − Bj(v, p)‖q,Ω′ + ‖Dα(vkj) − Vj(fk) −Bj(vk, pk)‖q,Ω′ .
(IV.8.27)

If q = n/2, from (IV.2.6) and Theorem II.11.2 we derive that Vj is a bounded
transformation of Ln/2(Ω) into Lr(Ω), for all r ∈ (1,∞), while, if q ∈ (1, n/2),
again from (IV.2.6) and Sobolev Theorem II.11.3, Vj is a bounded transforma-
tion of Lq(Ω) into Lnq/(n−2q)(Ω). Therefore, observing that q < nq/(n− 2q),
in either case we derive

‖Vj(f k) − Vj(f)‖q,Ω′ ≤ c5‖fk − f‖m,q,Ω . (IV.8.28)

Thus, recalling that vk satisfies (IV.8.20)k identically, from (IV.8.22), (IV.8.25),
(IV.8.27), and (IV.8.28) we conclude the validity of (IV.8.20) also for q ∈
(1, n/2]. The proof of (IV.8.21) is entirely analogous, provided we distinguish
the two cases n ≥ q and n < q. We leave details to the reader. The proof of
the theorem is complete. ut
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Representation formulas that involve only the body force and the velocity
at the boundary can be obtained if we make use of the Green’s tensor solution
(IV.8.2). Actually, applying (IV.8.10) with

u(y) = Aj(x, y) ≡ (A1j , A2j, . . . , Anj)

π(y) = aj(x, y)

and taking into account that A, a are smooth fields solving (IV.8.1), we find

∫

Ω

f (y)·Aj(x, y)dy =

∫

∂Ω

[uj(x−y)·T (v, p)(y)−v(y)·T (Aj , aj)(x, y)]·ndσy,

(IV.8.29)
where, we recall, uj ≡ (U1j, U2j, . . . , Unj). Subtracting (IV.8.29) from (IV.8.16)
and bearing in mind the definition of G given in (IV.8.2) we then conclude

vj(x) =

∫

Ω

Gij(x, y)fi(y)dy−
∫

∂Ω

[vi(y)Ti`(Gj, gj)(x, y)]n`(y)dσy, (IV.8.30)

where Gj ≡ (G1j, G2j, . . . , Gnj). Finally, along the same lines leading to
(IV.8.19), one proves the following formula:

p(x) = −
∫

Ω

gi(x− y)fi(y)dy − 2

∫

∂Ω

vi(y)n`(y)dσy. (IV.8.31)

Exercise IV.8.2 Let v be a q-generalized solution to the Stokes problem (IV.0.1),

(IV.0.2) in a half-space, corresponding to smooth data of bounded support. Show

that v and the corresponding pressure p satisfy the representation (IV.8.30),

(IV.8.31) with G and g given in (IV.3.46).

IV.9 Notes for the Chapter

Section IV.1. The first existence and uniqueness result for the Stokes prob-
lem in a bounded domain is due to Korn (1908), under the restriction ∇·f = 0.
The problem of existence with no restriction on the body force was solved forΩ
a ball by Boggio (1910), Crudeli (1925a, 1925b), and Oseen (1927, §§9.1,9.2).
In particular, Oseen determines explicitly the Green’s tensor for the Stokes
problem in a ball. Existence and uniqueness in full generality, with no restric-
tion on f or the shape of Ω, was provided by Lichtenstein (1928), in the wake
of the work of Umberto Crudeli.

The existence of a pressure field associated to a q-generalized solution along
with the validity of the corresponding estimate was first established by Cat-
tabriga (1961) for space dimension n = 3. The same result was obtained, with
a much simpler proof, in the case q = 2 (generalized solutions) by Solonnikov
& Ščadilov (1973) and it was successively rediscovered, essentially along the
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same methods, by Amick (1976); see also Temam (1977, Chapter I, Lemma
2.1).

Section IV.2. The material contained in this section is taken, basically, from
Galdi & Simader (1990). However, the uniqueness part of Theorem IV.2.2 is
due to me. Similar results can be found in Cattabriga (1961), Borchers &
Miyakawa (1990, Proposition 3.7 (iii)), and Kozono & Sohr (1991, §2.2).

Existence and uniqueness of solutions in weighted Lebesgue and homoge-
neous Sobolev spaces can be immediately obtained by using, in the proofs
of Theorem IV.2.1 and Theorem IV.2.2, Stein’s Theorem II.11.5 in place of
Calderón–Zygmund Theorem II.11.4; see Pulidori (1993). For similar results
in the two-dimensional case, we also refer to Durán & López Garćıa (2010).

Section IV.3. The guiding ideas are taken from the work of Cattabriga (1961,
§§2,3). However, all theorems in this section are due to me. In this respect, I
am grateful to the late Professor Lamberto Cattabriga for the inspiring and
enjoyable conversations I had with him, in the winter of 1987, on the existence
part of Theorem IV.3.3.

A weaker version of the estimates contained in Theorem IV.3.2 and The-
orem IV.3.3 is given by Borchers & Miyakawa (1988, Theorem 3.6) and by
Maslennikova & Timoshin (1990, Theorem 1). Results in weighted Lq spaces
can be found in Borchers & Pileckas (1992).

The special case of Theorem IV.3.2 corresponding to f ≡ 0, g ≡ 0 and
q = 2 is proved by Tanaka (1995), by the Fourier transform method. More
general (slip) boundary conditions are also considered.

The Green’s tensor for a three-dimensional half-space was determined for
the first time by Lorentz (1896); see also Oseen (1927, §9.7).

Section IV.4. Theorem IV.4.1 (for n = 3) is essentially due to Cattabriga
(1961, §5), while Theorem IV.4.2, Theorem IV.4.4, and Theorem IV.4.5 are
due to me.

A result similar to that proved in Remark IV.4.2 was first shown by Šverák
& Tsai (2000, Theorem 2.2). In fact, Remark IV.4.2 is motivated by their work.

Section IV.5. The results contained in this section are a generalization to
n ≥ 2 of those proved by Cattabriga (1961, §5) for n = 3.

An improved version of the results stated in Remark IV.5.1 and Remark
IV.5.2 can be found in Kang (2004).

Section IV.6. Theorem IV.6.1 plays a central role in the mathematical theory
of the Navier–Stokes equations. In the case where n = 3 it was shown for
the first time by Cattabriga (1961, Teorema at p.311). The same result of
Cattabriga for m ≥ 0 was announced by Solonnikov (1960) and a full proof,
based on the theory of hydrodynamical potentials, appeared later in 1963 in
the first edition of the book by Ladyzhenskaya (1969) (in this regard, see
also Deuring, von Wahl, & Weidemaier (1988) and the book of Varnhorn
(1994)). Sobolevski (1960) proved a weaker result in the special case m = 0 and
q = 2. In their study on the unique solvability of steady-state Navier–Stokes
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equations, Vorovich and Youdovich (1961, Theorem 2) showed Cattabriga’s
result for m ≥ 0 and q ≥ 6/5. Finally, we wish to mention the ingenious work
of Krzywcky (1961), where estimates for the Stokes problem are obtained from
the Weyl decomposition of the space L2.

Since the appearance of these papers, several works have been published
which, among other things, investigate the possibility of generalizing Cat-
tabriga’s theorem in the following two directions: (i) extension to arbitrary
dimension n ≥ 2; (ii) extension to less regular domains. To the best of our
knowledge, the first attempt toward direction (i) is due to Temam (1973,
Chapter I). However Temam’s arguments work only when q ≥ 2 and m ≥ 0,
if n ≥ 3, and for arbitrary m ≥ −1, q ∈ (1,∞) if n = 2. In particular, the
proof of this latter result is achieved by showing that the Stokes problem
is equivalent to a suitable biharmonic problem. In this respect, we refer the
reader to the paper of Simader (1992), where an interesting analysis between
these two problems is carried out for any n ≥ 2. Another contribution along
direction (i), in the case where m = 2, is due to Giga (1981, Proposition
2.1), who uses a theorem of Geymonat (1965, Theorem 3.5) on the invariance
of the index of the operator associated to an elliptic system in the sense of
Douglis-Nirenberg. This method requires, however, Ω of class C∞. Ghidaglia
(1984) has extended Cattabriga’s theorem to arbitrary n ≥ 2 when q = 2. In
this respect, it is worth mentioning the contribution of Beirão da Veiga (1998)
where results similar to those of Ghidaglia are proved, but under much less
regularity on Ω. However, the most important feature of this paper is that
the author avoids potential and/or general elliptic equation theories, while he
uses, instead, only the elementary estimate ‖u‖2,2 ≤ c ‖f‖2 for the unique

solution u ∈W 1,2
0 (Ω) ∩W 2,2(Ω) of the scalar Poisson equation ∆u = f .

The full generalization of the results of Cattabriga to arbitrary space di-
mension n ≥ 2, i.e. Theorem IV.6.1, was established for the first time, indepen-
dently, by Kozono & Sohr (1991) and Galdi & Simader (1990, Theorem 2.1).
(Actually, the proof given by the former authors requires slightly more regu-
larity on Ω than that stated in Theorem IV.6.1.) Concerning (ii), Amrouche
& Girault (1990, 1991), suitably coupling the work of Grisvard (1985) and
Giga (1981), have proved Theorem IV.6.1 with m ≥ 0, for Ω of class Cm+1,1,
and with m = −1, for Ω of class C1,1. Galdi, Simader, & Sohr (1994) extend
Theorem IV.6.1 with m = −1 to locally Lipschitz domains with “not too
sharp” corners, or to arbitrary domains of class C1. If n = 3 and q ∈ [3/2, 3]
their result continues to hold for Ω locally Lipschitz only, provided ∂Ω is
connected; see Shen (1995). The Stokes problem in non-smooth domains has
also been addressed by Kellogg & Osborn (1976) for Ω a convex polygon, and
by Voldřich (1984) for arbitrary Ω ⊂ Rn, n ≥ 2, but in weighted Sobolev
spaces. Dauge (1989) and Kozlov, Maz’ja and Schwab (1994) have considered
extensions of the work of Kellogg and Osborn to three-dimensional domains.

Existence and uniqueness for the Stokes problem in corners and cones
has been studied by Solonnikov (1982) and Deuring (1994), respectively. A
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comprehensive analysis of these questions can be found in the monograph of
Nazarov and Plamenevskǐi (1994).

Along with the definition of weak solution, one can introduce the notion
of very weak solutions (Giga, 1981, §2; see also Conca, 1989). Specifically, set

C2
0(Ω) = {ψ ∈ C2(Ω) : ψ|∂Ω = 0} , (∗)

and formally dot-multiply both sides of (IV.0.1)1 by ψ ∈ C2
0(Ω). After inte-

grating by parts over Ω and taking into account (IV.0.1)2 and (IV.0.2), we
find ∫

Ω

v ·∆ψ = −
∫

Ω

p divψ +

∫

Ω

f · ψ −
∫

∂Ω

n · ∇ψ · v∗ .

These considerations lead to the following definition. A field v : Ω → Rn

is called a very weak solution to the Stokes problem (IV.0.1)–(IV.0.2) if (i)
v ∈ Hq(Ω), some q ∈ (1,∞), and (ii) v satisfies the following relation

(v, ∆ψ) = 〈f ,ψ〉 − 〈n · ∇ψ, v∗〉∂Ω , for all ψ ∈ C2
0(Ω) with divψ = 0 in Ω ,

where, we recall, 〈·, ·〉∂Ω denotes the duality pairing between the spaces
W−1/q,q(∂Ω) and W 1−1/q′,q′

(∂Ω); see Section III.2 . Notice that v is not re-
quired to possess any derivative, hence the attribute of “very weak”. It is
also clear that a q-weak solution is also very weak, and that the converse
need not be true. Existence and uniqueness of very weak solutions has been
shown, for Ω of class C∞, by Giga (1981, Proposition 2.2). In particular, the
author proves that, for any f ∈ D−1,q

0 (Ω) and any v∗ ∈ W−1/q,q(∂Ω), there
exists a unique corresponding very weak solution. Furthermore, we can find a
“pressure field” p ∈W−1,q

0 (Ω) such that

(v, ∆ψ) = −〈p, divψ〉 + 〈f ,ψ〉 + 〈n · ∇ψ, v∗〉∂Ω , for all ψ ∈ C2
0(Ω) .

More recently, the question of existence, uniqueness, continuous dependence
and regularity of very weak solutions (also for the full nonlinear problem, see
Notes for Chapter IX) has been analyzed in detail by Galdi, Simader & Sohr
(2005, Theorem 3 and Lemma 4). Among others, one main result of this paper
explains and characterizes the way in which a very weak solution attains the
boundary value v∗, a thing that a priori is not completely obvious; see also
Marušic-Paloka (2000, Section 3). It turns out that the normal component of
v at ∂Ω is a well defined member of W−1/q,q(∂Ω), as a consequence of the

fact that v belongs to Hq(Ω); see Theorem III.2.3. Moreover, let Ŵ 1,q(Ω)
denote the completion of W 1,q(Ω) in the norm

‖u‖cW1,q(Ω)
≡ ‖u‖q + ‖Pq∆u‖−1,q ,

with Pq projection operator of Lq(Ω) onto Hq(Ω). Then, if Ω is of class

C2,1, and u ∈ Ŵ 1,q(Ω) we have that n×u|∂Ω is well defined as an element of
∈W−1/q,q(∂Ω), and the corresponding trace operator is continuous; see Galdi,
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Simader & Sohr, loc. cit., Theorem 1. In addition, it can be shown that every
very weak solution corresponding to f ∈ W−1,q

0 (Ω) and v∗ ∈ W−1/q,q(∂Ω),

belongs, in fact, to the space Ŵ 1,q(Ω); see Galdi, Simader & Sohr, loc. cit.,
Lemma 1. Higher regularity results can be derived from Lemma IV.6.1.

Galdi & Varnhorn (1996) have proved the maximum modulus theorem
for the Stokes system. Specifically, they show that for solutions to (IV.0.1)–
(IV.0.3) with f ≡ 0 and Ω of class C2, the estimate

max
Ω

|v| ≤ C max
∂Ω

|v∗| (∗∗)

holds, with C = C(n,Ω). In general, the constant C is ≥ 1, and, in fact,
it is easy to bring examples where C > 1. The same result, under more
general assumptions on the data, has been independently obtained by Mare-
monti (2002). Previous contributions to this problem are due to Naumann
(1988), and to Maremonti & Russo (1994) who first proved (∗∗) for the two-
dimensional case.1 An interesting question is to furnish a bound for the con-
stant C appearing in (∗∗). This problem has been addressed, by an elegant
method, by Kratz (1997a, 1997b).

Section IV.8. Integral representations of various types for the general non-
homogeneous Stokes problem along with their comparative analysis are given
in the paper by Valli (1985). In this paper some errors in analogous formulas
given by other authors are also pointed out.

1 The results of Galdi & Varnhorn, and of Maremonti & Russo cover the case of
more general domains such as the exterior ones. In this respect, it seems inter-
esting to notice that, in the case where Ω is a half-space, the estimate (∗∗) with
suitable C = C(n) > 0 immediately follows, in arbitrary dimension n ≥ 2, from
the representation (IV.3.3)1 and the estimate (ii) given after (IV.3.6).



V

Steady Stokes Flow in Exterior Domains

. . . Tu stesso ti fai grosso
col falso immaginar, s̀ı che non vedi
ciò che vedresti, se l’avessi scosso.

DANTE, Paradiso I, vv. 88-90.

Introduction

In this chapter we shall analyze the Stokes problem in an exterior domain.
Specifically, assuming that the region of flow Ω is a domain coinciding with
the complement of a compact set (not necessarily connected) we wish to es-
tablish existence, uniqueness, and the validity of corresponding estimates for
the velocity field v and the pressure field p of a steady flow in Ω governed by
the Stokes approximation, i.e.,

∆v = ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

(V.0.1)

where f , v∗ are prescribed fields and where, as usual, we have formally set the
coefficient of kinematic viscosity to be one. Of course, since Ω is unbounded,
we have to assign also the velocity at infinity, which we do as follows:

lim
|x|→∞

v(x) = 0 . (V.0.2)

There is a physically significant special case of problem (V.0.1)–(V.0.2)
that, in fact, constitutes the main motivation for its study. Precisely, consider
the slow motion of a rigid body B, with impermeable walls, that moves with
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prescribed translational velocity, v0, and angular velocity, ω, in an otherwise
quiescent viscous liquid. By “slow” we mean that all nonlinear terms related to
the inertial forces of the liquid can be disregarded compared to the linear one
related to viscous forces. This happens if the appropriate Reynolds number is
vanishingly small, that is,

max{|v0|, |ω|d} �
ν

d
, (V.0.3)

where d = δ(B). We further assume that the liquid fills the whole space, Ω,
outside B, and that body forces are negligible. Then, problem (V.0.1), (V.0.2)
with f ≡ 0, and v∗ = v0 +ω × x, describes the motion of the liquid referred
to a frame attached to the body B.

a priori, we are not expecting that (V.0.1), (V.0.2) may fully describe,
even qualitatively, the physics of the problem at low Reynolds number. This
is because, if the Stokes approximation of a flow can be fairly reasonable near
the bounding wall of the body, where the viscous forces are predominant, it
need not be equally reasonable at large distances where the effects related to
those forces become less important. Let us consider, for instance, a unit ball,
S, (with impermeable walls) moving with a small (in the sense of (V.0.3))
translational velocity v0 and zero angular velocity in a viscous liquid that fills
the whole space and is at rest at infinity. Then, by what we said, the motion
of the liquid can be described by (V.0.1), (V.0.2) with Ω ≡ R3 − S, f ≡ 0,
and v∗ = v0. In such a case, Stokes derived in 1851 a remarkable and explicit
solution vS , pS given by (see Stokes 1851, §39)

vS(x) =
3

4
∇×

[
|x|2∇×

(
v0

|x|

)]
+

1

4
∇×∇×

(
v0

|x|

)

pS(x) =
3

2
v0 · ∇

(
1

|x|

)
.

(V.0.4)

Employing this solution one can easily compute the force exerted by the liquid
on the sphere and find results that are significantly in agreement with the
experiment. 1 However, for the same solution it is apparent that v(x) = v(−x)
and, therefore, according to Stokes approximation, there is no wake region
behind S in contrast with what should be expected in the actual flow.

Similar incongruities are observed if S rotates with a constant and small
(in the sense of (V.0.3)) angular velocity ω, without translating (i.e. v0 = 0).
In this situation, the solution to (V.0.1), (V.0.2) with f ≡ 0, and v∗ = ω×x
is given by (see Lamb 1932, §334 )

v = ω × x

|x|3 , p = p0 , (V.0.5)

1 A most remarkable example is the Erenhaft-Millikan experiment for determining
the elementary electronic charge, where one uses the Stokes law of resistance
derived from (V.0.4) (Perucca 1963, Vol II, p.670).
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where p0 is an arbitrary constant. From (V.0.5) it follows that the component
of the velocity along the axis parallel to ω is identically zero. However, this
is at odds with the well-known experimental observation that the sphere acts
like a “centrifugal fan”, receiving the liquid near the poles and throwing it
away at the equator; see Stokes (1845) and Lamb (1932, p. 589). This fact
was first theoretically explained by Bickley (1938).

Another –and maybe more famous– difficulty arises when one replaces the
sphere S with an infinite straight cylinder C moving with translational velocity
v0 in a direction perpendicular to its axis, and zero angular velocity (Stokes
1851, §45). In this situation, the motion of the liquid is planar and, therefore,
one may write

vr =
1

r

∂ψ

∂θ
, vθ = −∂ψ

∂r
,

where ψ = ψ(r, θ) is the stream function and (r, θ) is a polar coordinate system
in the relevant plane of flow orthogonal to the axis of C. Assuming the radius
of C to be one, problem (V.0.1), (V.0.2) with

Ω = {x ∈ R2 : x2
1 + x2

2 > 1} ,

f ≡ 0 and v∗ = v0, can be written, in terms of ψ, as

∆2ψ = 0 in Ω

∂ψ

∂θ
= U cos θ at r = 1

∂ψ

∂r
= U sin θ at r = 1

lim
r→∞

1

r

∂ψ

∂θ
= lim

r→∞
∂ψ

∂r
= 0,

(V.0.6)

where, without loss of generality, we have taken v0 = (U, 0, 0). A solution to
(V.0.6) can be sought in the form

ψ(r, θ) = F (r)G(θ).

Owing to (V.0.6)3,4, we find

G(θ) = sin θ,

and so, by an easy calculation, we show that F (r) satisfies a fourth-order
Euler equation whose general integral is

F (r) = Ar−1 + Br +Cr log r +Dr3,

A, . . . , D being arbitrary constants to be fixed so as to match the boundary
conditions and conditions at infinity in (V.0.6). To satisfy the latter it is
necessary to take B = C = D = 0. Moreover, (V.0.6)2 implies A = U ,
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while (V.0.6)3 requires A = −U . This is possible if and only if A = U = 0.
Thus, v ≡ 0, p = const. is the only possible solution (of the particular form
chosen) of the problem, which tells us that the cylinder can not move. Stokes
then concluded with the following (wrong, in retrospect) statement; see Stokes
(1851, p. 63):

“It appears that the supposition of steady motion is inadmissible.”

This is the original formulation of the famous Stokes paradox, which plays
a fundamental role in the study of plane steady flow, also in the nonlinear
context (see Section XII.4). The Stokes paradox, in other different and more
general forms, will be considered and discussed in several sections of this
chapter. 2

The situation just described is similar to that of the well-known Laplace
equation with homogeneous Dirichlet boundary data in the exterior of a unit
circle, where the function µ(x) = log |x| is a solution to the problem and there
are no non-zero solutions that behave at infinity as o(µ(x)). In fact, also for the
exterior plane Stokes problem, from the reasonings previously developed we
can construct solutions analogous to µ and find the following two independent
solutions

v
(1)
1 = 2 log |x|+ 2x2

2/|x|2 + (x2
1 − x2

2)/|x|4 − 1,

v
(1)
2 = −2

x1x2

|x|2
(
1 − |x|−2

)
,

π(1) = 4x1/|x|2,

v
(2)
1 = −2

x1x2

|x|2
(
1 − |x|−2

)
,

v
(2)
2 = 2 log |x|+ 2x2

1/|x|2 + (x2
2 − x2

1)/|x|4 − 1,

π(2) = 4x2/|x|2.

(V.0.7)

As in the case of the sphere, also for the planar flow past a cylinder one
can exhibit a solution corresponding to the case when C rotates (without
translating) with constant angular velocity ω around its axis in a quiescent
liquid. Precisely, the appropriate solution is given by (see Lamb 1932, §§ 333,
336)

v = ω × x

|x|2 , p = p0 , (V.0.8)

where p0 is an arbitrary constant. However, it is interesting to observe that,
unlike the case of the sphere, the velocity field in (V.0.8) is also a solution to
the full nonlinear Navier–Stokes problem, corresponding to the pressure field

p = p0 −
1

2

|ω|2
|x|2 . (V.0.9)

2 It is interesting to notice that a general proof of the Stokes paradox, independent
of the particular form of the solution and the shape of the body appeared only
in 1938; see Kotschin, Kibel, & Rose (1954, pp. 361-366).
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Other contradictions and paradoxes related to problem (V.0.1), (V.0.2)
will be mentioned in the introduction to Chapter VII. There, and in the sub-
sequent Chapter VIII, to avoid these contradictions, we will consider an ap-
proximation different from that of Stokes, obtained by linearizing the Navier–
Stokes equation around a non-zero rigid motion solution (Oseen, and gener-
alized Oseen approximations).

The main objective of this chapter is to investigate unique solvability for
problem (V.0.1), (V.0.2) and to see to what extent it is possible to prove, for
the obtained solutions, estimates analogous to those derived in the preceding
chapter in the case of a bounded domain. Now, while existence and uniqueness
of generalized solutions together with corresponding estimates are proved (for
n > 2) by a direct extension of the method employed for the bounded domain
(in fact, even with an arbitrary flux of v∗ at ∂Ω), the problem of determin-
ing analogous results for q-generalized solutions (q 6= 2) is more complicated
and demands a preliminary, detailed study of asymptotic properties at large
distances. Of course, as in the case of the Poisson equation in exterior do-
mains, we are not expecting that the theory holds in Sobolev spaces Wm,q

but, rather, in homogeneous Sobolev spaces Dm,q . However, as we shall see,
even enlarging the class of functions to which solutions belong, such results
can be proved if there is a certain restriction on q depending on the number of
space dimension n. This fact can be qualitatively explained as follows. We be-
gin to consider smooth body forces of compact support in Ω and for these we
show the unique solvability of problem (V.0.1), (V.0.2) in a function class Fq

(say) along with suitable estimates that represent the natural generalization
to the exterior domain of those determined in Theorem IV.6.1 for a bounded
domain. Successively, given f in an arbitrary Sobolev space Wm−2,q, m ≥ 2,
we approximate it by a sequence from C∞

0 (Ω) and analyze the convergence of
the corresponding solutions to a solution to (V.0.1), (V.0.2) in the class Fq by
means of the preceding estimates. Now, if q is sufficiently small (1 < q < n/2)
every function in Fq satisfies (V.0.2), in a suitable sense, and the above pro-
cedure is convergent to a uniquely determined solution to (V.0.1), (V.0.2);
on the other hand, if q is large enough (q ≥ n/2) the elements of Fq need
not verify (V.0.2) and, moreover, (V.0.1) with f ≡ v∗ ≡ 0 admits nonzero
solutions in the class Fq, which form a finite dimensional space Σq. Therefore,
for q ≥ n/2, our procedure gives rise to a solution satisfying a priori only the
Stokes system (V.0.1) and the corresponding estimates are available only in
the quotient space Fq/Σq.

An analogous situation occurs when f is a functional onD1,q′

0 and solutions
are sought in the space D1,q (weak solutions). In fact, when q ≥ n (q > 2, if
n = 2), also in this class there is a nonempty null space Sq to the Stokes system
(V.0.1). It then follows that such solutions are not unique if q ≥ n (q > 2, if
n = 2), while they can exist for 1 < q ≤ n/(n− 1) (1 < q < 2, if n = 2) if and
only if the data satisfy a compatibility condition of the Fredholm type. This
latter property has some interesting consequences and, in particular, it leads
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to a necessary and sufficient condition for the existence of planar solutions
to (V.0.1), (V.0.2). Specifically, these solutions can exist if and only if f and
v∗ verify a suitable relation. Of course, if f ≡ 0, the choice v∗ = v0, with
v0 constant vector, does not satisfy such a relation, in accordance with the
Stokes paradox. However, this relation may be satisfied for other, physically
significant, choices of v∗; see Exercise V.7.1.

In the light of what I have described so far, a question that naturally arises
is if, by suitably restricting the function class of body forces, it is possible to
determine “stronger” estimates that would ensure that the limit solution,
obtained by the density procedure previously mentioned, “remembers” the
condition at infinity (V.0.2). Such a problem is, in fact, resolvable provided
f = ∇ · F with F decaying sufficiently fast at large distances (see Section
V.8) and, as we shall see in Chapter X, these results will be decisive in the
solvability of the nonlinear problem with zero velocity at infinity.

V.1 Generalized Solutions. Preliminary Considerations
and Regularity Properties

In analogy with the case where Ω is bounded, we begin to give a variational
formulation of the Stokes problem (V.0.1), (V.0.2). To this end, multiplying
(V.0.1) by ϕ ∈ D(Ω) and integrating by parts over Ω, we formally obtain1

(∇v,∇ϕ) = −[f ,ϕ]. (V.1.1)

Definition V.1.1. A vector field v : Ω → Rn is called a q-weak (or q-
generalized) solution to (V.0.1), (V.0.2) if for some q ∈ (1,∞) the following
properties are met:

(i) v ∈ D1,q(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v assumes the value v∗ at ∂Ω (in the trace sense) or, if the velocity at

the boundary is zero, v ∈ D1,q
0 (Ω) ;

(iv) lim
|x|→∞

∫

Sn−1

|v(x)| = 0;

(v) v verifies (V.1.1) for all ϕ ∈ D(Ω).

If q = 2, v will be called a weak (or generalized) solution to (V.0.1), (V.0.2).

Remark V.1.1 If v∗ = 0, condition (iii) tells us that v assumes the homoge-
neous boundary data in the sense of the Sobolev space W 1,2

0 and no regularity
is needed on Ω; see Remark II.6.5. On the other hand, if v∗ 6= 0, according
to the trace theory of Section II.5, Ω has to be (at least) locally Lipschitz. �

1 As agreed, we are taking ν = 1. Furthermore, as in the case where Ω is bounded,
we are considering the more general case that f is an element of D−1,q

0 (Ω), so
that, since Ω is an exterior domain, we replace (f ,ϕ) with [f ,ϕ], where, we

recall, [·, ·] denotes the duality pairing between D1,q
0 (Ω) and D1,q′

0 (Ω).
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Remark V.1.2 If v∗ = 0, a q-weak solution belongs to D̂1,q
0 (Ω). This follows

directly from conditions (ii) and (iii) of Definition V.1.1 . Consequently, for

domains such that D̂1,q
0 (Ω) ⊃ D1,q

0 (Ω) the definition of q-generalized solution
using this latter space could then be more restrictive than Definition V.1.1.
In this regard, we recall that, by virtue of the results of Theorem III.5.1, the
two spaces coincide if Ω satisfies some mild regularity requirement like, for
instance, cone condition. However, to date, it is still to ascertain if there exists
an exterior domain, Ω], for which D̂1,2

0 (Ω]) 6= D1,2
0 (Ω]). If such Ω] exists,

then, as in the case of a bounded domain (see Remark IV.1.2) we could prove,
by means of Exercise III.5.3 and Theorem V.2.1, the existence of at least
one smooth, nonzero solution, v], p], to (V.0.1),(V.0.2) in Ω], corresponding
to f ≡ v∗ ≡ 0. In addition, v] would tend to zero as |x| → ∞ uniformly
pointwise, and v], p] would have the asymptotic behavior specified in Theorem
V.3.2. �

From Lemma IV.1.1, it follows that to every q-weak solution we can asso-
ciate a suitable pressure field p. Namely, if f ∈ W−1,q

0 (Ω′), 1 < q < ∞, for
any bounded subdomain Ω′ with Ω′ ⊂ Ω, there exists p ∈ Lq

loc(Ω) such that

(∇v,∇ψ) = −[f ,ψ] + (p,∇ · ψ) (V.1.2)

for all ψ ∈ C∞
0 (Ω). However, if Ω is locally Lipschitz and f ∈ D−1,q

0 (Ω) we
have the following global result.

Lemma V.1.1 Let Ω be a locally Lipschitz exterior domain in Rn and let v
be a q-generalized solution to (V.0.1), (V.0.2). Then, if

f ∈ D−1,q
0 (Ω),

there exists a unique p ∈ Lq(Ω) satisfying (V.1.2) for all ψ ∈ C∞
0 (Ω). Fur-

thermore, the following inequality holds

‖p‖q ≤ c (|f |−1,q + |v|1,q) . (V.1.3)

Proof. The functional

F(ψ) = (∇v,∇ψ) + [f ,ψ]

is bounded for ψ ∈ D1,q′

0 (Ω) and vanishes for ψ ∈ D1,q′

0 (Ω). The existence
and uniqueness of p is then a direct consequence of Corollary III.5.1. Consider,
next, the problem

∇ · ψ = |p|q−2p

ψ ∈ D1,q′

0 (Ω)

|ψ|1,q′ ≤ c1‖p‖q.

(V.1.4)
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Since p ∈ Lq(Ω), by Theorem II.4.2, there exists at least one ψ satisfying
(V.1.4). Replacing such a ψ into (V.1.2) and using the Hölder inequality then
shows (V.1.3). ut

The next step is to investigate the regularity of q-generalized solutions.
Since regularity is a local property, such a study is most easily performed
by means of the results shown in Section IV.4 and Section IV.5. Specifically,
from Theorem IV.4.1 and Theorem IV.5.1 we have the following result, whose
proof is left to the reader as an exercise.

Theorem V.1.1 Let f ∈ Wm,q
loc (Ω), m ≥ 0, 1 < q <∞, and let

v ∈W 1,q
loc (Ω), p ∈ Lq

loc(Ω) 2

with v weakly divergence-free, satisfy (V.1.2) for all ψ ∈ C∞
0 (Ω). Then

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω).

In particular, if f ∈ C∞(Ω), then

v, p ∈ C∞(Ω).

Also, if Ω is of class Cm+2 and f ∈Wm,q
loc (Ω), v∗ ∈Wm+2−1/q,q(∂Ω), then

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω).

In particular, if Ω is of class C∞ and f ∈ C∞(Ω), v∗ ∈ C∞(∂Ω) then v,
p ∈ C∞(Ω′), for all bounded Ω′ ⊂ Ω.

V.2 Existence and Uniqueness of Generalized Solutions
for Three-Dimensional Flow

In this section we shall be concerned with the well-posedness of the Stokes
problem when the region of flow is a three-dimensional exterior domain.1

The two-dimensional case, being related to the Stokes paradox, is in general
not solvable. Actually, as will be proved in Section V.7, it admits a solution
if and only if the data obey suitable restrictions; see also Theorem V.2.2.
Furthermore, the problem of existence of q-generalized solutions for any q > 1
will be treated in Section V.5.

2 As a matter of fact, both assumptions on v and p can be replaced by the following
one:

∇v ∈ Lq
loc(Ω),

with v satisfying (V.1.1) for all ϕ ∈ D(Ω). This is because, by Lemma II.6.1, v ∈
W 1,q

loc (Ω) and, by Lemma IV.1.1, we infer the existence of p ∈ Lq
loc(Ω) satisfying

(V.1.2).
1 Actually, n-dimensional with n ≥ 3; see Remark V.2.1.
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Theorem V.2.1 Let Ω be a locally Lipschitz exterior domain of R3. Given

f ∈ D−1,2
0 (Ω), v∗ ∈W 1/2,2(∂Ω),

there exists one and only one generalized solution to the Stokes problem
(V.0.1), (V.0.2). This solution satisfies for all R > δ(Ωc) the following es-
timate

‖v‖2,ΩR + |v|1,2 + ‖p‖2 ≤ c
{
|f |−1,2 + ‖v∗‖1/2,2(∂Ω)

}
(V.2.1)

where p is the pressure field associated to v by Lemma V.1.1 and c = c(Ω,R),
c→ ∞ as R → ∞. Furthermore,

∫

S2

|v(x)| = o(1/
√
|x|) as |x| → ∞. (V.2.2)

Proof. The proof of existence and uniqueness goes exactly as in Theorem
IV.1.1, provided we make a suitable extension of v∗. In this respect, it is
worth noticing that it is not required that the flux of v∗ on ∂Ω be zero. Set

Φ =

∫

∂Ω

v∗ · n, σ(x) = −Φ∇E(x),

where E is the fundamental solution to the Laplace equation and with the
origin of coordinates taken in Ω̇c. Clearly,2

∆σ = 0 in Ω,

∫

∂Ω

σ · n = Φ.

Putting w∗ = v∗ − σ, it follows that

∫

∂Ω

w∗ · n = 0

and we can apply the results in Exercise III.3.8 to construct a solenoidal field
V 1 ∈ W 1,2(Ω), vanishing outside Ωρ, for some ρ > δ(Ωc), that equals w∗ on
∂Ω and, moreover,

‖V 1‖1,2,Ωρ ≤ c1‖w∗‖1/2,2(∂Ω) (V.2.3)

with c = c(Ωρ). On the other hand we have, clearly,

‖w∗‖1/2,2(∂Ω) ≤ c2‖v∗‖1/2,2(∂Ω),

so that (V.2.3) implies

2 Recall that n is the unit outer normal to ∂Ω.
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‖V 1‖1,2,Ωρ ≤ c3‖v∗‖1/2,2(∂Ω) (V.2.4)

with c3 = c3(Ω, ρ). A generalized solution to the exterior problem is then
sought in the form

v = w + V 1 + σ,

where w ∈ D1,2
0 (Ω) solves

(∇w,∇ϕ) = −[f ,ϕ] − (∇V ,∇ϕ),

with
V = V 1 + σ.

Existence, uniqueness, and estimate (V.2.1) are proved along the same lines
of Lemma IV.1.1, provided we use Lemma V.1.1 instead of Lemma IV.1.1 and
note that, since ∆σ = 0 in Ω, we have

∫

Ω

∇σ : ∇ϕ = 0 ,

for any ϕ ∈ D1,2
0 (Ω). To show estimate (V.2.2) we notice that for |x| suffi-

ciently large ∫

S2

|v(x)| ≤ c4

∫

S2

(|w(x)| + |Φ| |∇E(x)|)

= c4

∫

S2

|w(x)| +O(1/|x|2),

and, since w ∈ D1,2
0 (Ω), by Theorem II.7.6 and Lemma II.6.3 it follows

∫

S2

|w(x)| = o(1/
√
|x|),

which furnishes (V.2.2). The proof of the theorem is then completed. ut
Exercise V.2.1 Show that Theorem V.2.1 holds also when ∇ · v = g 6≡ 0, where

g is a prescribed function of L2(Ω). In this case (V.2.1) is modified accordingly, by

adding the term ‖g‖2 on its right-hand side. Notice that, unlike the case where Ω

is bounded (see Exercise IV.1.1), no relation between g and v∗ is needed.

Remark V.2.1 If in Theorem V.2.1, v∗ = v0 + ω × x ≡ V , the solenoidal
extension of the boundary velocity can be performed in an elementary way.
Specifically, we need a field a that equals V near ∂Ω, equals 0 at large dis-
tances, and has first derivatives in L2(Ω). Thus, assuming without loss of
generality v0 = (v0, 0, 0), we may take (Borchers 1992)

a = −1
2
∇×

[
∇× (ζv0x

2
2) + ζx2ω)

]
, (V.2.5)

where ζ is an arbitrary function from C∞
0 (Ω) that is zero near ∂Ω and one far

from ∂Ω. Consequently, in particular, if v∗ = V , existence of a generalized
solution is proved without regularity assumptions on Ω. �
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Remark V.2.2 In spatial dimension n > 3 the results of Theorem V.2.1
continue to hold with estimate (V.2.2) replaced by

∫

Sn−1

|v(x)| = o(1/|x|n/2−1) as |x| → ∞.

In the case of plane motions, however, we have a different situation that
resembles the Stokes paradox mentioned at the beginning of the chapter.
Actually, using the same method of proof, we can still construct a field v
satisfying conditions (i)-(iii) and (v) of Definition V.1.1. However, we are
not able, for such a v, to check the validity of (iv), that is, to control the
behavior of the solution at large distances. This is because functions having
a finite Dirichlet integral in two space dimension need not tend to a finite
limit at infinity, even in a generalized sense; see Section II.6 and Section II.9.
Nevertheless, as will be shown in Theorem V.3.2 (see also Remark V.3.5),
every such solution does tend to a well-defined vector, v∞, at infinity, whenever
the body force is of compact support. However, we cannot conclude

v∞ = 0 . (V.2.6)

Actually, (V.2.6) is in general not true, and in Section V.7 we shall prove
that (V.2.6) holds if and only if the data satisfy certain restrictions. The
meaning of the vector v∞ will be clarified in Section VII.8, within the context
of a singular perturbation theory based on the Oseen approximation. Here,
we end by pointing out the following Stokes paradox for generalized solutions
(Heywood 1974).3 �

Theorem V.2.2 Let v be a weak solution to the Stokes problem in an exte-
rior, locally Lipschitz two-dimensional domain corresponding to f ≡ v∗ ≡ 0.
Then v = 0 a.e. in Ω.

Proof. By assumption,

(∇v,∇ϕ) = 0, for all ϕ ∈ D1,2
0 (Ω), (V.2.7)

where v ∈ D1,2(Ω) and v = 0 at ∂Ω (in the trace sense). By Theorem II.7.1
with q = n = 2, it follows that v ∈ D1,2

0 (Ω) and, since v is solenoidal, this

implies v ∈ D̂1,2
0 (Ω). On the other hand, since Ω is locally Lipschitz, by

Theorem III.5.1, we find

D̂1,2
0 (Ω) = D1,2

0 (Ω)

and so v ∈ D1,2
0 (Ω), which together with (V.2.7) completes the proof of the

theorem. ut
3 In a private conversation in the summer of 2003, Olga Ladyzhenskaya informed

me that a result entirely analogous to Theorem V.2.2 is stated, without proof, at
p. 43 of Ladyzhenskaya (1969).
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V.3 Representation of Solutions. Behavior at Large
Distances and Related Results

In order to perform an Lq-theory in exterior domains of the type performed for
bounded domains in Section IV.6, we need to know more about the asymptotic
behavior of solutions at great distances. We shall see, in particular, that under
suitable conditions of “growth” at infinity, they behave exactly as the Stokes
fundamental solution, provided the force f is of compact support. All this will
be proved as a consequence of some representation formulas we are about to
derive. In principle, this can be done quite straightforwardly from the results
of Section IV.8. Actually we may write (IV.8.20) and (IV.8.21) on Ω∩BR(x),
for sufficiently large R, then let R→ ∞ and require that the surface integrals
calculated at ∂BR(x) converge to zero. However, this method would impose
too severe restrictions a priori on the behavior of v and p at large distances
and the results obtained under such assumptions would be of no use for further
purposes. We therefore employ another technique introduced by Fujita (1961)
in the nonlinear context, which is based on a suitable “truncation” of the
fundamental solution.

Let ψ = ψ(t) be a C∞-function in R that equals one for |t| ≤ 1/2 and zero
for |t| ≥ 1. Setting

ψR(x− y) = ψ

(
x− y

R

)
, R > 0,

there follows

ψR(x− y) =

{
1 if |x− y| ≤ R/2

0 if |x− y| ≥ R

|DαψR(x− y)| ≤MR−|α|, |α| ≥ 0

(V.3.1)

where M is independent of x, y. The Stokes-Fujita truncated fundamental solu-

tion U
(R)
ij , q

(R)
j is then defined by (IV.2.1) with Φ replaced by ψRΦ. Evidently,

from (V.3.1)1 we have

U
(R)
ij (x−y) = Uij(x−y), q

(R)
i (x−y) = qi(x−y), if |x− y| ≤ R/2, (V.3.2)

while
U

(R)
ij (x− y) ≡ q

(R)
i (x− y) ≡ 0, if |x− y| ≥ R. (V.3.3)

Moreover, from (IV.2.2) it follows for x 6= y that

∆U
(R)
ij (x − y) +

∂

∂xi
q
(R)
j (x− y) = H

(R)
ij (x− y)

∂

∂x`
U

(R)
`j (x− y) = 0

(V.3.4)

where H
(R)
ij is defined by
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H
(R)
ij (x− y) =

{
0 if x = y

δij∆
2(ψRΦ)(x− y) if x 6= y.

Since Φ(x− y) is biharmonic for x 6= y and all derivatives of ψR(x− y) vanish

unless R/2 ≤ |x− y| ≤ R, we recover that H
(R)
ij is indefinitely differentiable

and vanishes unless R/2 ≤ |x− y| ≤ R. Also, for u ∈ L1
loc(Ω) it is H

(R)
ij ∗ u ∈

C∞(Rn). Finally, from (V.3.1) and the properties of Φ we at once obtain the
following uniform bounds as R→ ∞

|DαH
(R)
ij (x− y)| =

{
O(logR/R2+|α|), if n = 2

O(R−n−|α|) if n > 2.
|α| ≥ 0 (V.3.5)

Consider now the Green’s formula (IV.8.10) in a domainΩ, not necessarily
bounded, with

u(y) = u
(R)
j (x− y) ≡

(
U

(R)
1j , U

(R)
2j , . . . , U

(R)
nj

)

π(y) = q
(R)
j (x− y).

Such a procedure is meaningful, since, whatever the domainΩ may be, in view
of (V.3.3) the integration is always made on a bounded region (the support of
ψR(x− y)). By repeating all the steps leading to (IV.8.20) and (IV.8.21) and
recalling (V.3.2) we thus readily obtain

Dαvj(x) =

∫

Ω

U
(R)
ij (x− y)Dαfi(y)dy

−
∫

∂Ω

[U
(R)
ij (x− y)Ti`(D

αv, Dαp)(y)

−Dαvi(y)Ti`(u
(R)
j , q

(R)
j )(x− y)]n`(y)dσy

−
∫

Ω

H
(R)
ij (x− y)Dαvi(y)dy.

(V.3.6)
Likewise, setting

S(R)(x) =

∫

Ω

q
(R)
i (x− y)Dαfi(y)dy,

we have

∂(Dαp)

∂xj
=
∂S(R)

∂xj
(x) +

∫

∂Ω

[
∂q

(R)
i (x − y)

∂xj
Ti`(D

αv, Dαp)(y)

−2Dαvi(y)
∂2q`(x− y)

∂xj∂xi

]
n`(y)dσy

−
∫

Ω

∆H
(R)
ij (x− y)Dαvi(y)dy;

(V.3.7)
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see Exercise V.3.1. Notice that if R < dist (x, ∂Ω), formulas (V.3.6) and
(V.3.7) do not require any regularity assumption on Ω. The following result
holds.

Lemma V.3.1 Let Ω be an arbitrary domain of Rn. Let v ∈ W 1,r
loc (Ω), 1 <

r < ∞, be weakly divergence-free and satisfy (V.1.1) for all ϕ ∈ D(Ω) and
some r ∈ (1,∞). Then, if f ∈ Wm,q

loc (Ω), 1 < q < ∞, it follows that v ∈
Wm+2,q

loc (Ω) and, moreover, for all fixed d > 0, for all |α| ∈ [0, m] and for
almost all x ∈ Ω with dist (x, ∂Ω) > d, v obeys the identity

Dαvj(x) =

∫

Bd(x)

U
(d)
ij (x−y)Dαfi(y)dy−

∫

β(x)

H
(d)
ij (x−y)Dαvi(y)dy (V.3.8)

where β(x) = Bd(x) −Bd/2(x).

Proof. The first part of the lemma has already been proved in Theorem IV.4.2.
Concerning the validity of (V.3.8), we notice that if v and p are smooth, it

follows from (V.3.6), by taking R = d and recalling the properties of H
(d)
ij .

The validity of (V.3.8) under the hypothesis of the lemma is recovered by
adopting exactly the same procedure used in the proof of Theorem IV.8.1,
and we leave it to the reader. ut

Remark V.3.1 The assumptions of Lemma V.3.1 do not require Ω to be
an exterior domain. Rather, Ω can be any domain of Rn. Actually, Lemma
V.3.1 will be applied in Chapter VI to the study of the asymptotic behavior
of Stokes flow in domains with noncompact boundaries. �

Remark V.3.2 For future purposes, we observe that a representation analo-
gous to that furnished in Lemma V.3.1 also holds for solutions to the Poisson
equation ∆u = f in an arbitrary domain Ω of Rn. More precisely, set

E (R)(x− y) = ψR(x− y)E(x − y), (V.3.9)

where E is the fundamental solution of Laplace’s equation (II.9.1) and ψR is
given in (V.3.1). In a strict analogy with the Stokes-Fujita truncated funda-
mental solution, one has

E (R)(x− y) =

{
E(x− y) if |x− y| ≤ R/2

0 if |x− y| ≥ R.
(V.3.10)

Furthermore, for all x 6= y,

∆E (R)(x− y) = H(R)(x− y) (V.3.11)

with

H(R)(x− y) =

{
0 if x = y

∆ (ψR(x− y)E(x − y)) if x 6= y.
(V.3.12)
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Clearly, the functionH(R) is infinitely differentiable and vanishes unless R/2 ≤
|x− y| ≤ R, and by the properties of ψR,

|DαH(R)(x− y)| ≤ C

{
logR/R2+|α|, if n = 2

R−n−|α| if n > 2.
(V.3.13)

Repeating step by step the proof of Lemma II.9.1 with E (R) in place of E and
using (V.3.11) we deduce for almost all x ∈ Ω, with dist (x, ∂Ω) > R, the
following general representation formula

Dαu(x) =

∫

BR(x)

E (R)(x−y)Dαf(y)dy−
∫

BR(x)−BR/2(x)

H(R)(x−y)Dαu(y)dy,

(V.3.14)
with |α| ≥ 0. �

Exercise V.3.1 Let Ω be of class Cm+2, m ≥ 0, and let v ∈ Wm+2,q (Ωρ),
p ∈ Wm+1,q (Ωρ) solve a.e. the Stokes system (V.0.1)1,2, corresponding to f ∈
Wm,q(Ωρ), 1 < q < ∞, all ρ > δ(Ωc). Show the validity of (V.3.6) for almost all
x ∈ Ω and all R > δ(Ωc). Assuming, further, that the support S of f is bounded,
show the validity of (V.3.7) for almost all x ∈ Ω and all R for which BR(x) ⊃ S.
Hint: (V.3.6) is shown by the same technique of Theorem IV.8.1. For (V.3.7), the
only term that demands little care is that involving S(R). However, for BR(x) ⊃ S

we have

S(R)(x) =

Z

Ω

qi(x− y)Dαfi(y)dy ≡ S(x)

and, since Djqi is a singular kernel, under the stated assumptions on f the function
DjS belongs to Lq(Ωr) for all r > δ(Ωc) and one has

‖DjS‖q,Ωr ≤ c‖Dα
f‖q,Ω ;

see, e.g., Mikhlin (1965, §29).

Lemma V.3.1 allows us to derive some information concerning the point-
wise asymptotic behavior of q-weak solutions. For instance, we have1

Theorem V.3.1 Let Ω be an arbitrary exterior domain in Rn, n ≥ 2, and
let v ∈ D1,q(ΩR) ∩ Ls(ΩR), for some R > δ(Ωc) and some q, s ∈ (1,∞).
Assume further that v is weakly divergence-free and satisfies (V.1.1), for all
ϕ ∈ D(Ω) with f ∈Wm,r(ΩR), m ≥ 0, n/2 < r <∞. Then

lim
|x|→∞

Dαv(x) = 0, for all |α| ∈ [0, m].

1 The hypotheses of the following theorem are not optimal on v. However, they
will suffice for further purposes. Furthermore, the theorem holds under alterna-
tive assumptions on f . We shall formulate these latter directly in the nonlinear
context; see Section X.5.
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Proof. We show the result for n ≥ 3, the case n = 2 being treated analogously.
For fixed d > 0 and all x ∈ Ω with dist (x, ∂Ω) > d, we have

∣∣∣∣∣

∫

Bd(x)

U
(d)
ij (x− y)Dαfi(y)dy

∣∣∣∣∣ ≤ c‖|x− y|2−n‖q/(q−1),Bd(x)‖f‖m,q,Bd(x)

≤ c1‖f‖m,q,Bd(x)

(V.3.15)
and
∣∣∣∣∣

∫

β(x)

H
(d)
ij (x− y) Dαvi(y)dy

∣∣∣∣∣ =

∣∣∣∣∣

∫

β(x)

DαH
(d)
ij (x− y)vi(y)dy

∣∣∣∣∣

≤ c max
i,j

‖H(d)
ij (x− y)‖m,s′,β(x)‖v‖s,β(x)

≤ c1‖v‖s,Bd(x),

(V.3.16)

where we have exploited the properties of the function H
(d)
ij . The theorem is

then a consequence of this fact, (V.3.15), (V.3.16), and Lemma V.3.1. ut

Remark V.3.3 From Theorem V.3.1 and the equation of motion (V.0.1) we
can immediately derive a pointwise behavior of the pressure field p at large
distances. For example, if f satisfies the assumption of that theorem with
m ≥ 2 and, further, Dαf(x) tends to zero as |x| → ∞, |α| ∈ [0, m− 2] we
have

lim
|x|→∞

Dα∇p(x) = 0, 0 ≤ |α| ≤ m− 2.

�

Exercise V.3.2 Let v satisfy the hypotheses of Theorem V.3.1, with the possible
exception of condition (iv) of Definition V.1.1. Assuming f ∈ Wm,r (ΩR), r > n,
show

lim
|x|→∞

Dα∇v(x) = 0, for all |α| ∈ [0,m].

Theorem V.3.1 is silent about the rate of decay of solutions. However, if
f is of compact support we can obtain sharp estimates for v, p and for their
derivatives of arbitrary order. In fact, we have

Theorem V.3.2 Let Ω be a C2-smooth, exterior domain and let v ∈
W 2,q

loc (Ω), q ∈ (1,∞), be weakly divergence-free and satisfy (V.1.1) for all
ϕ ∈ D(Ω) with f ∈ Lq(Ω). Assume, further, that the support of f is bounded.
Then, if at least one of the following conditions is satisfied as |x| → ∞:

(i) |v(x)| = o (|x|)
(ii)

∫

|x|≤r

|v(x)|t
(1 + |x|)n+tdx = o (log r), some t ∈ (1,∞),
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there exist vector and scalar constants v∞, p∞ such that for almost all x ∈ Ω

vj(x) = v∞j +

∫

Ω

Uij(x − y)fi(y)dy −
∫

∂Ω

[Uij(x− y)Ti`(v, p)(y)

−vi(y)Ti`(uj , qj)(x− y)]n`(y)dσy

≡ v∞j + v
(1)
j (x)

(V.3.17)

and

p(x) = p∞ −
∫

Ω

qi(x− y)fi(y)dy +

∫

∂Ω

[qj(x− y)Ti`(v, p)(y)

−2vi(y)
∂q`(x− y)

∂xi
n`(y)]dσy

≡ p∞ + p(1)(x).

(V.3.18)

Moreover, as |x| → ∞, v(1)(x) and p(1)(x) are infinitely differentiable and
there the following asymptotic representations hold:

v
(1)
j (x) = TiUij(x) + σj(x)

p(1)(x) = −Tiqi(x) + η(x),
(V.3.19)

where

Ti = −
∫

∂Ω

Ti`(v, p)n` +

∫

Ω

fi (V.3.20)

and, for all |α| ≥ 0,
Dασ(x) = O(|x|1−n−|α|)

Dαη(x) = O(|x|−n−|α|).
(V.3.21)

Proof. Let us observe that, since the support S of f is compact, v and p
are infinitely differentiable at each point of Ω − S, as follows from Theorem
IV.4.1. We begin to show that (V.3.19)–(V.3.21) are a consequence of (V.3.17),
(V.3.18). Actually we have

v
(1)
j (x) = TiUij(x) +

∫

∂Ω

vi(y)Til(uj, qj)(x− y)n`dσy

+

∫

Ω

[Uij(x− y) − Uij(x)]fi(y)dy

−
∫

∂Ω

[Uij(x− y) − Uij(x)]Ti`(v, p)(y)n`(y)dσy .

(V.3.22)
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On the other hand, from (IV.8.14) we deduce

|DαTik(uj, qj)(x− y)| = O(|x|1−n−|α|), |α| ≥ 0, (V.3.23)

uniformly with respect to y in a bounded set. Likewise, since

|Dα (Uij(x− y) − Uij(x)) | =

∣∣∣∣y`
∂

∂x`
Dα (Uij(x− βy))

∣∣∣∣ ,

where β ∈ [0, 1], by (IV.2.6) it follows

|Dα (Uij(x− y) − Uij(x)) | = O(|x|1−n−|α|), |α| ≥ 0, (V.3.24)

again uniformly in y in a bounded set. Thus, by observing that v(1)(x) is
infinitely differentiable for all x ∈ Ω − S, relations (V.3.19)1, (V.3.20), and
(V.3.21) follow from (V.3.22)–(V.3.24). The analogous estimate for p can be
shown in an entirely similar way. To prove (V.3.17), we take R so large that
S ⊂ BR(x). Therefore, for such an R,

∫

Ω

U
(R)
ij (x − y)fi(y)dy =

∫

Ω

Uij(x− y)fi(y)dy. (V.3.25)

From Exercise V.3.1 we know that, under the stated assumptions, v(x) obeys
(V.3.6) with α = 0 for almost all x ∈ Ω. Therefore, from (V.3.22) and (V.3.25)
we find, for almost all x ∈ Ω,

v(x) = v(1)(x) + v(2)(x), (V.3.26)

where

v
(2)
i (x) ≡ −

∫

Ω

H
(R)
ij (x− y)vj (y)dy. (V.3.27)

Since v − v(1) is independent of R, so is v(2). Let us show that

D2v(2) ≡ 0. (V.3.28)

Actually, from (V.3.21) and (V.3.27) we deduce for a suitable constant c in-
dependent of R

|D2v(2)(x)| ≤ c
logα R

Rn+2

∫

ΩR/2,R(x)

|v|, (V.3.29)

where α = 1 if n = 2, α = 0 if n > 2 and ΩR,2R(x) = {y ∈ Ω : R/2 < |x−y| <
R}. It is easy to prove that under the assumptions (i) and (ii) the right-hand
side of (V.3.29) tends to zero as R→ ∞. In fact,

logαR

Rn+2

∫

ΩR/2,R(x)

|v| ≤





c1
logα R

R
(assumption (i))

c2
(logR)α+1/t

R
(assumption (ii))
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with c1, c2 independent of R. So, there exists an n × n matrix A with
trace(A) = 0 and a vector v∞ such that

v(2) =A · x+ v∞.

On the other hand, by using either (i) or (ii) and observing that

v(1)(x) = o(|x|) as |x| → ∞,

we readily show
A = 0,

thus establishing (V.3.17). Finally, since
∫

Ω

∆H
(R)
ij (x− y)vi(y)dy = ∆v

(2)
i (x),

identity (V.3.18) follows from (V.3.7), with α = 0, and (V.3.28). ut

From the proof just given it comes out that one may weaken assumptions
(i) or (ii) on condition that polynomials in v of suitable degree are added to
the right-hand sides of (V.3.17) and (V.3.18). In particular, we wish to single
out the following result, which will be of interest for later purposes.

Theorem V.3.3 Replace assumptions (i) and (ii) of Theorem V.3.2 with

D2v ∈ Lq(Ω), for some q ∈ [1,∞), (V.3.30)

the other assumptions remaining unaltered. Then, there exist a scalar p∞, a
vector v∞, and an n× n matrix V∞ with trace(V ∞) = 0, such that

v(x) = v∞ + V ∞ · x+ v(1)(x)

p(x) = p∞ + p(1)(x),
(V.3.31)

where v(1) and p(1) are defined in (V.3.19).

Proof. To show (V.3.31) it is enough to show that (V.3.30) implies (V.3.28).
In this respect we have

|D2v(2)(x)| ≤
∫

ΩR/2,R(x)

|H(R)
ij (x − y)||D2v(y)|dy

≤ c
logα R

Rn/q
‖D2v‖q,ΩR/2,R(x),

where c does not depend on R and α = 1 if n = 2 and α = 0 if n > 2. Letting
R→ ∞ into this relation proves (V.3.28). ut

Remark V.3.4 In Theorem V.3.2 and Theorem V.3.3 no hypothesis is made
about the behavior of the pressure at infinity; rather, it is derived as a conse-
quence of the behavior assumed on the velocity field. �
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Remark V.3.5 As pointed out in Remark V.2.2, for Ω a two-dimensional
exterior domain, by the method of Theorem V.2.1 we can construct a field v
satisfying (i)-(iii) and (v) of Definition V.1.1, with q = 2. However, we are not
able to check condition (iv), for a prescribed v∞ ∈ R2. Nevertheless, if f is of
compact support, Theorem V.3.2 implies that v does tend to a certain vector
v∞ ∈ R2. In fact, since v ∈ D1,2(Ω), it is then simple to show that

∫

∂ΩR

T (v, p) · n = 0, (V.3.32)

where R is taken so large that ΩR includes the support of f and p is the
pressure field associated to p by Lemma V.1.1. To prove (V.3.32) we notice
that from (V.0.1) and from the definition of T we have, for all S > R,2

∫

∂ΩR

T (v, p) ·n =

∫

∂ΩS

T (v, p) · n =

∫

∂ΩS

(2D(v) · n+ pn).

However, since v ∈ D1,2(ΩR) and, by Lemma V.1.1, the corresponding pres-
sure field p ∈ L2(ΩR), we can find a sequence {Sk}, Sk → ∞ as k → ∞, along
which the last integral on the right-hand side of the preceding identities tends
to zero, thus proving (V.3.32). Theorem V.3.2 then ensures the existence of
a well-defined vector v∞ to which v tends at large distances. In general, v∞
cannot be prescribed a priori (in particular, cannot be zero) unless the data
verify a suitable restriction, see Section V.7. Notice, also, that, in the partic-
ular case when v∗ ≡ f ≡ 0, describing the slow, plane motion of the liquid
past a cylinder, we can take ΩR ≡ Ω in (V.3.32), thus obtaining that the total
force exerted by the liquid on the cylinder is zero. This is another form of the
Stokes paradox; see also Section V.7. �

Let us now derive some significant implications of Theorem V.3.2. We
begin with a uniqueness result for q-generalized solutions.

Theorem V.3.4 Let v be a q-generalized solution to the Stokes problem
(V.0.1), (V.0.2) in an exterior, three-dimensional3 domain of class C2, corre-
sponding to f ≡ v∗ ≡ 0. Then v ≡ 0.

Proof. From Lemma V.1.1 and the regularity results of Theorem IV.4.1 and
Theorem IV.5.1, we derive

v ∈W 2,q
loc (Ω) ∩ C∞(Ω), p ∈W 1,q

loc (Ω) ∩ C∞(Ω), for all q ∈ (1,∞).

We may then apply Theorem V.3.2 to deduce

v = O(|x|−1), p,∇v = O(|x|−2). (V.3.33)

2 Observe that v, p ∈ C∞(ΩR).
3 The result continues to hold in any space dimension n ≥ 3.
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For fixed R > δ(Ωc), we dot-multiply (V.0.1)1 by v, integrate by parts over
ΩR (this is allowed by Exercise II.4.3), and take into account (V.0.1)2. We
thus deduce ∫

ΩR

∇v : ∇v =

∫

∂BR

n · (∇v · v − pv).

Estimating the surface integral through (V.3.33), and letting R → ∞ then
proves the result. ut

Similar uniqueness results can be obtained for regular solutions possessing
a suitable behavior at large distances. For example, we have the following
result which for space dimension n = 2 furnishes another form of the Stokes
paradox, already considered for generalized solutions in Theorem V.2.1. The
proof is much like that of Theorem V.3.4 and, therefore, it will be omitted.

Theorem V.3.5 Let v, p be a regular solution to the Stokes system (V.0.1),
in a C1-smooth exterior domain of Rn, corresponding to f ≡ v∗ ≡ 0. Then,
if as |x| → ∞

v(x) =

{
o(log |x|) if n = 2

o(1) if n > 2,

it follows that v ≡ 0.

Other consequences of Theorem V.3.2 are left to the reader in the following
exercises.

Exercise V.3.3 Let v, f , and Ω satisfy the assumptions of Theorem V.3.2. Show

that ‖v−v0‖q = |v|1,r = ∞ for all q ∈ (1, n] and all r ∈ (1, n/(n−1)], unless T = 0.

Exercise V.3.4 Prove the following result of Liouville type. Let v, p be a regular

Stokes flow in R
n, corresponding to zero or, more generally, potential-like body force.

Then if v is bounded, it follows that v = const.

Exercise V.3.5 Let Ω ≡ R
n. Prove that if v and f satisfy the assumptions of

Theorem V.3.2 the following asymptotic formulas hold:

v(x) = v∞ + U (x) ·
Z

Rn

f + σ(x),

p(x) = p∞ − q(x) ·
Z

Rn

f + η(x),

where v∞, p∞ are vector and scalar constants, while σ and η satisfy (V.3.21).

Exercise V.3.6 Show the following “scalar” version of Theorem V.3.2. Let Ω be a
domain of class C2 and let u ∈W 2,q

loc (Ω), some q ∈ (1,∞), be a solution to ∆u = f
in Ω, where f ∈ Lq(Ω) is of bounded support. Then, if at least one of the following
conditions is satisfied as |x| → ∞:
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(i) |u(x)| = o(|x|)
(ii)

Z

|x|≤r

|u(x)|t
(1 + |x|)n+t dx = o(log r), some t ∈ (1,∞),

there exist u∞ ∈ R such that for almost all x ∈ Ω

u(x) = u∞ +

Z

Ω

E(x − y)f(y)dy −
Z

∂Ω

[E(x− y)
∂u

∂y`
(y) − u(y)

∂E
∂y`

(x− y)]n`(y)dσy

≡ u∞ + u(1)(x)

.

Moreover, as |x| → ∞, u(1)(x) is infinitely differentiable and there the following
asymptotic representations hold:

u(1)(x) = aE(x) + σ(x) ,

where

a = −
Z

∂Ω

∂u

∂x`
n` +

Z

Ω

f

and, for all |α| ≥ 0,

Dασ(x) = O(|x|1−n−|α|) .

Hint: Reproduce the same type of argument adopted in the proof of Theorem V.3.2,

by replacing the (tensor) Stokes-Fujita truncated fundamental solution with the

(scalar) Laplace truncated fundamental solution defined in (V.3.9)–(V.3.13).

V.4 Existence, Uniqueness, and Lq-Estimates: Strong
Solutions

Our next objective is to investigate to what extent the results proved in Sec-
tion IV.6 can be generalized to the case when the region of motion is an
exterior one. Specifically, in the present section we shall be concerned with ex-
istence, uniqueness, and Lq-estimates of strong solutions to the Stokes problem
(V.0.1), (V.0.2), i.e., solutions with velocity fields possessing at least second
derivatives, while in Section 5 we analyze the same question for q-generalized
solutions.

To begin, we shall study some properties of solutions {v, p} to the Stokes
system

∆v = ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

(V.4.1)

with Ω an exterior domain in Rn (n ≥ 2). Notice that the velocity field v
need not satisfy a priori any prescribed condition at infinity. For this reason
we prefer to call (V.4.1) a Stokes “system” instead of a Stokes “problem”.

We have
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Lemma V.4.2 Let v, p be a solution to (V.4.1)1,2. Assume v ∈ W 2,q
loc (Ω),

p ∈ W 1,q
loc (Ω) for some q ∈ (1,∞), and for some r ∈ (1,∞) and some R >

2δ(Ωc)
v ∈ D2,r(ΩR). (V.4.2)

Then, if f ∈ Lq(Ω) it follows that

v ∈ D2,q(Ω), p ∈ D1,q(Ω).

Proof. Denote by ϕ = ϕ(|x|) a C∞-function in Ω that is zero for |x| ≤ ρ and
equals one for |x| ≥ R/2, δ(Ωc) < ρ < R/2. Setting u = ϕv and π = ϕp we
then have that u and π solve in Rn the system

∆u = ∇π + f1

∇ ·u = g,
(V.4.3)

where

f1i = ϕfi + Tik(v, p)Dkϕ+Dk(vkDiϕ + viDkϕ), g = v · ∇ϕ, (V.4.4)

with T defined in (IV.8.6). Clearly, f1 ∈ Lq(Rn) and g ∈W 1,q(Rn) and so we
may apply Theorem V.2.1 to prove the existence of a solution u∗ ∈ D2,q(Rn),
π∗ ∈ D1,q(Rn). Letting w = u− u∗, τ = π − π∗, we show

D2w(x) = ∇τ (x) = 0, for all x ∈ Rn. (V.4.5)

Actually, in Rn,
∆w = ∇τ

∇ ·w = 0
(V.4.6)

and, therefore, ∆(∇τ ) = 0 in Rn, which implies ∆(∆w) = 0 in Rn.1 Denot-
ing by ψi the ith component of ∆w, we apply the mean value theorem for
harmonic functions (e.g., Gilbarg & Trudinger 1983, Theorem 2.1) to deduce
for all x ∈ Rn and with s = |x− y|

ψi(x) =
1

ωns
n

∫

Bs(x)

{∆ui −∆u∗i } dy .

So, by the Hölder inequality, (V.4.2), and the fact that D2u∗ ∈ Lq(R3), we
get

|ψi(x)| ≤ c[s−n(1−1/r′) + s−n(1−1/q′)]

for i = 1, . . . , n. Letting s→ ∞ in this relation gives ∆w ≡ 0 in Rn, which, in
turn, by (V.4.6)1, delivers (V.4.5)2. As a consequence, from (V.4.6)1 it follows
that
1 Notice that, by Theorem V.1.1, w, τ ∈ C∞(Rn).
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∆(D2w) = 0 in Rn.

Thus, arguing as before, one shows (V.4.5)1, completing the proof of the
lemma. ut
Remark V.4.6 If Ω is of class C2, the conclusion of the preceding lemma
can be reached under the assumptions that v satisfies (V.4.1) and, moreover,

f ∈ Lq(Ω), v ∈ D2,r(Ω), v∗ ∈W 2−1/q,q(∂Ω). (V.4.7)

To this end, it is enough to show that (V.4.7) implies

v ∈W 2,q
loc (Ω), p ∈W 1,q

loc (Ω). (V.4.8)

If r ≥ q the assertion is obvious. Therefore, take q > r. From the embedding
Theorem II.3.4 and hypothesis (V.4.7) on v we readily conclude v ∈W 1,r1

loc (Ω)
with 1 < r1 ≤ nr/(n− r) (> r) if r < n and for arbitrary r1 > 1 if r ≥ n. In
the latter case it follows that v ∈ W 1,q

loc (Ω) and by Theorem IV.4.1

v ∈W 2,q
loc (Ω), p ∈W 1,q

loc (Ω). (V.4.9)

If q ≤ r1 < n we again draw the same conclusion. So, assume 1 < r1 < q.
Then f ∈ Lr1 (Ω) and Theorem IV.4.1 along with Theorem II.3.4 implies
v ∈ W 1,r2

loc (Ω) with 1 < r2 ≤ nr1/(n − r1) (> r1) if 1 < r1 < n and for
arbitrary r2 > 1, whenever r1 ≥ n. If either r2 ≥ q or r1 ≥ n we recover
(V.4.9); otherwise we iterate the above procedure as many times as needed,
until (V.4.9) is established. Properties (V.4.9) and the trace Theorem II.4.4
furnish v ∈ W 2−1/q,q(∂ΩR) for all R > δ(Ωc). By Theorem IV.6.1 there
exists a solution v1, p1 to the Stokes problem in ΩR corresponding to the
body force f , which equals v at the boundary ∂ΩR such that v1 ∈W 2,q(ΩR),
p1 ∈ W 1,q(ΩR). Thus, u ≡ v − v1 is a solution to the homogeneous Stokes
problem in ΩR with u ∈ W 1,r(ΩR), since q > r. By Lemma IV.6.2 we then
have u ≡ 0 and (V.4.8) is accomplished. �

We shall next establish for solutions to (V.4.1) an estimate that is the coun-
terpart for exterior domains of estimate (IV.6.3) already proved for bounded
domains. Precisely we have

Lemma V.4.3 Let v, p be a solution to (V.4.1) in an exterior domain Ω ⊆
Rn of class Cm+2, n ≥ 2, m ≥ 0, corresponding to f ∈ Wm,q(Ω), v∗ ∈
Wm+2−1/q,q(∂Ω), 1 < q <∞. Assume

v ∈ D2,q(Ω).

Then v ∈ Dk+2,q(Ω), p ∈ Dk+1(Ω) for all k = 0, 1, . . . , m, and for any
R > δ(Ωc) it holds that

‖v‖1,q,ΩR +

m∑

k=0

{|v|k+2,q + |p|k+1,q}

≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖v‖q,ΩR + ‖p‖q,ΩR

)
,

(V.4.10)
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where c = c(n,m, q, R).

Proof. As in the proof of the previous lemma, we transform (V.4.1) into
(V.4.3). Since u ∈ D2,q(Rn), from Theorem IV.2.1 it follows that u ∈
Dk+2,q(Rn), π ∈ Dk+1,q(Rn) for every k = 0, . . . , m. Furthermore,

m∑

k=0

{|u|k+2,q+ |π|k+1,q}

≤ c1 (‖f‖m,q + ‖∇ϕ · v‖m+1,q + ‖v∆ϕ‖m,q + ‖p∇ϕ‖m,q) ,
(V.4.11)

where c1 = c1(n,m, q). Inequality (V.4.11) then implies

m∑

k=0

{|v|k+2,q,ΩR/2+ |p|k+1,q,ΩR/2}

≤ c2
(
‖f‖m,q + ‖v‖m+1,q,ΩR/2

+ ‖p‖m,q,ΩR/2

)
.

(V.4.12)

Consider now problem (V.4.1) in ΩR and use estimate (IV.6.3) to deduce

‖v‖m+2,q,ΩR+ ‖p‖m+1,q

≤ c3(‖f‖m,q,ΩR + ‖v‖m+2−1/q,q(∂ΩR) + ‖v‖q,ΩR + ‖p‖q,ΩR),
(V.4.13)

Setting σ ≡ ∂ΩR ∩Ω, by the trace Theorem II.4.4 we have

‖v‖m+2−1/q,q(σ) ≤ c4
(
|v|m+2,q,ΩR/2 + ‖v‖m+1,q,ΩR

)
. (V.4.14)

Combining (V.4.12)–(V.4.14) we derive

‖v‖1,q,ΩR +

m∑

k=0

{|v|k+2,q + |p|k+1,q}

≤ c5
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω) + ‖v‖m+1,q,ΩR + ‖p‖m,q,ΩR

)
,

and therefore applying Ehrling’s inequality (see Exercise II.5.16) to the last
two terms on the right-hand side of this last inequality, we finally deduce
(V.4.10) and the lemma is proved. ut

In a complete analogy to the case where Ω is bounded, we wish now to
investigate whether the local norms involving v and p on the right-hand side
of (V.4.10) can be dropped out. Proceeding as in Section IV.6 (see the proof
of Lemma IV.6.1) we may try to use a contradiction argument to show the
inequality

‖v‖q,ΩR + ‖p‖q,ΩR ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
,

which in turn would imply
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‖v‖1,q,ΩR +

m∑

k=0

{|v|k+2,q + |p|k+1,q} ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
.

(V.4.15)
However, this argument needs the uniqueness of solutions to the homogeneous
Stokes problem (V.4.1)0 ( i.e., (V.4.1) with f ≡ v∗ ≡ 0) in the class of those
functions for which the norms appearing on the left-hand side of (V.4.15) are
finite. On the other hand, it is hopeless to determine uniqueness in such a
class, unless we can control in some sense the behavior of v at infinity. Now,
if 1 < q < n/2, this can be done as a consequence of the double application of
Theorem II.6.1. However, if q ≥ n/2 we do not have this control any more, and
there could be nonzero solutions to (V.4.1)0 in D2,q(Ω). We shall call these
solutions exceptional. A typical example of an exceptional solution is given
by h(x), π(x), with h ≡ v0 − vS , π ≡ pS , and vS , pS Stokes solution past a
sphere; see (V.0.4). We emphasize that the existence of exceptional solutions
is related to the fact that a function in D2,q(Ω), even though approximable
by functions of bounded support (see Theorem II.7.4), need not “recall” the
zero value at infinity of the approximating functions, since the approximating
procedure has been performed in a norm which, in general, does not control
the behavior at infinity.

Notwithstanding this difficulty, we are able to characterize the space of
exceptional solutions and to determine its dimension d = d(n, q). Specifically,
it comes out that d is always finite and that d = 0 if 1 < q < n/2, d = n if
n/2 ≤ q < n, and d = n2 + n− 1 if q ≥ n, see Lemma V.4.4. On the strength
of this result we then show the existence of solutions v, p ∈ D2,q(Ω)×D1,q(Ω)
that satisfy estimate (V.4.15) modulo exceptional solutions; see Lemma V.4.5.
However, because d = 0 if 1 < q < n/2, for these values of q the validity of
(V.4.15) is established.

We begin to characterize the space of exceptional solutions. To this end,
we set

D̃2,q(Ω) = D2,q(Ω), if q ≥ n

D̃2,q(Ω) =

{
u ∈ D2,q(Ω) : |u|1,r <∞, r =

nq

n − q

}
if
n

2
≤ q < n

D̃2,q(Ω) =

{
u ∈ D2,q(Ω) : ‖u‖s + |u|1,r <∞, s =

nq

n− 2q
, r =

nq

n− q

}

if 1 < q <
n

2
.

(V.4.16)
From Theorem II.7.4 we know that, for Ω exterior and locally Lipschitz, every
function from D̃2,q(Ω) can be approximated by functions from C∞

0 (Ω) in the
seminorm | · |2,q.
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If a solution v to (V.4.1)0 is in D2,q(Ω) for some q ≥ 1, the correspond-
ing pressure field p is evidently in D1,q(Ω). Denote by Σq the subspace of

D̃2,q(Ω) ×D1,q(Ω) formed by solutions v, p to (V.4.1)0. We have

Lemma V.4.4 Let Ω be an exterior domain of class C2 and set d = dim(Σq).
Then,

d =





n+ n2 − 1 if q ≥ n

n if q ∈ [n/2, n)

0 if q ∈ (1, n/2).

Proof. Let us first consider the case where n > 2. We begin to show the
following two assertions:

(i) For any v∞ ∈ Rn − {0} there is a unique (nonzero) solution v, p ∈
C∞(Ω) to (V.4.1)0 such that

lim
|x|→∞

|v(x) − v∞| = 0.

This solution verifies the condition

v ∈ D̃2,q(Ω), for q ≥ n/2.

(ii) For any second order tensor A ≡ {Aij}, Aij 6≡ 0, with trace(A) = 0,
there is a unique (nonzero) solution v, p ∈ C∞(Ω) to (V.4.1)0 such that

lim
|x|→∞

|v(x) −A · x| = 0.

This solution verifies the condition

v ∈ D̃2,q(Ω), for q ≥ n.

To prove (i), we observe that, if we denote by v1, p1 the solution con-
structed in Theorem V.2.1 corresponding to f ≡ 0, and v∗ = −v∞, the pair
v ≡ v1 + v∞, p ≡ p1, satisfies all requirements. In fact, it belongs to C∞, by
Theorem IV.4.3, and by Theorem IV.5.1,

v ∈W 2,t
loc (Ω), p ∈W 1,t

loc (Ω), for any t ≥ 1. (V.4.17)

Also, v and p satisfy the asymptotic expansion (V.3.17)–(V.3.21) which, in
particular, furnishes that v → v∞ uniformly. Finally, again by (V.3.17)–
(V.3.21) and (V.4.17), we deduce

v ∈ D1,r(Ω) ∩D2,q(Ω), for all r > n/(n− 1) (V.4.18)

and since
v 6∈ Ls(Ω), for any s ∈ (1,∞),
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it follows that

v ∈ D̃2,q(Ω), for q ≥ n/2.

The uniqueness of the solution is a consequence of Theorem V.3.4.
To prove (ii), we begin to make a suitable solenoidal extension of the field

V 0 ≡ A · x. Let w denote a solution to the problem

∇ ·w = ∇ϕ · V 0 ≡ g in Ω′

w = 0 at ∂Ω′,
(V.4.19)

where ϕ is the “cut-off” function used in the proof of Lemma V.4.2 and Ω′ is
a locally Lipschitz subdomain of Ω that contains the support of ϕ. Since

∫

Ω′
g = 0, g ∈ C∞

0 (Ω′),

by Theorem III.3.3 we can take w ∈ C∞
0 (Ω). Setting

a(x) = (1 − ϕ)V 0 −w, (V.4.20)

by (V.4.19)1 a is solenoidal, belongs to C∞(Ω), vanishes near ∂Ω, and equals
V 0 at large distances. Since

D2a ∈ C∞
0 (Ω), (V.4.21)

we may use the same procedure adopted in the proof of Theorem V.2.1 to show
the existence of a generalized solution v to (V.4.1)0 such that v = u+a, with

u ∈ D1,2
0 (Ω). Employing Theorem IV.4.3 and Theorem IV.5.1 we deduce, as

before, that v and the corresponding pressure p are of class C∞(Ω) and satisfy
(V.4.17). Using the asymptotic expansion (V.3.17), (V.3.19), and (V.3.21) for
u and recalling (V.4.21), we deduce

D2v ∈ Lq(Ω), for all q > 1.

Since v does not belong to any space D1,r(Ω) nor to any Ls(Ω), from (V.4.16)
we conclude

v ∈ D̃2,q(Ω), for q ≥ n,

which completes the proof of (ii).
Now, let hi, πi, i = 1, . . . , n be the solutions to (V.4.1)0 of type (i) cor-

responding to the n orthonormal vectors v∞i = ei. Likewise, let uij, τij be
the n2 − 1 solutions to (V.4.1)0 of the type (ii) corresponding to the n2 − 1
matrices of zero trace Eij, where

Eij =

{
ei ⊗ ej if i 6= j

ei ⊗ ej − en ⊗ en if i = j 6= n.
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It is readily seen that the system constituted by the n2+n−1 vectors {hi,uij}
is linearly independent. Actually, assume per absurdum that there are noniden-
tically zero constants αi, αij ∈ R such that

αihi(x) +
∑′

ijαijuij(x) = 0 for all x ∈ Ω,

where the prime means that the term i = j = n is excluded from the summa-
tion. From (V.3.17)1, (V.3.19)1, and (V.3.21)1 we would then obtain for all
sufficiently large |x|

αiei +
∑′

ijαijEij · x = O(1/|x|n−2),

which implies

αiei =
∑′

ijαijEij = 0;

that is,

αi = αij = 0, for all i, j,

leading to a contradiction. Now, if v, p is a solution to (V.4.1)0 with v ∈
D̃2,q(Ω), for some q > 1, from Theorem V.3.3 we deduce the existence of
v∞ ∈ Rn and of a traceless matrix B such that as |x| → ∞

v(x) = v∞ +B · x+ O(1/|x|n−2). (V.4.22)

Clearly, by (V.4.16), we must have

(a) v∞ = B = 0, if 1 < q < n/2 ;

(b) B = 0 , if n/2 ≤ q < n.
In case (a), by Theorem V.3.5, we have v ≡ 0 and so d = 0. In case (b)

we may write v∞ = viei, for some vi ∈ R, i = 1, . . . , n. Therefore

w ≡ v − vihi, z ≡ p− viπi

is a solution to (V.4.1)0 with w = o(1) as |x| → ∞ and so, again by Theorem
V.3.5, we deduce w ≡ 0, which shows d = n if n/2 ≤ q < n. Finally, if q ≥ n,
we may write B = BijEij and thus, setting

w ≡ v − vihi −BijEij, z ≡ p− viπi − Bijτij ,

we again derive that w and z solve (V.4.1)0 with w = o(1) as |x| → ∞,
which yields w ≡ 0, namely, d = n2 +n− 1. The proof of the theorem is then
accomplished if n > 2. Let us consider the case where n = 2. We begin to
show the existence of two independent solutions hi, πi, i = 1, 2, to (V.4.1)0
with

hi ∈ D̃2,q(Ω), 1 ≡ n/2 < q < n ≡ 2.

To this end, set

ui = U · ei, si = −q · ei,
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where U , q is the two-dimensional Stokes fundamental solution. We look for
solutions of the form

hi = ui + vi, πi = si + pi i = 1, 2,

where
∆vi = ∇pi

∇ · vi = 0

}
in Ω

vi = −ui at ∂Ω.

(V.4.23)

By Exercise III.3.5 we may extend −ui at the boundary to a solenoidal func-
tion vi ∈ W 1,2(Ω) of compact support in Ω. We then use the technique of
Theorem V.2.1 to show the existence of a weak solution vi to (V.4.23) of the
form

vi = wi + vi, wi ∈ D1,2
0 (Ω)

with

pi ∈ L2(Ω).

Actually, such a solution is of class C∞(Ω), by virtue of Theorem IV.4.3. It
is easy to prove that ∫

∂Br

T (vi, pi) · n = 0 (V.4.24)

for all r > δ(Ωc). Actually, writing (V.4.23)1 in the form

∇ · T (vi, pi) = 0,

we have
∫

∂Br

T (vi, pi) · n =

∫

∂BR

T (vi, pi) · n =

∫

∂BR

(2D(wi) · n− pin) (V.4.25)

for all R > r. By the summability properties of wi, pi we easily establish the
existence of a sequence {Rk} ⊂ R+ with

lim
k→∞

Rk = ∞,

along which the right-hand side of (V.4.25) vanishes, which in turn implies
(V.4.24). From (V.3.17)–(V.3.21) we then obtain for large enough |x| that
vi(x), pi(x) admit the following representation:

vi(x) = v0i + O(1/|x|)
pi(x) = O(1/|x|2)

(V.4.26)

for some constants v0i and so
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hi(x) = v0i +U(x) · ei + O(1/|x|)
πi(x) = −q(x) · ei +O(1/|x|2).

(V.4.27)

The solutions hi, πi, i = 1, 2, are linearly independent and, further,

hi ∈ D̃2,q(Ω), q > n/2 (≡ 1). (V.4.28)

In fact, if
α1h1(x) + α2h2(x) = 0, for all x ∈ Ω,

from (V.4.27)1 we would obtain for some v0 ∈ R2

(α1e1 + α2e2) ·U(x) = v0 + O(1/|x|),

which can be attained if and only if v0 = α1 = α2 = 0. Moreover, by (V.4.27)
and the regularity properties of hi near the boundary (see (V.4.17)),

hi ∈ D1,r(Ω) ∩D2,q(Ω), r > n/(n− 1) ≡ 2, q > 1

and since hi 6∈ Ls(Ω) for any s ∈ (1,∞) we obtain (V.4.28). As in the case
where n > 2, we shall next construct n2 − 1 (≡ 3) independent solutions uij,
τij with

uij ∈ D̃2,q(Ω), q ≥ n (≡ 2).

Specifically, we look for solutions to (V.4.1)0 of the form

uij = aij +wij,

where aij are solenoidal extensions of type (V.4.20) of the fields V 0ij = Eij ·x,
while wij solve the problem

∆wij = ∇τij −∆aij

∇ ·wij = 0

}
in Ω

wij = 0 at ∂Ω.

Since aij satisfies (V.4.21), we apply the technique of Theorem V.2.1 to deduce
the existence of

wij ∈ D1,2
0 (Ω), τij ∈ L2(Ω).

As before, by Theorem V.3.2, for all sufficiently large |x| we have

wij(x) = w∞ij +O(1/|x|)
τij(x) = O(1/|x|2)

for some constants w∞ij, and so

uij(x) = w∞ij +Eij · x+ O(1/|x|2)
τij(x) = O(1/|x|2).

(V.4.29)



330 V Steady Stokes Flow in Exterior Domains

As in the case where n > 2 one shows that uij ∈ D̃2,q(Ω), for all q ≥ n ≡ 2
and that the five vectors {hi,uij} form a linear independent system. Now, if

v, p is a solution to (V.4.1)0 with v ∈ D̃2,q(Ω), for some q > 1, from Theorem
V.3.3 we obtain that for large |x|, v(x) satisfies (V.4.22), with B = 0 if
1 < q < 2. Reasoning exactly as in the case where n > 2 one shows d = n ≡ 2
if q < n ≡ 2 and d = n + n2 − 1 ≡ 5 if q ≥ n ≡ 2, thus completing the proof
of the lemma. ut

With the aid of Lemma V.4.3 and Lemma V.4.4 we can now obtain in
the case of exterior domains a result analogous to that proved, for bounded
domains, in the first part of Theorem IV.6.1. To this end, for fixed R > δ(Ωc)
and ` ≥ 0, ν ≥ 1 we set

‖u‖ν,R;`,q ≡ ‖u‖ν−1,q,ΩR +

`+ν∑

i=1

|u|i,q,Ω.

The following lemma holds.

Lemma V.4.5 Let Ω, f , v∗ satisfy the same assumptions of Lemma V.4.3
and let v ∈ D̃2,q(Ω) be a solution to (V.4.1) corresponding to f and v∗. Then
v ∈ Dk+2,q(Ω), p ∈ Dk+1,q(Ω) for all k = 0, 1, . . . , m and if q ≥ n we have

inf
(h,π)∈Σq

{‖v − h‖2,R;m,q+ ‖p− π‖1,R;m,q}

≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
;

(V.4.30)

if n/2 ≤ q < n:

inf
(h,π)∈Σq

{|v − h|1,r + ‖p− π‖r+ ‖v − h‖2,R;m,q + ‖p− π‖2,R;m,q}

≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
,

(V.4.31)

where r = nq/(n− q); and if 1 < q < n/2:

‖v‖s + |v|1,r + ‖p‖r+ ‖v‖2,R;m,q + ‖p‖1,R;m,q}
≤ c

(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
,

(V.4.32)

where s = nq/(n− 2q).

Proof. In view of Lemma V.4.3, we have to show only the validity of (V.4.30)–
(V.4.32). Consider first the case where n < q. Taking into account that (h, π)
solves the homogeneous system (V.4.1)0, from (V.4.10) we derive

inf
(h,π)∈Σq

{‖v− h‖2,R;m,q + ‖p− π‖1,R;m,q}

≤ c

(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

+ inf
(h,π)∈Σq

{|v − h|q,ΩR + ‖p− π‖q,ΩR}
)
.

(V.4.33)
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We claim the existence of a constant c1 independent of v, p, f, and v∗ such
that

inf
(h,π)∈Σq

{|v− h|q,ΩR + ‖p− π‖q,ΩR} ≤ c1(‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)).

(V.4.34)
Actually, if (V.4.34) were not true, we could select two sequences {fs} ⊂
Wm,q(Ω), {v∗s} ⊂Wm+2−1/q,q(∂Ω) with

fs → 0 in Wm,q(Ω)

v∗s → 0 in Wm+2−1/q,q(∂Ω)
(V.4.35)

as s→ ∞, while the corresponding solutions {vs, ps} satisfy

inf
(h,π)∈Σq

{|vs − h|q,ΩR + ‖ps − π‖q,ΩR} = 1 for all s ∈ N. (V.4.36)

On the other hand, (V.4.35), (V.4.36), and (V.4.33) imply

inf
(h,π)∈Σq

{|vs − h|2,R;m,q + ‖ps − π‖2,R;m,q} ≤M (V.4.37)

with M a constant independent of s. By the property of the infimum, inequal-
ity (V.4.37) furnishes the existence of a sequence of solutions {vs ≡ vs − hs,
ps ≡ ps − πs} for some (hs, πs) ∈ Σq such that

‖vs‖1,q,ΩR + ‖D2vs‖q,Ω + ‖ps‖q,ΩR + ‖∇ps‖q,Ω ≤ 2M. (V.4.38)

By the weak compactness of the space Wm,q(Ω), 1 < q < ∞, and by the
compactness results of Exercise II.5.8, we deduce the existence of a sub-
sequence {vs′ , ps′} and two pairs (v(1), p(1)) ∈ W 1,q(ΩR) × Lq(ΩR) and
(V , P ) ∈ Lq(Ω) × Lq(Ω) such that

vs′ → v(1), ps′ → p(1) weakly in W 1,q(ΩR), strongly in Lq(ΩR),

D2vs′
w→ V , ∇ps′

w→ P in Lq(Ω).
(V.4.39)

By the definition of weak derivative, it readily follows that D2v(1) and ∇p(1)

exist in ΩR and that V = D2v(1), P = ∇p(1) in ΩR. Fix now R1 >R. In
Exercise V.4.7 the following inequality can be proved

‖u‖q,ΩR1
≤ c1

(
‖∇u‖q,ΩR1

+ ‖u‖q,ΩR

)
for all R1 > R,

where c1 = c1(ΩR, ΩR1, q), and therefore from (V.4.38) we deduce

‖vs′‖1,q,ΩR1
+ ‖ps′‖q,ΩR1

≤M1.

Thus, from {vs′ , ps′} we can select a subsequence {vs′′ , ps′′} such that

vs′′ → v(2), ps′′ → p(2) weakly in W 1,q(ΩR1), strongly in Lq(ΩR1 ),
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where
(v(2), p(2)) ∈W 1,q(ΩR1) × Lq(ΩR1).

Clearly,
v(2) = v(1) and p(2) = p(1) in ΩR,

V = D2v(2), P = ∇p(1) in ΩR.

Iterating this procedure along a denumerable number of strictly increas-
ing domains of the type ΩRm , m ∈ N, invading Ω, and using the classi-
cal diagonalization method, we can eventually define a pair v, p in Ω with
v, p ∈ W 1,q(Ωρ), for all ρ > δ(Ωc) and, moreover, D2v, ∇p ∈ Lq(Ω). It is
simple to check that v, p solve the homogeneous Stokes system and since, by
(V.4.16), D2,q(Ω) = D̃2,q(Ω) for q ≥ n, by Lemma V.4.4 we must have

v = h, p = π, for some (h, π) ∈ Σq. (V.4.40)

As a consequence, by (V.4.39)1 and (V.4.40), it follows that

lim sup
s′→∞

( inf
(h,π)∈Σq

{ ‖v′s − h‖q,ΩR + ‖ps′ − π‖q,ΩR})

≤ lim
s′→∞

(
‖vs′ − hs′ − h‖q,ΩR + ‖ps′ − πs′ − π‖q,ΩR

)
= 0,

which contradicts (V.4.36). Thus (V.4.34) holds and the lemma follows when
q ≥ n. If n/2 ≤ q < n, we know from Theorem II.7.4 and Theorem II.6.1 that
v obeys the inequality

|v|1,r ≤ c1‖D2v‖q, (V.4.41)

where r = nq/(n − q). Likewise, by possibly adding a suitable constant to p,
we have

‖p‖r ≤ c2|p|1,q ≤ c3‖D2v‖q.

Therefore, in such a case, (V.4.33) can be strengthened by including in the
curly brackets on its left-hand side the quantity

|v − h|1,r + ‖p− π‖r .

Repeating the procedure adopted for the case where q ≥ n, we obtain this
time that the limit function v also belongs to D1,r(Ω) implying, in view of the

characterization given in (V.4.16), v ∈ D̃2,q(Ω). Also, v = h, p = π for some
(h, p) ∈ and so, reasoning as before, we then prove (V.4.34) and, consequently,
(V.4.31). Finally, if 1 < q < n/2, in conjunction with (V.4.41), from Theorem
II.6.1 we establish the validity of the inequality

‖v‖s ≤ c2|v|1,r ≤ c3‖D2v‖q

for s = nq/(n− 2q). Then the limit function v belongs to Ls(Ω) ∩D1,r(Ω) ∩
D2,q(Ω) and so, by characterization (V.4.16), v ∈ D̃2,q(Ω). Again reasoning
as before, we show (V.4.34) and arrive at (V.4.32). The proof of the lemma is
complete. ut
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Exercise V.4.7 Let Ω be an exterior, locally Lipschitz domain of R
n, n ≥ 2 and

let u ∈ Lq(ΩR),∇u ∈ Lq(ΩR1), R1 > R > δ(Ωc). Use a contradiction argument
based on compactness to show the inequality

‖u‖q,ΩR1
≤ c(‖∇u‖q,ΩR1

+ ‖u‖q,ΩR ),

where c = c(ΩR, ΩR1 , q).

Concerning the behavior at large distances of a solution v ∈ D̃2,q(Ω), we
have the following result.

Lemma V.4.6 Let Ω be an exterior domain in Rn, and let v be a solution to
(V.4.1)1,2 corresponding to f ∈ Lt(Ω), with v ∈ D̃2,q(Ω). Then, if 1 < q < n
and t > n we have

lim
|x|→∞

∇v(x) = 0 (V.4.42)

uniformly, while, if 1 < q < n/2 and t > n/2

lim
|x|→∞

v(x) = 0 (V.4.43)

uniformly.

Proof. From Lemma V.3.1 we have the following representation for v:

vj(x) =

∫

Bd(x)

U
(d)
ij (x− y)fi(y)dy −

∫

β(x)

H
(d)
ij (x− y)vi(y)dy (V.4.44)

with β(x) = Bd(x)−Bd/2(x). By (V.4.16)2 we derive that, if 1 < q < n, then
Dkvj ∈ Lr(Ω), r = nq/(n − q), and so differentiating (V.4.44) and recalling

the properties of U
(d)
ij and H

(d)
ij we deduce

|Dkvj(x)| ≤ c
(
‖|x− y|−n+1‖t′,Bd(x)‖f‖t,Bd(x) + ‖∇v‖r,Bd(x)

}
.

Since t′ < n/(n− 1), it follows that

‖|x− y|−n+1‖t′,Bd ≤ c1

and so the preceding inequality implies (V.4.42). If 1 < q < n/2, from (V.4.16)
we derive v ∈ Ls(Ω), s = nq/(n− 2q) and from (V.4.44) we deduce

|vj(x)| ≤ c
(
‖|x− y|−n+2‖t′,Bd(x)‖f‖t,Bd + ‖v‖s,Bd(x)

)
,

which shows (V.4.43). ut

We shall next prove some existence results in the class of velocity fields
belonging to D̃2,q(Ω).
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Theorem V.4.6 Let Ω be an exterior domain of class Cm+2 , m ≥ 0. Given
f ∈ Wm,q(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), 1 < q < ∞, there exists a unique
solution to (V.4.1) such that

v, p ∈ D̃2,q(Ω) ×D1,q(Ω) / Σq .

Moreover,

v ∈
m⋂

k=0

Dk+2,q(Ω), p ∈
m⋂

k=0

Dk+1,q(Ω)

and estimates (V.4.30)–(V.4.32) are satisfied.

Proof. We approximate f and v∗ by functions {fs} ⊂ C∞
0 (Ω), {v∗k} ⊂

Wm+2−1/r,r(∂Ω) any r ∈ (1,∞), respectively. From Theorem V.2.1, for all s ∈
N there exists a generalized solution vs, ps ∈ D1,2(Ω) × L2(Ω) corresponding
to fs, v∗s, and tending to 0 as |x| → ∞ in the case where n > 2. (If n = 2
this limit is undetermined.) Using Theorem IV.4.1 and Theorem IV.6.1 one
readily establishes (as in the proof shown in Remark V.4.6) that (at least)
vs ∈W 2,q(ΩR), ps ∈W 1,q(ΩR) for all R > δ(Ωc). From this information and
Theorem V.3.2 it follows that if n > 2

vs ∈ Lt(Ω) t > n/(n− 2),

∇vs ∈ Lr(Ω) r > n/(n− 1),

D2vs ∈ Lq(Ω) q > 1,

while, if n = 2,

∇vs ∈ Lr(Ω) r ≥ n/(n− 1), D2vs ∈ Lq(Ω) q > 1,

so that from (V.4.16) we obtain v ∈ D̃2,q(Ω) for all q > 1. (Notice that the
case 1 < q < n/2 is excluded if n = 2). The solutions (vs, ps) will then satisfy
(V.4.30)–(V.4.32), depending on the values of q and n. Assume q ≥ n. Given
ε > 0 from (V.4.30) and from the linearity of problem (V.4.1), for s′, s′′

sufficiently large , we deduce

inf
(h,π)∈Σq

{|vs′ − vs′′ − h|2,q + |ps′ − ps′′ − π|1,q} < ε. (V.4.45)

This relation implies that (vs, ps) is a Cauchy sequence in the quotient space

D̃2,q(Ω) × D1,q(Ω) / Σq and so, by a classical result of functional analysis,2

there is an element (v, p) ∈ D̃2,q(Ω) × D1,q(Ω) to which vs, ps tend in the
quotient norm defined by the left hand side of (V.4.45). Consequently, in view
of Lemma V.4.5, the theorem follows if q ≥ n. Likewise, if n/2 ≤ q < n, from
(V.4.31) we deduce

2 See, e.g., Schechter (1971, Chapter III, Theorem 5.3).
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inf
(h,π)∈Σq

{|vs′ − vs′′ − h|1,r + |vs′ − vs′′ − h|2,q + |ps′ − ps′′ − π|1,q} < ε,

namely, (vs, ps) is a Cauchy sequence in D̃2,q(Ω)×D1,q(Ω) / Σq and we prove
the theorem as before. Finally, if 1 < q < n/2, from Lemma V.4.4 it is Σq = ∅
and vs′ − vs′′ , ps′ − ps′′ satisfy (V.4.25)3, thus being a Cauchy sequence in

D̃2,q(Ω) ×D1,q(Ω) and the result again follows. The proof of the theorem is
therefore completed. ut

Let us now consider some consequences of Theorem V.4.6. Taking into
account the property of the infimum, we immediately obtain

Theorem V.4.7 Assume Ω, f , and v∗ satisfy the assumptions of Theorem
V.4.6. Then there exists a solution v, p to (V.4.1) obeying the estimate

‖v‖1,q,ΩR + ‖p‖q,ΩR+

m∑

k=0

(|v|k+2,q + |p|k+1,q)

≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
,

where c = c(n, q,m,Ω,R).

We also have

Theorem V.4.8 Suppose Ω, f , and v∗ satisfy the assumptions of Theorem
V.4.6. Assume, in addition, f ∈ Lt(Ω), v∗ ∈W 2−1/t,t(∂Ω), for some 1 < t <
n/2. Then, there exists one and only one solution v, p to (V.4.1) such that

v ∈ D̃2,t(Ω)∩
[
∩m

k=0D
k+2,q(Ω)

]

p ∈ D1,t(Ω)∩
[
∩m

k=0D
k+1,q(Ω)

]
∩ Lnt/(n−t)(Ω).

Furthermore, v and p obey the following estimate

‖v‖s + |v|1,r+ |v|2,t + ‖p‖r + |p|1,t +

m∑

k=0

(|v|k+2,q + |p|k+1,q)

≤ c
(
‖f‖t + ‖f‖m,q + ‖v∗‖2−1/t,t(∂Ω) + ‖v∗‖m+2−1/q,q(∂Ω)

)

(V.4.46)
with r = nt/(n− t), s = nt/(n−2t), and c = c(n, q, t, m,Ω). Finally, we have,
as |x| → ∞, ∫

Sn

|v(x)| = o (1/|x|n/r−1)

∫

Sn

|∇v(x)| = o (1/|x|n/t−1)

∫

Sn

|p(x)| = o (1/|x|n/t−1)

(V.4.47)
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and, if q > n,
lim

|x|→∞
v(x) = lim

|x|→∞
∇v(x) = 0 (V.4.48)

uniformly.

Proof. From Theorem V.4.6 we deduce the existence of a solution to (V.4.1)
such that

v ∈ D̃2,t(Ω), p ∈ D1,t(Ω),

and verifying

‖v‖s + |v|1,r + |v|2,t + ‖p‖r + |p|1,t ≤ c(‖f‖t + ‖v∗‖2−1/t,t(∂Ω)). (V.4.49)

However, since f ∈Wm,q(Ω), v∗ ∈ Wm−2+1/q,q(∂Ω), from Lemma V.4.2 and
Lemma V.4.3 it follows that v ∈ Dk+2,q(Ω), p ∈ Dk+1,q(∂Ω), k = 0, . . . , m,
and that, moreover,

m∑

k=0

(|v|k+2,q + |p|k+1,q) ≤ c
(
‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

+ ‖v‖q,ΩR + ‖p‖q,ΩR) .

(V.4.50)

Given ε > 0, one can prove the following inequality (see Exercise V.4.8)

‖u‖κ,ΩR ≤ c‖u‖σ,ΩR + ε|u|1,κ,ΩR, (V.4.51)

for all κ, σ > 1, with c = c(ε, κ, σ, ΩR). Using (V.4.51) we obtain

‖p‖q,ΩR ≤ c‖p‖r + ε|p|1,q,ΩR, (V.4.52)

while using it twice furnishes

‖v‖q,ΩR ≤ c1‖v‖s + c2|v|1,r + ε‖D2v‖q,ΩR . (V.4.53)

Using (V.4.52) and (V.4.53) on the right-hand side of (V.4.50) and employing
(V.4.49) allows us to recover the estimate (V.4.46). Furthermore, relations
(V.4.47) follow from Lemma II.6.3, while (V.4.48) is a consequence of Lemma
V.4.6. Finally, uniqueness is easily implied by Theorem V.3.4. The theorem
is, therefore, completely proved. ut

Exercise V.4.8 Use a contradiction argument based on the compactness results of

Exercise II.5.8 to show the validity of inequality (V.4.51).

Exercise V.4.9 The results proved in this section continue to hold if, more gen-

erally, ∇ · v = g 6≡ 0. In particular, show the validity of Theorem V.4.6 in such

a case, if g ∈ Dm+1,q(Ω) and provided the term |g|m+1,q + ‖g‖q,ΩR is added on

the right-hand side of the estimates (V.4.30)–(V.4.32). Notice that, unlike the case

where Ω is bounded, no compatibility condition is required between g and v∗.
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V.5 Existence, Uniqueness, and Lq-Estimates:
q-generalized Solutions

In the present section we shall investigate the existence and uniqueness of
q-generalized solutions to system (V.4.1) and the validity of corresponding
estimates. As in Section V.3, we shall see that these results heavily depend
on how q and n are related. However, this time, if 1 < q ≤ n/(n− 1) (1 < q <
n/(n − 1) for n = 2) the above mentioned solutions exist if and only if the
data satisfy a suitable compatibility condition; see (V.5.4). As a by-product,
our theory will furnish a general representation formula for functionals on

D1,q′

0 (Ω).
In order to simplify matters, we assume that the velocity field v∗ at

the boundary is identically zero. Generalizations to the more general non-
homogeneous case are left to the reader in Exercise V.5.1. We therefore con-
sider the following system

∆v = ∇p+ f

∇ · v = 0

}
in Ω

v = 0 at ∂Ω,

(V.5.1)

We have

Definition V.5.1. A vector field v : Ω → Rn is called a q-generalized solution
to the Stokes system (V.5.1) if and only if v ∈ D1,q

0 (Ω) and, furthermore,

(∇v,∇ϕ) = −[f ,ϕ], for all ϕ ∈ D1,q′

0 (Ω). (V.5.2)

Remark V.5.1 Unlike the definition of q-generalized solutions given in Sec-
tion V.1 for the Stokes problem (V.0.1), (V.0.2), in the case under considera-
tion q-generalized solutions need not tend to zero at infinity; actually, as we
shall see, this happens if and only if n/(n−1) < q < n, see also Remark V.1.1.

�

From Lemma V.1.1 it follows that, provided Ω is locally Lipschitz and
f ∈ D−1,q

0 (Ω), to any q-generalized v to (V.5.1) we can uniquely associate a
pressure field p ∈ Lq(Ω) such that

(∇v,∇ψ) − (p,∇ ·ψ) = −[f ,ψ], for all ψ ∈ D(Ω). (V.5.3)

As in the case of strong solutions, a fundamental role in our treatment is
played by exceptional q-generalized solutions, i.e., vector fields v ∈ D1,q

0 (Ω)
solving (V.5.1) with f ≡ 0 (denoted from now on by (V.5.1)0). Their geometric
structure is characterized in the following lemma.
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Lemma V.5.1 Let Ω ⊂ Rnbe an exterior domain of class C2. Denote by Sq

the subspace of D1,q
0 (Ω)×Lq(Ω) constituted by q-generalized solutions (v, p)

to (V.5.1)0. Then, if 1 < q < n (1 < q ≤ n for n = 2) Sq = {0}, while if q ≥ n
(q > n for n = 2) dim(Sq) = n.

Proof. Assume 1 < q < n. From Lemma II.6.2 in the limit |x| → ∞, it follows
that ∫

Sn

|v(x)| = o(1).

Therefore, v is a q-generalized solution to the Stokes problem (V.0.1), (V.0.2),
according to Definition V.1.1 corresponding to identically vanishing data and
so, in view of Theorem V.3.4, we have v ≡ 0 if 1 < q < n. Also, if q = n = 2,
from (V.5.2)

(∇v,∇ϕ) = 0 for all ϕ ∈ D1,2
0 (Ω)

and so we may take ϕ = v to obtain again v ≡ 0, which completes the proof
of the first part of the lemma. Assuming next q ≥ n (q > n if n = 2), consider
the pairs (hi, πi) of solutions to (V.5.1)0 constructed in the proof of Lemma
V.4.4. By what we have seen there, these solutions are linearly independent
and, moreover,

hi ∈ D1,q(Ω) for all q > n/(n− 1).

Therefore, from Theorem II.7.6 and Theorem III.5.1,

hi ∈ D1,q
0 (Ω) for all q ≥ n (q > n if n = 2)

and the proof of the lemma is achieved. ut

Remark V.5.2 A basis {hi, πi} in Sq can be sometime explicitly exhibited.
For example, if Ω is exterior to a sphere, it is immediately seen that hi, πi

can be taken just as follows:

hi = ei − v(i)
S , πi = p

(i)
S ,

where v
(i)
S , p

(i)
S is the Stokes solutions (V.0.4), corresponding to v0 = ei, i =

1, 2, 3, respectively. Likewise if Ω is exterior to a circle, a basis is constituted
by the two independent solutions (V.0.7). �

Lemma V.5.1 has an important consequence, that is, a q-generalized solu-
tion to (V.5.1) with 1 < q ≤ n/(n − 1) (1 < q < n if n = 2) exist only if the
body force −f satisfies the compatibility condition

[f ,h] = 0, for all (h, π) ∈ Sq′ . (V.5.4)

In fact, condition (V.5.4) is also sufficient to prove existence of q-generalized
solutions for the values of q specified above. In order to show this, we premise
the following general result that will be useful also for other purposes.
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Lemma V.5.2 Let ui, i = 1, . . . , N , beN independent functions inD1,q′

0 (Ω),
1 < q′ <∞. Then, the following properties hold.

(i) There exist N elements, `1, . . . , `N , of D−1,q
0 (Ω), q = q′/(q′−1), satisfying

the conditions
[`i,uj] = δij , i, j = 1, . . . , N ,

and such that every f ∈ D−1,q
0 (Ω) can be represented as follows

f = w +
N∑

i=1

[f,ui] `i ,

where
[w,ui] = 0 , i = 1, . . . , N .

(ii)For any given f ∈ D−1,q
0 (Ω) such that

[f ,ui] = 0 , i = 1, . . . , N (V.5.5)

there exists a sequence, {fm} ⊂ C∞
0 (Ω), whose elements satisfy

(fm,ui) = 0 , for all m ∈ N and all i = 1, . . . , N , (V.5.6)

and, in addition,
lim

m→∞
|f − fm|−1,q = 0 .

Proof. We begin with a suitable decomposition of the space Lq′
(Ω). Let gi,

i = 1, . . . , N , be independent elements of Lq(Ω). We want to show that there
exist Li ∈ C∞

0 (Ω), i = 1, . . . , N , such that

(Li, gj) = δij , i, j = 1, . . . , N . (V.5.7)

The proof of (V.5.7) will be given by induction.1 Suppose N = 1. Then,
there exists ψ ∈ C∞

0 (Ω) such that (ψ, g) 6= 0 , because, otherwise, g ≡ 0,
which contradicts the assumption. We then choose L = ψ/(ψ, g), thus proving

(V.5.7) forN = 1. Next, assume that there exist L̃i ∈ C∞
0 (Ω), i = 1, . . . , N−1,

N ≥ 2, such that

(L̃i, gj) = δij , i, j = 1, . . . , N − 1 , (V.5.8)

then we show that there are Li ∈ C∞
0 (Ω), i = 1, . . . , N satisfying (V.5.7). In

fact, set

γ = −
N−1∑

j=1

(L̃j , gN )gj + gN . (V.5.9)

Then, by the same token, there is ϕ ∈ C∞
0 (Ω) such that

1 I owe the proof of this property to C.G. Simader and T. Riedl.
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(ϕ, γ) 6= 0 , (V.5.10)

and so, setting

l = ϕ−
N−1∑

j=1

(ϕ, gj)L̃j , (V.5.11)

and using the induction hypothesis (V.5.8), we find

(l, gk) = (ϕ, gk) − (ϕ, gk) = 0 , k = 1, . . . , N − 1 , (V.5.12)

whereas, using (V.5.9) and (V.5.10), we obtain

(l, gN) = (ϕ, gN ) −
N−1∑

j=1

(ϕ, gj)(Lj , gN)

= (ϕ, γ) +

N−1∑

j=1

(Lj, gN)(ϕ, gj) −
N−1∑

j=1

(ϕ, gj)(Lj , gN )

= (ϕ, γ) 6= 0 .

(V.5.13)

Therefore, from (V.5.11)–(V.5.13), we deduce that, defining

LN =
l

(l, gN )
, Li = L̃i − (L̃i, gN )LN , i = 1, . . . , N − 1 ,

the functions L1, . . . ,LN obey property (V.5.7) that, consequently, is com-
pletely proved. Next, let F ∈ Lq(Ω) be arbitrary, and set

W = F −
N∑

i=1

(F , gi)Li ,

where Li ∈ C∞
0 (Ω) satisfy (V.5.7). Then, clearly, in view of (V.5.7), we have,

on the one hand,

(W , gi) = 0 , i = 1, . . . , N , (V.5.14)

and, on the other hand,

F = W +

N∑

i=1

(F , gi)Li , (V.5.15)

which, sinceW is uniquely determined, furnishes the desired decomposition of
the space Lq(Ω). Now, pick f ∈ D−1,q

0 (Ω). From Theorem II.1.6 and Theorem
II.8.2 we know that there exists F ∈ Lq(Ω) such that

[f ,ψ] = (F ,∇ψ) . (V.5.16)
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Thus, if we choose, in particular, gk = ∇uk, the statements in part (i) of
the lemma follow from this representation and from (V.5.7), (V.5.14), and
(V.5.15). We shall now show part (ii). Let f ∈ D−1,q

0 (Ω), and let F be a
corresponding function in Lq(Ω) satisfying (V.5.16). Since f must satisfy
(V.5.5), we find that F obeys the following conditions

(F ,∇ui) = 0 , ı = 1, . . . , N . (V.5.17)

Denote by {Fm} ⊂ C∞
0 (Ω) a sequence such that Fm → F in Lq , and set

Wm = Fm −
N∑

i=1

(Fm,∇ui)Li .

With the help of (V.5.7) and of (V.5.17), we easily establish the following
properties

{Wm} ⊂ C∞
0 (Ω)

(Wm,∇uk) = 0 , for all m ∈ N+ and all k ∈ {1, . . . , N} ,

Wm → F in Lq(Ω) .

The last statement of the lemma then follows by setting fm = ∇ ·Wm ,
m ∈ N. ut

We are now in a position to prove the following.

Theorem V.5.1 Let Ω be an exterior domain in Rn of class C2. Then, for
every f ∈ D−1,q

0 (Ω) satisfying (V.5.4) if 1 < q ≤ n/(n−1) (1 < q < n/(n−1)
if n = 2) there exists one and only one q-generalized solution to (V.5.1) such
that

(v, p) ∈ D1,q
0 (Ω) × Lq(Ω) / Sq.

Moreover, this solution verifies

inf
(h,π)∈Sq

{|v − h|1,q + ‖p− π‖q} ≤ c|f |−1,q. (V.5.18)

Proof. As in the proof of Theorem V.4.6, it is enough to show the result for
functions f ∈ C∞

0 (Ω), that, when 1 < q ≤ n/(n − 1) (1 < q < n/(n − 1) if
n = 2), satisfy, in addition, the condition

(f ,hi) = 0 , for all i = 1, . . . , n . (V.5.19)

In fact, the general case will be a consequence of inequality (V.5.18), of the
density of C∞

0 (Ω) into D−1,q
0 (Ω) and of Lemma V.5.2. Thus, for a smooth f

we construct a solution v ∈ D1,2
0 (Ω), p ∈ L2(Ω) by the methods employed in

Theorem V.2.1 (see also Remark V.2.1). This solution satisfies
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|v|1,2 + ‖p‖2 ≤ c |f |−1,2

which, in particular, proves the theorem in the special case where q = n/(n−
1), n = 2. From Theorem IV.4.2 and Theorem IV.6.1 it follows that

v ∈ C∞(Ω) ∩W 2,q(ΩR), p ∈ C∞(Ω) ∩W 1,q(ΩR) (V.5.20)

for all R > δ(Ωc) and q > 1. Moreover, from Theorem V.3.2, we obtain

∇v ∈ Lq(ΩR/2), p ∈ Lq(ΩR/2)

for all q > n/(n − 1). This property, together with (V.5.20), with the aid of
Theorem II.7.1 and Theorem III.5.1 in turn implies

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω), q > n/(n− 1). (V.5.21)

Applying Theorem IV.2.2 to system (V.4.3)–(V.4.4) we readily deduce

‖∇v‖q,ΩR/2 + ‖p‖q,ΩR/2 ≤ c (|ϕf + T (v, p) · ∇ϕ|−1,q + ‖v|∇ϕ|‖q) . (V.5.22)

Since q′ < n, from Sobolev inequality (II.3.7) and for all Φ ∈ D1,q′

0 (Rn)

|(ϕf ,Φ)| ≤ |f |−1,q|ϕΦ|1,q′ ≤ c|f|−1,q|Φ|1,q′. (V.5.23)

Likewise, taking into account that ΦiDjϕ ∈ W 1,q
0 (ΩR), i, j = 1, . . . , n, from

(V.3.1) we have

|(T (v, p) · ∇ϕ,Φ)| ≤
n∑

i,j=1

(|(Divj , ΦjDiϕ)| + |(Djvi, ΦjDiϕ)|

+ |(pδij , ΦjDiϕ)|)

≤ c
(
‖v‖q,ΩR/2

+ ‖p‖−1,q,ΩR/2

)
|Φ|1,q′.

(V.5.24)

Therefore, (V.5.22)–(V.5.24) imply

‖∇v‖q,ΩR/2 + ‖p‖q,ΩR/2 ≤ c
(
|f|−1,q + ‖v‖q,ΩR/2

+ ‖p‖−1,q,ΩR/2

)
. (V.5.25)

Moreover, from estimate (IV.6.8) in ΩR we also obtain

‖v‖1,q,ΩR + ‖p‖q,ΩR ≤ c
(
|f|−1,q + ‖v‖q,ΩR + ‖p‖−1,q,ΩR + ‖v‖1−1/q,q(∂BR)

)
,

(V.5.26)
where we used the obvious inequality

‖f‖−1,q,ΩR ≤ |f |−1,q.

By employing the traceTheorem II.4.4 at the boundary term in (V.5.26) we
deduce
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‖v‖1,q,ΩR + ‖p‖q,ΩR ≤ c
(
|f|−1,q + ‖v‖q,ΩR + ‖p‖−1,q,ΩR + ‖∇v‖q,ΩR/2

)
.

(V.5.27)
The solution v, p will then satisfy (V.5.21) and, by (V.5.25), (V.5.27), the
inequality

|v|1,q + ‖p‖q ≤ c ( |f |−1,q + ‖v‖q,ΩR + ‖p‖−1,q,ΩR ) (V.5.28)

for all q > n/(n − 1). Let us show that if f satisfies (V.5.19) the properties
just shown continue to hold when 1 < q ≤ n/(n − 1) (1 < q < n/(n − 1) if
n = 2). We already know that v and p satisfy (V.5.20) for all q > 1. Also,
v and p obey the asymptotic expansion (V.3.17), (V.3.18), and (V.3.19). If
n > 2, since v ∈ D1,2

0 (Ω) we find v∞ = 0, and so to show v ∈ D1,q
0 (Ω),

1 < q ≤ n/(n − 1), by Theorem II.7.1 it is necessary and sufficient to prove
that the vector T defined in (V.3.20) is zero. Likewise, for n = 2, since it is
readily shown that v ∈ D1,2

0 (Ω) implies T = 0 (see Remark V.3.5), to prove
v ∈ D1,q

0 (Ω), 1 < q < n/(n − 1), again by Theorem II.7.1 it is necessary and
sufficient to prove v∞ = 0. From Green’s formula applied in ΩR we have for
all R > δ(Ωc)

−
∫

ΩR

f · hi =

∫

∂BR

{hi · T (v, p) · n− v · T (hi, πi) · n} . (V.5.29)

By this relation and the asymptotic properties of (hi, πi) (see Lemma V.4.4),
and of (v, p) (see Theorem V.3.2) it follows for n > 2

∫

ΩR

f · hi = −ei ·
∫

∂BR

T (v, p) · n

+

∫

∂BR

{(ei − hi) · T (v, p) · n+ v · T (hi, πi) · n}

= −ei ·
∫

∂BR

T (v, p) · n+O(1/Rn−2)

and so, by (V.5.19),

ei ·
∫

∂BR

T (v, p) ·n = O(1/Rn−2), i = 1, 2, 3. (V.5.30)

On the other hand, by taking ΩR so that ΩR ∩ supp (f ) = ∅, from (V.5.1) we
have

T · ei = ei ·
∫

∂BR

T (v, p) · n = O(1/Rn−2),

which entails T = 0, thus proving v ∈ D1,q
0 (Ω), p ∈ Lq(Ω), 1 < q ≤ n/(n−1),

for n ≥ 3. Suppose now n = 2. As already noticed T = 0 for solutions
v ∈ D1,2

0 (Ω), p ∈ L2(Ω) and so from (V.3.17)–(V.3.19) it comes out that

T (v, p) = O(1/|x|2)
v = v∞ +O(1/|x|).
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Also, by (V.4.27) we have

hi = O(log |x|)
T (hi, πi) = O(1/|x|).

Consequently, (V.5.29) furnishes for all ε ∈ (0, 1)

v∞ ·
∫

∂BR

T (hi, πi) · n = O(1/R1−ε). (V.5.31)

However, a comparison between the general expansion formulas (V.3.17)–
(V.3.21) and (V.4.27) reveals

∫

∂BR

T (hi, πi) · n = ei,

which once replaced into (V.5.31) yields v∞ = 0. Therefore, we conclude
v ∈ D1,q

0 (Ω), p ∈ Lq(Ω), 1 < q ≤ n/(n− 1) if n = 2. We shall next establish
the validity of (V.5.28). As in the case where q > n/(n − 1) we arrive at
inequality (V.5.22). Now, taking into account that ϕ = 0 near ∂Ω and ϕ = 1
in ΩR we have

∫

Ω

f1 =

∫

Ω

(ϕf + T (v, p) · ∇ϕ)

=

∫

Ω2R

ϕ(f −∇ · T ) +

∫

∂Ω

ϕT · n+

∫

∂BR

ϕT ·n =

∫

∂BR

T · n

and so, by what we have shown,

∫

Ω

f1 = 0. (V.5.32)

By (V.5.32), in view of Theorem II.8.1 (see also Remark II.8.1), the functional

[Φ] ∈ D1,q′

0 (Rn) → (f1,Φ) , Φ ∈ [Φ] , q′ ≥ n

is well defined and independent of the particular choice of the function Φ in
the equivalence class [Φ] . Thus, for any such Φ, we define

Φ̂ = Φ− 1

|ΩR|

∫

ΩR

Φ,

so that by Poincaré’s inequality (II.5.10)

‖Φ̂‖q′,ΩR ≤ c|Φ|1,q′. (V.5.33)

From (V.5.32) it follows that
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(f1,Φ) = (f1, Φ̂) = (ϕf , Φ̂) + (T (v, p) · ∇ϕ, Φ̂),

and so we may proceed as in (V.5.23), (V.5.24) by using this time (V.5.33)
instead of the Sobolev inequality to reach estimate (V.5.25). Since (V.5.26)
holds for all q > 1, we may finally establish, in the same way as in the case
where q > n/(n − 1), the validity of (V.5.28). Once (V.5.28) is recovered, we
obtain from it

inf
(h,π)∈Sq

{|v − h| 1,q + ‖p− π‖q}

≤ c1

{
|f|−1,q + inf

(h,π)∈Sq

[|v − h|q,ΩR + ‖p− π‖−1,q,ΩR ]

}
.

(V.5.34)
Using a contradiction argument entirely analogous to that of Theorem V.4.6
and based on compactness results of Exercise II.5.8 and Theorem II.5.3, we
can show

inf
(h,π)∈Sq

{|v − h|q,ΩR + ‖p− π‖−1,q,ΩR} ≤ c2|f |−1,q

which, once replaced into (V.5.34), yields (V.5.18). Existence is then fully
carried out. The uniqueness of solutions just determined is also immediately
established and therefore the proof of the theorem is complete. ut

A significant consequence of Theorem V.5.1 is a general representation
of functionals on the space D1,q

0 (Ω), 1 < q < ∞. Specifically, we have the
following result; see Galdi & Simader (1990, Section 7).

Theorem V.5.2 Let Ω be as in Theorem V.5.1, and let f ∈ D−1,q
0 (Ω). The

following properties hold.

(i) If q > n/(n− 1) (q ≥ n/(n− 1) if n = 2) then f can be represented as

[f,ϕ] = (∇v,∇ϕ), ϕ ∈ D1,q′

0 (Ω), (V.5.35)

with v uniquely determined if q < n (q ≤ n if n = 2), while v is determined
up to a function h, if q ≥ n (q > n if n = 2), where (h, π) ∈ Sq .

(ii) If 1 < q ≤ n/(n− 1) (1 < q < n/(n− 1), if n = 2), there exist a uniquely
determined vector function v ∈ D1,q

0 (Ω), and n functions r1, . . . , rn with
ri ∈ D1,q(Ω), i = 1, . . . , n, uniquely determined up to a constant, such

that for all ϕ ∈ D1,q′

0 (Ω) and for any fixed basis {hi, πi} in Sq′ we have

[f ,ϕ] = (∇v,∇ϕ) +

n∑

i=1

[f ,hi](∇ri,∇ϕ).

Proof. Since D1,q
0 (Ω) is a subspace of D1,q

0 (Ω), by the Hahn-Banach Theorem
II.1.7(a), there exists F ∈ D−1,q

0 (Ω) such that [F ,ϕ] = [f,ϕ], for all ϕ ∈
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D1,q′

0 (Ω). The result stated in part (i) is then an obvious consequence of
Theorem V.5.1. We now pass to the proof of part (ii). Again by the Hahn-
Banach Theorem II.1.7(a), we extend f to some F ∈ D−1,q

0 (Ω). Then, from
Lemma V.5.2, we find

F = w +

n∑

i=1

[f ,hi] `i , (V.5.36)

where [w,hi] = 0, i = 1, . . . , n, and where we employ the fact that, since

hi ∈ D1,q′

0 (Ω), q′ ≥ n (q′ > n, if n = 2), we have [f ,hi] = [F ,hi]. From
Theorem V.5.1 it then follows that there exists a unique v ∈ D1,q

0 (Ω) such
that

[w,ϕ] = (∇v,∇ϕ) , ϕ ∈ D1,q′

0 (Ω) . (V.5.37)

Furthermore, from Theorem II.1.6 and Theorem II.8.2 we may find Li ≡
{(Lkl)i} ∈ Lq(Ω), i = 1, . . . , n, such that

[`i,ϕ] = (Li,∇ϕ) ≡ ((Lkl)i, Dkϕl) , ϕ ∈ D1,q′

0 (Ω) .

We further apply to each Li the Helmholtz decomposition Theorem III.1.2
to obtain Li = Ri + ∇ri, where Ri ≡ {(Rkl)i}, i = 1, . . . , n, satisfy

((Rkl)i, Dkφ) = 0, for all φ ∈ D1,q′

0 (Ω), and all l = 1, . . . , n. The last dis-
played equation then becomes

[`i,ϕ] = (∇ri,∇ϕ) , ϕ ∈ D1,q′

0 (Ω) . (V.5.38)

The proof then follows from (V.5.36)–(V.5.38). ut

From the previous results we obtain the following one.

Corollary V.5.1 Let Ω be as in Theorem V.5.1 and let v ∈ D1,q
0 (Ω). Then,

if 1 < q < n (1 < q ≤ n if n = 2)

|v|1,q ≤ c sup
ϕ∈D1,q′

0 ,ϕ 6= 0

|(∇v,∇ϕ)|
|ϕ|1,q′

.

Proof. It follows at once from Theorem V.5.1 and Theorem V.5.2. ut

Exercise V.5.1 Let Ω be as in Theorem V.5.1. Show that given f ∈ D−1,q
0 (Ω),

v∗ ∈ W 1−1/q,q(∂Ω), g ∈ Lq(Ω), q > n/(n− 1) (q ≥ n/(n− 1) if n = 2) there exists
v ∈ D1,q(Ω) solving (V.5.2), which equals v∗ on ∂Ω in the trace sense and with
∇ · v = g in the generalized sense. Show, further, that existence of the above type
continues to hold if 1 < q ≤ n/(n− 1) (1 < q < n/(n − 1), if n = 2) provided the
following compatibility condition is satisfied:

[f ,h] + (g, π) +

Z

∂Ω

(n · ∇h · v∗ − πv∗ · n) = 0
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for all (h, π) ∈ Sq . Prove also that v and the corresponding pressure p (∈ Lq(Ω))
verify the estimate

inf
(h,π)∈Sq

{|v − h|1,q + ‖p− π‖q} ≤ c(|f |−1,q + ‖g‖q + ‖v∗‖1−1/q,q(∂Ω)).

Finally, show that, if 1 < q < n, v tends to zero as |x| → ∞ in the following sense

Z

Sn−1

|v(x)| = o(1/|x|n/q−1).

The last part of this section is devoted to the proof of a “regularization
at infinity” for q-generalized solutions. In this respect, we recall that if v ∈
D1,q(Ω) satisfies (V.1.1) for all ϕ ∈ D(Ω), with f ∈ D−1,r

0 (ω), for all bounded
subdomain ω with ω ⊂ Ω, and where a priori r 6= q, by Lemma IV.1.1 we
can associate to v a pressure field p satisfying (V.1.2) with p ∈ Lµ

loc(Ω),
µ = min(r, q).

Theorem V.5.3 Let Ω be an exterior domain of Rn, let v ∈ D1,q(Ω), 1 <
q <∞, be weakly divergence-free satisfying (V.1.1) for all ϕ ∈ D(Ω), and let
ρ > δ(Ωc). Then, the following properties hold

(i) If

f ∈ D−1,r
0 (Ωρ), r > n/(n− 1),

we have

v ∈ D1,r(ΩR), p ∈ Lr(ΩR) (V.5.39)

for all R > ρ .
(ii) If

f ∈ Ls(Ωρ), 1 < s <∞,

we have

v ∈ D2,s(ΩR), p ∈ D1,s(ΩR). (V.5.40)

for all R > ρ.

In both cases, p is the pressure field associated to v by Lemma IV.1.1.

Proof. The fields

u = ϕv, π = ϕp

solve the weak formulation of problem (V.4.3)–(V.4.4) in Rn, namely,

(∇u,∇ψ) − (π,∇ · ψ) = −[f1,ψ], for all ψ ∈ C∞
0 (Rn),

(u,∇χ) = −(g, χ), for all χ ∈ C∞
0 (Rn),

(V.5.41)

where (i = 1, . . . , n)
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f1i = (fϕ)i + Tik(v, p)Dkϕ+Dk(vkDiϕ + viDkϕ),

[fϕ,ψ] := [f , ϕψ]

g = v · ∇ϕ,

and T is defined in (IV.8.6). By Theorem IV.4.5,

v ∈ W 1,r
loc (Ω), p ∈ Lr

loc(Ω)

and so
g ∈ Lr(Rn). (V.5.42)

Furthermore, reasoning exactly as in the proof of Theorem V.5.1, one easily
shows that for r > n/(n− 1)

f1 ∈ D−1,r
0 (Rn). (V.5.43)

In view of Theorem IV.2.2, (V.5.42), and (V.5.43) we establish the existence
of a solution u1, π1 to (V.5.41) such that

u1 ∈ D1,r(Rn), π1 ∈ Lr(Rn), (V.5.44)

and, by the uniqueness part of the same theorem we deduce

∇(u1 − u) ≡ 0, π1 − π ≡ const. (V.5.45)

Since ϕ = 1 in ΩR, conditions (V.5.44) and (V.5.45), after a possible mod-
ification of p by adding a constant (which causes no loss), prove (V.5.39).
Assume now f ∈ Ls(Ωρ). By Theorem IV.4.2 we deduce

v ∈W 2,s
loc (Ω), p ∈ W 1,s

loc (Ω) (V.5.46)

and so u, π solve (V.4.3)–(V.4.4) a.e. in Rn. (V.5.46) implies

f1 ∈ Ls(Rn), g ∈W 1,s(Rn).

We may then apply Theorem II.3.1 to (V.4.3)–(V.4.4) to establish the exis-
tence of a solution u1, π1 such that

u1 ∈ D2,s(Rn), π1 ∈ D1,s(Rn). (V.5.47)

Setting w = u1 − u, by Lemma V.3.1 we obtain

DkD`wj(x) =

∫

β(x)

(
H

(d)
ij (x− y)DkD`u1i(y)dy −DkH

(d)
ij (x − y)D`ui(y)

)
dy

(V.5.48)

for all x ∈ Rn and all d > 0. By properties (V.3.5) of H
(d)
ij , relation (V.5.48),

with the help of the Hölder inequality, implies for all sufficiently large d,
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|DkD`wj(x)| ≤ c logd
(
d−n/r‖D2u1‖s,β(x) + d−n/q‖∇u‖q,β(x)

)
.

Letting d → ∞ into this inequality and recalling that ϕ = 1 in ΩR proves
(V.5.45)2. Consequently, (V.5.41)1 yields

(π1 − π,∇ · ψ) = 0, for all ψ ∈ C∞
0 (Rn),

which, by (V.5.46), in turn delivers (V.5.45)2. The theorem is completely
proved. ut

Remark V.5.3 For future reference, we wish to observe that results analo-
gous to those of Theorem V.5.3 are valid for the following Dirichlet problem
for the Poisson equation:

∆v = f in Ω, v = v∗ at ∂Ω.

In particular, if v ∈ D1,q(Ω), for some q ∈ (1,∞), and f ∈ Ls(Ωρ), 1 < s <∞,
then v ∈ D2,s(ΩR) for all r > ρ. The proof of this assertion, completely
similar to (and simpler than) that of Theorem V.5.3, is left to the reader as
an exercise. �

V.6 Green’s Tensor and Some Related Properties

The results established in the previous two sections allow us to prove the exis-
tence of the Green’s tensor for the Stokes problem in a (sufficiently smooth)
exterior domain. Actually, for fixed y ∈ Ω, let us consider the functions
Aij(x, y), ai(x, y) such that for all i, j = 1, . . . , n and all y ∈ Ω

∆xAij(x, y) +
∂aj(x, y)

∂xi
= 0, x ∈ Ω,

∂Aij(x, y)

∂xi
= 0, x ∈ ∂Ω

Aij(x, y) = Uij(x− y), x ∈ ∂Ω

lim
|x|→∞

Aij(x, y) = 0.

(V.6.1)

From Theorem V.4.8, we know that Aij(x, y) and ai(x, y) exist and, from
Theorem V.1.1, that they are smooth in Ω. Thus, in analogy with the case of
a bounded domain, we have that the fields

Gij(x, y) = Uij(x− y) −Aij(x, y)

gi(x, y) = qi(x− y) − ai(x, y)

define the Green’s tensor for the Stokes problem in the exterior domain Ω
(Finn 1965a, §2.6). It is not difficult to show along the same lines of Odqvist
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(1930, p. 358, see Finn 1965, loc. cit.) that the tensor field G satisfies the
following symmetry condition

Gij(x, y) = Gji(y, x).

In the rest of this book, we shall not make use of the Green’s tensor
solution, and, therefore, here we shall not provide a detailed study of its
properties. Nevertheless, we would like to point out some features of G, that
do not appear to be widely known; see, e.g., Babenko (1980, Proposition I).

More specifically, from the result obtained in Theorem V.5.1 we will show
that, if Ωc ⊃ Ba, some a > 0, then the tensor G does not satisfy certain
estimates which, on the other hand, are known to hold for the same quan-
tity in a bounded domain (see (IV.8.4)) and in a half-space (see (IV.3.3)).1

For instance, the Green’s tensor for the Stokes problem in an exterior three-
dimensional domain does not satisfy the following estimate:

|∇Gij(x, y)| ≤ c|x− y|−2, (V.6.2)

for all x, y ∈ Ω, x 6= y, and with ∇ operating on either x or y. Actually, let
F be a second-order tensor field with Fij ∈ C∞

0 (Ω) and such that

(∇ · F ,h) 6= 0 for all h ∈ Sq, q > 3 . (V.6.3)

For example, we may take F = ψ∇h, where ψ = ψ(|x|) is a smooth, non
negative function such that ψ(|x|) = 0 if either |x| ≤ R or |x| ≥ 2R, R >
δ(Ωc). We then have

(∇ · F ,h) = −
∫

ΩR,2R

ψ∇h : ∇h ,

which is, of course, non-zero. Now, in view of (V.6.1) and the properties of
G, g, it is immediately recognized that the fields

v(x) =

∫

Ω

G(x, y) · (∇ · F (y)) dy, p(x) = −
∫

Ω

g(x, y) · ∇ · F (y)dy

define a solution to the Stokes system (V.5.1) with f = ∇ · F . Furthermore,
since

v(x) = −
∫

Ω

∇G(x, y) · F (y)dy,

and F is of bounded support, the validity of (V.6.2) would imply

v(x) = O(|x|−2). (V.6.4)

This property, with the aid of Theorem V.3.2, then furnishes that the vector
T defined in (V.3.20) must be zero. Thus, from (V.3.19) and (V.3.21) we
obtain
1 Actually, if Ω = R

n, then G ≡ U , and G obeys the same type of estimates
holding for a bounded domain and a half-space; see (IV.2.6).
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∇v(x) = O(|x|−3).

Such a condition, along with (V.6.4) and the fact that v vanishes at the
boundary, leads, by Theorem II.7.6, to the conclusion that v ∈ D1,q

0 (Ω), for
all q ∈ (1,∞). By Theorem V.5.1, however, this is possible if and only if

(∇ · F ,h) = 0 for all h ∈ Sq , q > 3,

contradicting (V.6.3). As a consequence, the invalidity of (V.6.2) is proved.2

However, one can prove (in three dimensions) that the following estimate,
weaker than (V.6.2), does hold:3

∫

Ω

|∇Gij(x, y)||y|−2dy ≤ c |x|−1, x ∈ Ω (V.6.5)

and that
|Gij(x, y)| ≤ c |x− y|−1 , x, y ∈ Ω , x 6= y;

see Finn (1965a) Theorem 3.1 and §2.6.

V.7 A Characterization of Certain Flows with Nonzero
Boundary Data. Another Form of the Stokes Paradox

We wish to investigate the meaning of condition (V.5.4) in the context of slow
motions of a viscous flow past a body, subject to zero body force and zero
velocity at infinity. This last condition imposes, in fact, no serious restriction,
since the Stokes system is invariant if we change v into v+a, for any constant
vector a . In order to make the presentation clearer, we shall limit ourselves
to considering smooth regions of motion and smooth velocity fields at the
boundary as well, leaving to the reader the (routine) task of extending the
results to less regular situations.

Consider the problem

∆v = ∇p

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

lim
|x|→∞

v(x) = 0.

(V.7.1)

Let us begin to show that (V.5.4) is equivalent to the following requirement
on v∗:

2 With ∇ operating on y. The symmetry property of G allows us to draw the same
conclusion if ∇ operates on x.

3 Notice that, if a tensor function G satisfies (V.6.2), then (V.6.5) follows from
Lemma II.9.2.
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∫

∂Ω

v∗ · T (hi, πi) ·n = 0, for all i = 1, 2, . . . , n, (V.7.2)

where {hi, πi} is a basis in Sq constructed in the preceding section. In fact,
we write

v = w + V 1 + σ,

where
σ(x) = Φ∇E(x)

Φ =

∫

∂Ω

v∗ ·n,

and V 1 is a smooth solenoidal extension in Ω of compact support of the field

v∗(x) − σ(x), x ∈ ∂Ω.

Thus, (V.7.1) can be equivalently rewritten as

∆w = ∇p+ f

∇ ·w = 0

}
in Ω

w = 0 at ∂Ω,

lim
|x|→∞

w(x) = 0,

(V.7.3)

where
f = −∆V 1.

Clearly
f ∈ D−1,q

0 (Ω), for all q ∈ (1,∞)

and condition (V.5.4) furnishes

[f ,hi] = −
∫

Ω

∆V 1 · hi = −
∫

Ω

∆(V 1 + σ) · hi =

∫

∂Ω

v∗ · T (hi, πi) · n = 0

which proves (V.7.2). Suppose now Ω ⊂ R3.1 It is easy to show that a solution
to (V.7.1) verifies (V.7.2) if and only if the following condition holds:

∫

∂Ω

T (v, p) · n = 0. (V.7.4)

From a physical point of view, this means that, within the approximation
we are considering, the net external force applied to the body is zero. This
happens, for example, if the body is self-propelled; Pukhnacev (1990a, 1990b),
Galdi (1999a). In fact, if (V.7.2) is satisfied, then by Theorem V.5.1 there is a
solution w to (V.7.3) in the class D1,q

0 (Ω), 1 < q ≤ 3/2. This in turn implies

1 We may take Ω ⊂ R
n, n ≥ 3.
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that a solution v to (V.7.1) exists in the class D1,q(Ω), 1 < q ≤ 3/2. In view
of Theorem V.3.2, however, such a circumstance is possible only if (V.7.4) is
satisfied (see Exercise V.3.3). Conversely, assume we have a solution to (V.7.1)
satisfying (V.7.4). Then, again by Theorem V.3.2, we have v ∈ D1,q(Ω),
1 < q ≤ 3/2, and so w ∈ D1,q

0 (Ω) and, by Theorem V.5.1, (V.7.2) is satisfied.
It is interesting to observe that if R3 − Ω = B1, from (V.0.4) we have (see
Remark V.5.2)

∂(hi)j

∂xl
= −3

2
xixjxl +

3

2
xlδij

πi = −3

2
xi

so that condition (V.7.2) becomes
∫

∂Ω

v∗ = 0. (V.7.5)

Let us next consider the case Ω ⊂ R2. We then show that a solution to
(V.7.1) exists if and only if condition (V.7.2) is satisfied. Since, as we shall see,
the vector field v∗ = const. does not verify (V.7.2) this latter statement can
be interpreted as another form of the Stokes paradox. Assume (V.7.2) holds.
Then, by Theorem V.5.1, there is a solution w to (V.7.3) and, consequently, a
solution v to (V.7.1). Conversely, assume that there is a solution v to (V.7.1);
then w = v − V 1 − σ is a solution to (V.7.3) which, by Theorem V.3.2,
belongs to the class D1,q

0 (Ω), 1 < q < 2. As a consequence, by Theorem V.5.1,
condition (V.7.2) must be satisfied. We now show that v∗ = v0 does not verify
(V.7.2) for any nonzero choice of the constant vector v0. This is because from
(V.4.27) and Theorem V.3.2 it follows that

∫

∂Ω

T (hi, πi) · n = −ei, i = 1, 2,

and therefore (V.7.2) would imply

v0 · ei = 0, i = 1, 2;

that is,
v0 = 0.

If Ω is the exterior of a unit circle, from (0.5) we deduce again that (V.7.2) is
equivalent to (V.7.5).

Exercise V.7.1 Prove that for Ω ⊂ R
3, the field v∗ = const. does not verify

(V.7.2). Give a physical interpretation of this fact. Moreover, for Ω the exterior of
the closed unit ball centered at the origin, show that (V.7.2) is satisfied by

v∗ = ω × x (V.7.6)

and that this finding is in agreement with (V.0.5). Finally, suppose that Ω is the

exterior of the closed unit circle centered at the origin and lying in the plane x3 = 0.
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Show that condition (V.7.2) is again equivalent to (V.7.5), and that it is satisfied

by the field (V.7.6), with ω directed along the x3-axis, and by the field v∗ = κx2e1,

κ 6= 0 (simple shear flow).

V.8 Further Existence and Uniqueness Results for
q-generalized Solutions

One undesired feature concerning the q-generalized solutions constructed in
Section V.5 is the fact that their existence and uniqueness are recovered only
if we restrict suitably the range of values of q, i.e., q ∈ (n/(n − 1), n). Now,
while the restriction from below (q > n/(n−1)) is necessary unless f satisfies
the compatibility condition (V.5.4), the restriction from above (q < n) is due
to the circumstance that the estimates we are able to derive for solutions
under the sole assumption f ∈ D−1,q

0 (Ω) are not sufficient to guarantee their
uniqueness. However, we may wonder if, taking f from a suitable subclass
of the space D−1,q

0 (Ω), we could remove the restriction q < n. Following the
work of Galdi & Simader (1994), in the present section we shall show that,
for n ≥ 3, this is indeed the case provided f is of the type ∇ · F , with F a
second-order tensor field (i.e., fi = DkFki) such that either ‖(|x|n−1 +1)F ‖∞
or ‖(|x|2 +1)F ‖∞ is finite. Since the estimates we shall derive guarantee that
the solution tends to zero at large distances, we are not expecting that a
similar result holds also in the case of plane motions for, as we have learned
from the preceding section, a two-dimensional solution to the Stokes problem
tends to zero if and only if the data satisfy compatibility condition (V.5.4).

We begin to show a simple approximation lemma.

Lemma V.8.1 Suppose

(1 + |x|α)F ∈ L∞(Rn), α > 0, n ≥ 2.

Then, there exists a sequence {Fh} ⊂ C∞
0 (Rn) such that

lim
h→∞

‖Fh − F‖s = 0 for all s > n/α,

‖(|x|α + 1)Fh‖∞ ≤ 2(2α−1 + 1)‖(|x|α + 1)F‖∞.
(V.8.1)

Proof. Let ψh, h ∈ N, be smooth functions in Rn such that

|ψh(x)| ≤ 1

ψh(x) =

{
1 if |x| ≤ h

0 if |x| ≥ 2h.

(V.8.2)

Set
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Fh(x) = ψh(x)(F(x))ε, ε = 1/h,

where, as usual, (·)ε denotes mollification. Clearly, {Fh} ⊂ C∞
0 (Rn). Observ-

ing that F ∈ Ls(Rn) for each s > n/α, we find in the limit k → ∞

‖Fh −F‖s ≤ ‖(F)1/h − F‖s + ‖(1 − ψh)(F)1/h‖s

≤ 2‖(F)1/h −F‖s + ‖(1 − ψh)F‖s → 0

as a consequence of (V.8.2), of property (II.2.9)2 of mollifiers and of the
dominated convergence theorem of Lebesgue given in Lemma II.2.1. Rela-
tion (V.8.1)1 is then acquired. From the definition of mollifier, we obtain for
all ε ∈ (0, 1]

(|x|α + 1)|(F(x))ε| ≤ ε−n

∫

Rn

j

(
x− y

ε

)
(|y|α + 1)|F(y)|dy

+ ε−n

∫

Rn

j

(
x− y

ε

)
||x|α − |y|α||F(y)|dy

≡ I1 + I2.

Now

I1 ≤ ‖(|x|α + 1)F‖∞ ε−n

∫

Rn

j

(
x− y

ε

)
dy = ‖(|x|α + 1)F‖∞. (V.8.3)

Furthermore, for |x− y| ≤ ε ≤ 1

|x| ≤ |x− y| + |y| ≤ 1 + |y|

and so, in view of inequality (II.3.3) (with n ≡ 2 and q ≡ α) we derive

||x|α − |y|α| ≤ (2α + 1)(1 + |y|α).

Therefore, recalling that j
(

x−y
ε

)
= 0 for |x− y| ≥ ε, it follows that

I2 ≤ (2α +1)‖(|x|α +1)F‖∞ε−n

∫

Rn

j

(
x− y

ε

)
dy = (2α +1)‖(|x|α +1)F‖∞,

and the lemma is completely proved. ut

We are now in a position to show the following intermediate result.

Lemma V.8.2 Assume G, f1, and g are a given second-order tensor, vector,
and scalar field, respectively, in Rn, n ≥ 3, satisfying

(1 + |x|α)G ∈ L∞(Rn),

f1, g ∈ Lq(Rn), for each q > n/α,

supp (f1), supp (g) ⊂ BR/2, for some R > 0,
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where α is either 2 or n− 1. Then, the problem

(∇u,∇ψ) − (π,∇ ·ψ) = (G,∇ψ) − (f1,ψ), for all ψ ∈ C∞
0 (Rn),

(u,∇χ) = −(g, χ), for all χ ∈ C∞
0 (Rn),

(V.8.4)
admits at least one solution u, π such that

u ∈ D1,q(Rn), π ∈ Lq(Rn), for all q > n/α,

(1 + |x|α−1)u ∈ L∞(Rn).

Moreover, this solution satisfies the estimate

‖|x|α−1u‖∞ + |u|1,q,Rn+ ‖π‖q,Rn

≤ c (‖(|x|α + 1)G‖∞ + ‖f1‖−1,q,BR + ‖g‖q,BR)
(V.8.5)

with c = c(n, q). Finally, if u′, π′ is another pair satisfying (V.8.4) with the
same data as u, π and with

u′ ∈W 1,r
loc (Rn) ∩ Ls(Bc

ρ), π′ ∈ Lr
loc(R

n)

for some r, s ∈ (1,∞) and ρ > 0, then u ≡ u′, π ≡ π′ + const. a.e. in Rn.

Proof. We approximate G with functions {Gh} ⊂ C∞
0 (Rn) of the type con-

structed in Lemma V.8.1. In addition, by the elementary properties of molli-
fiers, we see that the functions

f 1h = (f1)1/h, gh = (g)1/h, h ∈ N, h ≥ h0 > 4/R

belong to C∞
0 (B3R/4) and satisfy, as h→ ∞,

‖f1h − f1‖−1,q,BR + ‖gh − g‖q,BR → 0, for all q > n/α.

Let us consider the following problem for all h ≥ h0:

∆uh = ∇πh + ∇ ·Gh + f1h

∇ · uh = gh

}
in Rn

lim
|x|→∞

uh(x) = 0.

(V.8.6)

Proceeding as in Section IV.2, we look for a solution to (V.8.6) of the form

uh = wh + hh, πh = τh,

where wh and τh are the volume potentials (IV.2.8) corresponding to the
body force ∇·Gh +f1h and hh is given in (IV.2.10) with gh in place of g. We
begin to furnish estimates for hh. From Calderón–Zygmund Theorem II.11.4
we immediately deduce



V.8 Further Existence and Uniqueness Results for q-generalized Solutions 357

|hh|1,q ≤ c1‖gh‖q,BR , (V.8.7)

with c1 = c1(n, q). Moreover, we have for |x| ≥ 2R,

|hh(x)| ≤ c2

∫

BR/2

|gh(y)||x− y|2−ndy ≤ c3|x|2−n‖gh‖q,BR ,

and so
‖(|x|α−1 + 1)hh‖∞,Bc

2R
≤ c4‖gh‖q,BR , (V.8.8)

with c4 = c4(n, q, R). We shall next estimate wh. From (IV.2.8)1 it follows
(omitting the index h)

wi(x) = −
∫

Rn

DkUij(x− y)Gkj(y)dy +

∫

Rn

Uij(x− y)f1j (y)dy = G1 + G2.

(V.8.9)
Clearly, again from the Calderón–Zygmund theorem, we deduce for all q ∈
(1,∞)

|G1|1,q ≤ c5‖G‖q. (V.8.10)

Moreover, denoting by ψR a C∞-function which is one in B3R/4 and zero
outside BR, we obtain, for all ϕ ∈ C∞

0 (Rn)

|(f1,ϕ)| = |(f1, ψRϕ)| ≤ ‖f‖−1,q,BR‖ψRϕ‖1,q′,BR . (V.8.11)

Now, if q > n/(n− 1), by the Sobolev inequality (II.3.7) we easily show

‖ψRϕ‖1,q′,BR ≤ c7|ϕ|1,q′,Rn ,

with c7 = c7(r, q, n) and so (V.8.11) yields

|f1|−1,q,Rn ≤ c7‖f1‖−1,q,BR .

Therefore, repeating the same argument employed in Section IV.2 (see (IV.2.27)–
(IV.2.28)) we recover for all q > n/(n− 1)

|G2|1,q ≤ c8‖f1‖−1,q,BR. (V.8.12)

Collecting (V.8.7), (V.8.9), (V.8.10), and (V.8.12) furnishes

|uh|1,q ≤ c9(‖Gh‖q + ‖f1h‖−1,q,BR + ‖gh‖q,BR). (V.8.13)

Moreover, recalling the expression (IV.2.8)2 for τh (= πh) and reasoning as in
(V.8.10) we readily prove

‖πh‖q ≤ c10(‖Gh‖q + ‖f1‖−1,q,BR).

This latter inequality and (V.8.13) then yield

|uh|1,q + ‖πh‖q ≤ c11(‖Gh‖q + ‖f1h‖−1,q,BR + ‖gh‖q,BR), for all q > n/α.
(V.8.14)
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We next show the pointwise estimate for wh. From (V.8.9) and from the
expression of the tensor U (omitting the index h),

|G1(x)| ≤ c12‖(|x|α + 1)G‖∞
∫

Rn

|x− y|1−n|y|−αdy,

and so, Lemma II.9.2 implies

‖(|x|α−1 + 1)G1‖∞,Bc
2R

≤ c13‖(|x|α + 1)G‖∞. (V.8.15)

We have also

|G2(x)|x|α−1| =

∣∣∣∣∣

∫

BR/2

f1(y) ·B(x, y)dy

∣∣∣∣∣ , (V.8.16)

where, for i = 1, . . . , n,

Bj(x, y) = ψR(y)Uij (x− y)|x|α−1. (V.8.17)

Since for y ∈ BR and |x| ≥ 2R it is

|U(x− y)| + |∇U(x− y)| ≤ c|x|1−α

with c = c(R, n), from (V.8.16) and (V.8.17) we find

|G2|x|α−1| ≤ ‖f1‖−1,q,BR

[∫

BR

(|B(x, y)|q′
+ |∇yB(x, y)|)dy

]1/q′

≤ c14‖f1‖−1,q,BR .

(V.8.18)

Thus, from (V.8.8), (V.8.9), (V.8.15), (V.8.18), and property (V.8.1)2 of Gh

we recover

‖(|x|α−1 + 1)uh‖∞,Bc
2R

≤ c15(‖(|x|α + 1)G‖∞ + ‖f1h‖−1,q,BR + ‖gh‖q,BR).
(V.8.19)

We next pass to the limit h→ ∞. From the linearity and from the uniqueness
of problem (V.8.6), by virtue of (V.8.14) and by the properties of the approx-
imating functions Gh, f1h, and gh we obtain, in particular, that the sequence
{uh, πh} is a Cauchy sequence in D1,q

0 (Rn)×Lq(Rn) for all q ∈ (n/α,∞) and,
by the Sobolev inequality (II.3.7), it is also a Cauchy sequence in Ls(Rn),
s = nq/(n − q), for all q ∈ (1, n). We may then assert the existence of two
fields u, π such that

u ∈ D1,q
0 (Rn), π ∈ Lq(Rn), for all q > n/α

with

lim
h→∞

|uh − u|1,q = lim
h→∞

‖πh − π‖q = 0 for all q > n/α

lim
h→∞

|uh − u|nq/(n−q) = 0 for all q ∈ (1, n).
(V.8.20)
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After multiplying (V.8.6)1 by ψ ∈ C∞
0 (Rn) and (V.8.6)2 by χ ∈ C∞

0 (Rn),
integrating by parts and using (V.8.20) we deduce at once that u, π solves
(V.8.4). In addition, again by (V.8.20) and (V.8.14), it follows that u and π
satisfy the estimate

|u|1,q+‖π‖q ≤ c16(‖G‖q+‖f 1‖−1,q,BR +‖g‖q,BR), for all q > n/α. (V.8.21)

Furthermore, by (V.8.20)2 and Lemma II.2.2, we see that we can select a sub-
sequence {uh′}, say, which converges pointwise to u, a.e. in Rn. Consequently,
by passing to the limit h′ → ∞ into (V.8.19) we conclude

‖(|x|α−1 + 1)u‖∞,Bc
2R

≤ c15(‖(|x|α + 1)G‖∞ + ‖f1‖−1,q,BR + ‖g‖q,BR).
(V.8.22)

Finally, since by the embedding Theorem II.3.4,

‖u‖∞,B2R ≤ c‖u‖1,r,B2R , r > n,

estimate (V.8.5) becomes a consequence of this last inequality, of (V.8.21)
and of (V.8.22). Concerning uniqueness, let v = u − u′, p = π − π′. From
(V.8.4), the assumptions made on u′, π′ and the regularity results of Theorem
IV.4.2 we deduce that v, p is a C∞-smooth solution to the homogeneous Stokes
problem

∆v = ∇p
∇ · v = 0

}
in Rn.

From Lemma V.3.1 we then have

vi(x) =

∫

β(x)

H
(d)
ij (x− y)(ui(y) + u′i(y))dy, (V.8.23)

where, we recall, β(x) = Bd(x) − Bd/2(x). Since u ∈ Lq(Rn), for all q > n/α
and u′ ∈ Ls(Bc

ρ), for some ρ > 0, using the Hölder inequality into (V.8.23)

and taking into account that ‖H(d)
ij ‖t ≤ M , independently of x and for all

t ≥ 1, we easily show that v(x) tends to zero pointwise as |x| tends to infinity.
Theorem V.3.5 allows us to conclude v ≡ 0, p ≡ const. and the lemma is
completely proved. ut

The following result furnishes an extension of the one just proved to the
case of an exterior domain and it represents the main contribution of this
section. For simplicity, we shall state it for homogeneous boundary data, i.e.,
v∗ ≡ 0, referring the reader to Exercise V.8.1 for the more general case v∗ 6= 0.

Theorem V.8.1 Let Ω ⊂ Rn, n ≥ 3, be an exterior domain of class C2.
Suppose that the second-order tensor field F in Ω satisfies

(1 + |x|α)F ∈ L∞(Ω),



360 V Steady Stokes Flow in Exterior Domains

with α either 2 or n− 1. Then, the problem

(∇v,∇ψ) − (p,∇ ·ψ) = (F ,∇ψ) for all ψ ∈ C∞
0 (Rn), (V.8.24)

admits one and only one solution v, p such that

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω), for each q > n/α,

(1 + |x|α−1)v ∈ L∞(Ω).

Moreover, this solution satisfies the following estimate

‖(|x|α−1 + 1)v‖∞ + |v|1,q + ‖p‖q ≤ c‖(|x|α + 1)F ‖∞, (V.8.25)

for each q > n/α and with c = c(n, q, Ω).

Proof. Since F ∈ Lq(Ω) with arbitrary q > n/α ≥ n/(n − 1), from Theo-
rem V.5.1 we know that there exists a unique (q-generalized) solution v, p to
(V.8.24) such that

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω) for all q ∈ (n/α, n). (V.8.26)

Moreover, by Sobolev inequality (II.3.7), we have

v ∈ Lnq/(n−q)(Ω), for all q ∈ (n/α, n). (V.8.27)

Finally, from the regularity results of Theorem IV.4.2 and Theorem IV.6.1,
we readily find

v ∈W 1,q(ΩR), p ∈ Lq(ΩR), for all q > n/α and all R > δ(Ωc). (V.8.28)

Let ϕ be the “cut-off” function of Lemma V.4.2. Problem (V.8.24) then goes
into problem (V.8.4) with u = ϕv, π = ϕp and

Gij = ϕFij

f1i = Tik(v, p)Dkϕ +Dk(vkDiϕ+ viDkϕ) − FkiDkϕ

g = v · ∇ϕ;

see also (V.4.4). Thus, from (V.8.26)–(V.8.28), from Lemma V.8.2 and (V.5.24)
we obtain for all q > n/α

‖(|x|α−1 + 1)u‖∞,Rn+ |u|1,q,Rn + ‖π‖q,Rn

≤ c (‖(|x|α + 1)F ‖∞,Ω + ‖v‖q,ΩR + ‖p‖−1,q,ΩR) .

Recalling that ϕ is equal to one in ΩR/2, from this inequality it follows that

‖(|x|α−1 + 1)v‖∞,ΩR/2+ |v|1,q,ΩR/2 + ‖p‖q,ΩR/2

≤ c (‖(|x|α + 1)F ‖∞,Ω + ‖v‖q,ΩR + ‖p‖−1,q,ΩR) .
(V.8.29)
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If we add (V.8.29) to (V.5.26), by reasoning exactly as we did to obtain
(V.5.28), we find

‖v‖1,q,ΩR + ‖(|x|α−1+ 1)v‖∞,ΩR/2 + |v|1,q,Ω + ‖p‖q,Ω

≤ c (‖(|x|α + 1)F ‖∞,Ω + ‖v‖q,ΩR + ‖p‖−1,q,ΩR) .
(V.8.30)

We now claim the existence of a constant κ = κ(n, q, Ω, R) such that

‖v‖q,ΩR + ‖p‖−1,q,ΩR ≤ κ‖(|x|α + 1)F ‖∞,Ω. (V.8.31)

To show the validity of (V.8.31), we use the usual contradiction argument.
Actually, the invalidity of (V.8.31) would imply the existence of a sequence
{Fm} verifying the assumptions of the theorem for each m ∈ N and of a
corresponding sequence of solutions {vm, pm} such that

‖vm‖q,ΩR + ‖pm‖−1,q,ΩR = 1

‖(|x|α + 1)Fm‖∞,Ω ≤ 1/m.
(V.8.32)

Since, clearly, for all s > n/(α− 1)

‖vm‖s,ΩR/2 ≤ c‖|x|α−1vm‖∞,ΩR/2 ,

from (V.8.32) and (V.8.30) we deduce, in particular,

‖vm‖1,q,ΩR + ‖vm‖s,ΩR/2 + |vm|1,q,Ω + ‖pm‖q,Ω ≤M,

for a constant M independent of m. From the weak compactness of reflexive
Lebesgue spaces and the strong compactness results of Exercise II.5.8 and
Theorem II.5.3, it is easy to show the existence of a subsequence, denoted
again by {vm, pm}, and of two fields v, p such that

v ∈ Ls(Ω2R) ∩D1,q(Ω) ∩W 1,q(ΩR)

p ∈ Lq(Ω)

∇vm
w→ ∇v in Lq(Ω)

pm
w→ p in Lq(Ω)

vm → v in Lq(ΩR)

pm → p in W−1,q
0 (ΩR).

(V.8.33)

It is immediately seen that v is a q-generalized solution to the Stokes sys-
tem (V.5.1) (see Definition V.5.1) corresponding to v∗ ≡ 0 and by virtue
of (V.8.32)2 to F ≡ 0. Moreover, by (V.8.33)1, we deduce that, in the ex-
terior of a ball of sufficiently large radius, v is in Ls, for s > n/α and so
v is a q-generalized solution to the Stokes problem (V.0.1), (V.0.2) with
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F ≡ v∗ ≡ v∞ ≡ 0. Thus, recalling that p ∈ Lq(Ω), from Theorem V.3.4
we conclude v ≡ p ≡ 0 in Ω. However, by virtue of (V.8.33)5,6, this conclu-
sion contradicts (V.8.32)1 and, therefore, (V.8.31) is proved. From (V.8.31)
and (V.8.30) we then obtain, in particular,

‖(|x|α−1 + 1)v‖∞,ΩR/2 + |v|1,q + ‖p‖q ≤ c‖(|x|α + 1)F ‖∞, for all q > n/α.
(V.8.34)

Finally, since by the embedding Theorem II.3.4

‖v‖∞,ΩR/2
≤ c‖v‖1,r,ΩR/2

, r > n,

estimate (V.8.5) becomes a consequence of this last inequality and (V.8.34).
The proof of the theorem is complete. ut

Exercise V.8.1 Let Ω and F be as in Theorem V.8.1. Show that, given

v∗ ∈W 1−1/q,q (∂Ω), g ∈ Lq(Ω), q > n/α,

the problem

(∇v,∇ψ) − (π,∇ ·ψ) = (F ,∇ψ) for all ψ ∈ C∞
0 (Rn),

(v,∇χ) = −(g, χ), for all χ ∈ C∞
0 (Rn),

admits one and only one solution such that

v ∈ D1,q(Ω), p ∈ Lq(Ω), (1 + |x|α)v ∈ L∞(Ω).

Moreover, show that for all R > δ(Ωc) this solution satisfies the estimates

‖(|x|α−1 + 1)v‖∞,ΩR + |v|1,q + ‖p‖q ≤ c(‖(|x|α + 1)F ‖∞ + ‖g‖q + ‖v∗‖1−1/q,q(∂Ω)),

where we can take ΩR ≡ Ω if q > n.

V.9 Notes for the Chapter

Section V.1. The first existence and uniqueness theorems for the Stokes
problem in an exterior domain Ω is due to Boggio (1910), for Ωc a closed ball.
In the same hypothesis on Ω, Oseen (1927, §§9.3,9.4) furnishes the explicit
form of the Green’s tensor. For an arbitrary exterior domain, Lamb (1932) has
given a formal series development of a generic solution in terms of spherical
harmonics. The first existence and uniqueness result in the general case can
be found in the work of Odqvist (1930, §4).

The variational formulation (V.1.1) has been introduced by Ladyzhenskaya
(1959b, §2). Lemma V.1.1 with q = 2 and Ω of class C2 is due to Solonnikov
& Ščadilov (1973, §3).

Section V.2. A weaker version of Theorem V.2.1 is proved by Finn (1965a,
Theorem 2.5) and Ladyzhenskaya (1969, Chapter 2, §2). Seemingly, Finn has
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been the first to recognize that, for existence, the condition of zero flux of v∗
through the boundary is not necessary (see Finn, loc. cit., Remark on p. 371).

The solenoidal extension of the boundary data, given in (V.2.5), in the
case ω = 0 is due to Ladyzhenskaya (1969, p. 41).

Section V.3. Lemma V.3.1 generalizes Lemma 4.2 of Fujita (1961). Theorem
V.3.2, Theorem V.3.4, and Theorem V.3.5 are an extension of classical results
due to Chang & Finn (1961). A weaker version of the latter can be found in
Finn & Noll (1957). Theorem V.3.3 is due to me; see also Galdi & Simader
(1990).

Section V.4. All results and methods are originally due to me. Notwith-
standing, mainly in the literature of the early nineties, one can find a number
of contributions by several authors, that cover, in part, some of these results.
However, their approach is different than the one I introduced here.

Weaker versions of Lemma V.4.3 with m = 0, n = 3 and q = 2 were
originally given by Masuda (1975, Proposition 1 (iii)) and Heywood (1980,
Lemma 1).

Theorem V.4.6, for m = 0, n = 3 and 1 < q < 3/2, was shown for the
first time by Solonnikov (1973, Theorem 2.3). Generalizations of this result to
higher values of q were first investigated by Maremonti & Solonnikov (1986);
see also Maremonti & Solonnikov (1985). The extension of Solonnikov’s result
to arbitrary dimension n ≥ 3 can be deduced from the work of Borchers
& Sohr (1987). Lemma V.4.3 and Lemma V.4.4 and Theorem V.4.6 in the
particular case where m = 0 and n = 3 can be deduced from the work of
Maslennikova & Timoshin (1989, 1990). A way of avoiding quotient spaces in
Theorem V.4.6 is to modify suitably the conditions at infinity. This view has
been considered by Maremonti & Solonnikov (1990).

The validity of (V.4.15) with m = 0 in a more restricted class of functions
has been disproved by Borchers & Miyakawa (1992). The results contained
in Theorem V.4.8 have been the object of several researches. In this regard,
we refer the reader to the work of Sohr & Varnhorn (1990), Kozono & Sohr
(1991), Deuring (1990a, 1990b, 1990c, 1991), and Deuring & von Wahl (1989).

Existence, uniqueness, and estimates for strong solutions in weighted
Sobolev spaces have been studied by Choquet-Bruhat & Christodoulou (1981),
Specovius-Neugebauer (1986), Farwig (1990), Girault & Sequeira (1991) and
Pulidori (1993).

Section V.5. Here we follow the ideas of Galdi & Simader (1990). Theorem
V.5.1 in the case n ≥ 3, q ∈ (n/(n − 1), n) and Ω of class C2,λ, λ > 0, was
first obtained by H. Kozono and H. Sohr in a preprint of 1989 and published
later in 1991. In particular, in this paper we find a first systematic study
of the Stokes problem in exterior domain in homogeneous Sobolev spaces.
The estimates contained in Theorem V.5.1 when q ∈ (1, n/(n− 1)] were first
derived by W. Borchers and T. Miyakawa in 1989 and published later in
1990. Generalizations of Theorem V.5.1 along the lines of Exercise V.5.1 are
considered by Kozono & Sohr (1992b) and Farwig, Simader and Sohr (1993).



364 V Steady Stokes Flow in Exterior Domains

Most of the above results are reobtained, basically by the same methods,
in the paper by Maslennikova & Timoshin (1994)

Theorem V.5.3 is due to me.
Weak solutions in weighted Sobolev spaces have been analyzed by Girault

& Sequeira (1991), Pulidori (1993), Pulidori & Specovius-Neugebauer (1995)
and Specovius-Neugebauer (1996).

Weak solutions in Lorentz spaces have been studied by Kozono & Ya-
mazaki (1998).

Section V.7. Results of this section are essentially due to Galdi & Simader
(1990), or else can be obtained as corollary to their work. However, the Stokes
paradox, as presented here, was first formulated in the particular case of a
domain exterior to a circle by Avudainayagam, Jothiram & Ramakrishna
(1986). For further results related to the plane, exterior Stokes problem, in
addition to the classical papers of Finn & Noll (1957) and Chang & Finn
(1961), we refer the reader to the work of Sequeira (1981, 1983, 1986) and of
Hsiao & McCamy (1981). Problem (V.7.1), (V.7.4) is related to the steady
motion of a viscous fluid past a self-propelled body that is moving at constant
small velocity. For this type of questions, see Pukhnacev (1990a, 1990b) and
Galdi (1999a,2002).

Section V.8. For results related to Theorem V.8.1, we refer to the paper of
Novotný and Padula (1995).



VI

Steady Stokes Flow in Domains with

Unbounded Boundaries

Nel dritto mezzo del campo maligno
vaneggia un pozzo assai largo e profondo
di cui suo loco dicerò l’ordigno.

DANTE, Inferno XVIII, vv. 4-6

Introduction

So far, with the exception of the half-space, we have considered flows occurring
in domains with a compact boundary. Nevertheless, from the point of view of
the applications it is very important to consider flows in domains Ω having
an unbounded boundary, such as channels or pipes of possibly varying cross
section. In studying these problems, however, due to the particular geometry
of the region of flow, completely new features, which we are going to explain,
appear. To this end, assume Ω to be an unbounded domain of Rn with m > 1
“exits” to infinity, of the type (see Section III.4.3)

Ω =

m⋃

i=0

Ωi,

where Ω0 is a smooth compact subset of Ω while Ωi, i = 1, . . . , m, are disjoint
domains which, in possibly different coordinate systems (depending on Ωi)
have the form

Ωi = {x ∈ IRn : xn > 0, x′ ≡ (x1, . . . , xn−1) ∈ Σi(xn)}.
Here Σi = Σi(xn) are smoothly varying, simply connected domains in Rn−1,
bounded for each xn > 0 with
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|Σi(xn)| ≥ Σ0 = const. > 0.

To fix the ideas, we suppose that Ω has only two exits. Denote by Σ any
bounded intersection of Ω with an (n − 1)-dimensional plane, which in Ωi

reduces to Σ and by n a unit vector orthogonal to Σ, oriented from Ω1 toward
Ω2, say. Owing to the incompressibility of the liquid and assuming adherence
conditions at the boundary, we at once deduce that the flux Φ through Σ of
the velocity field v(x′, xn) associated with a given motion is a constant, that
is,

Φ ≡
∫

Σ

v · n = const. (VI.0.1)

Therefore, a natural question that arises is that of establishing existence of a
flow subject to a given flux. Clearly, this condition alone may not be enough
to determine the flow uniquely and, similarly to what we did for motions
in exterior domains, we must prescribe a velocity field v∞i as |x| → ∞ in
the exits Ωi. However, unlike the case of flows past a body, v∞i need not be
constant and, in fact, if Φ 6= 0, the corresponding v∞i can be a constant vector
only if

lim
|x|→∞

|Σi(xn)| = ∞. (VI.0.2)

To see this, we observe that if v∞i = const. and v(x) → v∞i as |x| → ∞ in
Ωi, uniformly (say), by the adherence conditions at the boundary it follows
that v∞i = 0 and so (VI.0.1) implies (VI.0.2) whenever Φ 6= 0. Thus, if |Σi| is
uniformly bounded, v∞i can not be a constant and one has to figure out how
to prescribe it. There are remarkable cases where v∞i is easily prescribed; this
happens when the exits Ωi, i = 1, 2, are cylindrical, namely,

Σi(xn) = Σ0i = const.,

such as in tubes or pipes. In these situations it is reasonable to expect that
the flow corresponding to a given flux Φ should tend, as |x| → ∞, to the
Poiseuille solution of the Stokes equation in Ωi corresponding to the flux Φ,

that is, to a pair (v
(i)
0 , p

(i)
0 ) where

v
(i)
0 = v

(i)
0 (x′)en, ∇p(i)

0 = −Cien (VI.0.3)

with Ci = Ci(Φ) (see Exercise VI.0.1), such that

n−1∑

j=1

∂2v
(i)
0 (x′)

∂x2
j

= −Ci in Σi,

vi
0 = 0 at ∂Σi.

(VI.0.4)

Thus, if n = 3 and the sections are circles of radius Ri, the solution to (VI.0.3),
(VI.0.4) is the Hagen–Poiseuille flow
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v
(i)
0 (x′) = CiR

2
i (1 − |x′|2/R2

i ).

Likewise, for n = 2 and Ωi a layer of depth di, v
(i)
0 reduces to the Poiseuille

flow

v
(i)
0 (x′) = Cid

2
i (1 − x2

1/d
2
i ).

The problem of determining a motion in a region Ω with cylindrical exits,
subject to a given flux Φ and tending in each exit to the Poiseuille solution
corresponding to Φ, is known as Leray’s problem; see Ladyzhenskaya (1959b,
p. 175).

However, if it happens that one of the sections Σi is only uniformly
bounded but not constant, then, in general, one does not know the explicit
form of v∞i and, alternatively, one can prescribe at large distance in the exits
a “growth” condition (Ladyzhenskaya & Solonnikov 1980, Problem 1.1). Of
course, this condition must be such that, in the class of solutions verifying it,
uniqueness is preserved. Moreover, once existence is established, one should
successively try to analyze the structure of solutions as |x| → ∞.

A further problem that arises when Σ is bounded is that the approach
of generalized solutions used for flows in exterior domains (Theorem VI.2.1)
is not directly applicable and one has to modify it appropriately. This fact
is easily seen to be a consequence of (VI.0.1). In fact, using the Schwarz
inequality and inequality (II.5.5) we obtain

|Φ|2 ≤ C|Σ|(n+1)/(n−1)

∫

Σ

∇v : ∇v (VI.0.5)

which, for |Σ| uniformly bounded, implies an unbounded Dirichlet integral for
v:

|v|1,2 = ∞, unless Φ = 0.

Let us next suppose that Σ satisfies (VI.0.2). We may then prescribe a uniform
(zero) velocity field v∞i at large distances in Ωi, i = 1, 2. We shall distinguish
the following two possibilities:

(i)

∫ ∞

0

|Σi|−(n+1)/(n−1)dxn <∞, i = 1, 2,

(ii)

∫ ∞

0

|Σi|−(n+1)/(n−1)dxn = ∞, i = 1, 2.

In case (i) the condition of prescribed flux is compatible with the approach of
generalized solutions, as a consequence of (VI.0.5). Nevertheless one must be
careful in choosing the function space where such solutions are to be sought.
Actually, if one required v ∈ D1,2

0 (Ω), by the results of Section III.5 one would
automatically impose zero flux through and would therefore exclude a priori
all those solutions having Φ 6= 0. Instead, one should look for solutions in the
larger space D̂1,2

0 (Ω), where the condition Φ 6= 0 is allowed.
In case (ii) the non-zero flux condition again becomes noncompatible with

the existence of generalized solutions. However, if
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Gi ≡
∫ ∞

0

|Σ|[(1−n)(q−1)−q]/(n−1)dxn <∞, i = 1, 2, some q > 2, 1 (VI.0.6)

since from (VI.0.1), the Hölder inequality and inequality (II.5.5)

|Φ|qGi ≤ |v|1,q,

we deduce that now q-generalized solutions may still exist and that the “nat-
ural” space where they should be sought is D̂1,q

0 (Ω).
A last possibility arises when (VI.0.2) holds but the integralsGi are infinite

for any value of q > 1. In this case it is not clear in which space the problem
has to be formulated.

Finally, we mention that, with the obvious modifications, all the above
reasonings apply to the circumstance when one section Σ1 (say) is bounded
and the other is unbounded, as well as to the case where Ω has more than
two exits to infinity.

The question of the unique solvability of the Stokes (and, more generally,
nonlinear Navier–Stokes) problem in domains of the above types has been
investigated by several authors. In particular, Amick (1977, 1978) first proved
solvability when the sections are constant (see Chapter XII), giving an affir-
mative answer to Leray’s problem.2 The case of an unbounded cross section
was first posed and uniquely solved by Heywood (1976, Theorem 11) in the
special situation of the so-called aperture domain:

Ω = {x ∈ Rn : xn 6= 0 or x′ ∈ S} (VI.0.7)

with S a bounded domain of Rn−1 (see Section III.4.3, (III.4.4)). Successively,
under general assumptions on the “growth” of Σ, the problem was thoroughly
investigated by Amick & Fraenkel (1980) (see also Amick (1979) and Remark
3.1) when Ω is a domain in the plane having two exits to infinity. In particular,
the authors show existence of solutions and pointwise asymptotic decay of the
corresponding velocity fields.3. However, uniqueness is left out. It is interesting
to observe that, unlike the case of an exterior domain, for the general class of
regions of flow considered by Amick and Fraenkel, there is no Stokes paradox;
see also Section VI.2 and Section VI.4.

The entire question was independently reconsidered within a different ap-
proach by Ladyzhenskaya & Solonnikov (1980), Solonnikov (1981,1983) and
their associates; see Notes to this chapter. When Σ is uniformly bounded,
these authors show, among other things, unique solvability in a class of solu-
tions having a Dirichlet integral that is finite on every bounded subset Ω′ of Ω
and that may “grow” with a certain rate depending on Σ, as Ω′ → Ω; see also

1 Notice that since |Σ| ≥ Σ0 > 0, in case (ii) the integrals Gi are infinite for any
q ≤ 2.

2 Under “small” flux condition in the nonlinear case; see Chapter XI.
3 Under “small” flux condition in the nonlinear case, if Σ has a certain rate of

“growth.”
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Remark 1.1. If, in particular, the exits Ωi are cylindrical, the solution to the
Stokes problem corresponding to a given flux tends in a well-defined sense to
the corresponding Poiseuille solution in Ωi. Likewise, if Σ is unbounded and
satisfies condition (i), they prove existence of generalized solutions in D̂1,2

0 (Ω)
corresponding to v∞i ≡ 0 and to a prescribed flux.

In case (ii), there is the remarkable contribution of Pileckas (1996a, 1996b,
1996c, 1997) who shows that in the particular case when each Ωi is a body of
revolution of the type

{
x ∈ R2 : xn > 0, |x1| < fi(xn)

}
, (VI.0.8)

the problem is uniquely solvable for any prescribed flux, provided fi. satisfies
(VI.0.6)4 and a “global” Lipschitz condition (see (ii) at the beginning of Sec-
tion 3). Furthermore, Pileckas shows that the decay rate of solutions is related
to the inverse power of the functions fi.

In the present chapter we prove existence and uniqueness of solutions to the
Stokes problem in a domain with exits, when these exits have either constant
sections Σi or unbounded Σi satisfying (i). Moreover, we shall perform an
analysis of the pointwise asymptotic behavior either when Σi is constant. We
also give some decay results when Σi(xn) becomes suitably unbounded as
|x| → ∞, and the exits are body of revolution as in (VI.0.8). However, these
results are not sharp and we refer the reader to the cited papers of Pileckas
for more complete results, obtained by completely different methods.

For simplicity, we shall describe the results in details only when the number
m of exits is two, leaving to the reader the (simple) task of generalizing them
to the case m > 2, and to the case when some of the exits are cylindrical,
while the others have an unbounded section verifying (i).

Finally, in the last section of the chapter, we shall furnish a full treatment
of the Stokes problem in the aperture domain (VI.0.7), which includes exis-
tence, uniqueness and Lq-estimates of solutions together with their asymptotic
behavior. Unlike the previously mentioned cases, for domain (VI.0.7) the sit-
uation is rendered easier by the fact that the problem can be reduced to a
similar problem in a half space where explicit representations of solutions are
known; see Section IV.3 and Exercise IV.8.1.

Exercise VI.0.1 Show that for solutions to (VI.0.3), (VI.0.4) there is a one-to-one
correspondence between the pressure drop −Ci and the flux

Φi =

Z

Σi

v
(i)
0 (x′)dx′.

In particular, show the existence of a positive constant cP = cP (Σi, n) such that
Ci = cPΦi. The constant cP will be called the Poiseuille constant. Hint: Consider
the following problem

∆ψi = −1 , in Σi , ψi|∂Σi = 0 ,

4 In this case, we have |Σi| = c(n)fn−1
i .
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and use the linearity of problem (VI.0.3) .

VI.1 Leray’s Problem: Existence, Uniqueness, and
Regularity

Let us consider a liquid performing a steady slow motion in a domain Ω
(⊂ Rn) of class C∞ 1 with two cylindrical ends, namely,

Ω =

2⋃

i=0

Ωi,

with Ω0 a compact subset of Ω and Ωi, i = 1, 2, disjoint domains, which in
possibly different coordinate systems, are given by

Ω1 = {x ∈ Rn : xn < 0, x′ ∈ Σ1}
Ω2 = {x ∈ Rn : xn > 0, x′ ∈ Σ2} .

Here, Σi, i = 1, 2, are C∞-smooth, simply connected, bounded domains of
the plane, if n = 3, while Σi = (−di, di), di > 0, if n = 2. We denote by Σ
a cross section of Ω, that is, any bounded intersection of Ω with an (n − 1)-
dimensional plane which in Ωi reduces to Σi. Moreover, n indicates a unit
vector orthogonal to Σ and oriented from Ω1 toward Ω2 (so that n = −en in
Ω1 and n = en in Ω2).

The aim of this section is to solve the following Leray’s problem: Given
Φ ∈ R, to determine a solution v, p to the Stokes system

∆v = ∇p
∇ · v = 0

}
in Ω (VI.1.1)

such that
v = 0 at ∂Ω
∫

Σ

v ·n = Φ
(VI.1.2)

and

v → v
(i)
0 in Ωi as |x| → ∞, (VI.1.3)

1 Namely, for every x0 ∈ Ω there exists r = r(x0) such that ∂Ω ∩ Br(x0) is a
boundary portion of class C∞. This assumption will imply, in particular, that
the solutions we will determine are of class C∞. Of course, we may relax the
smoothness of Ω at the cost, however, of obtaining less regular solutions. Exten-
sion of results under weaker regularity assumptions on the boundary are left to
the reader as an exercise.
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where v
(i)
0 are the velocity fields (VI.0.3) and (VI.0.4) of the Poiseuille flow in

Ωi corresponding to the flux Φ.

We shall now give a generalized formulation of this problem, similar to
that furnished in Chapters IV and V for flows in domains with a compact
boundary. Multiplying (VI.1.1)1 by ϕ ∈ D(Ω) and integrating by parts we
deduce formally

(∇v,∇ϕ) = 0, for all ϕ ∈ D(Ω). (VI.1.4)

We have

Definition VI.1.1. A vector field v : Ω → Rn is called a weak (or generalized)
solution to Leray’s problem (VI.1.1)–(VI.1.3) if and only if

(i) v ∈W 1,2
loc (Ω);

(ii) v verifies (VI.1.4);
(iii) v is (weakly) divergence free in Ω;
(iv) v vanishes on ∂Ω (in the trace sense);

(v)

∫

Σ

v · n = Φ (in the trace sense);

(vi) (v − v(i)
0 ) ∈W 1,2(Ωi), i = 1, 2.

Evidently, conditions (ii)-(v) translate in a generalized form the corre-
sponding properties (VI.1.1) and (VI.1.2), while (i) ensures a certain degree
of regularity. Also, it is easy to see that (vi) implies the validity of (VI.1.3) in
a well-defined sense. Actually, from the trace inequality of Theorem II.4.1 we

deduce, with w ≡ v − v(2)
0 ,

∫

Σ2

|w(x′, xn)|2 ≤ c

∫

t>xn

∫

Σ2

[
(w2 + ∇w : ∇w)

]
dt

where the constant c is independent of xn. So, by (vi),
∫

Σ2

|w(x′, xn)|2 → 0, as |x| → ∞ in Ω2,

and similarly in Ω1.

Furthermore, it can be shown that to every weak solution we can associate
a corresponding pressure field p. Actually, directly from Lemma IV.1.1 we find

Lemma VI.1.1 Let v be a generalized solution to Leray’s problem. Then
there exists p ∈ L2

loc(Ω) such that

(∇v,∇ψ) = (p,∇ · ψ), for all ψ ∈ C∞
0 (Ω). (VI.1.5)

It is also simple to establish the smoothness of a weak solution v and the
corresponding pressure field p. In fact, taking into account the regularity of
Ω, from Theorem IV.4.1 and Theorem IV.5.1 we at once deduce the following
result.



372 VI Steady Stokes Flow in Domains with Unbounded Boundaries

Theorem VI.1.1 Let v be a weak solution to Leray’s problem (VI.1.1),
(VI.1.3) and let p be the pressure associated to v by Lemma VI.1.1. Then
v, p ∈ C∞(Ω′), for any bounded domain Ω′ ⊂ Ω.

The objective of the remaining part of this section will be to prove existence
and uniqueness of a weak solution to Leray’s problem. To this end, we need

a suitable extension a (say) of the Poiseuille velocity fields v
(i)
0 which will

play the same role played by the field (V.2.5) which, in the case of an exterior
domain, is used to extend the rigid body velocity field V . Let us denote by
a(x) a vector field enjoying the following properties:

(i) a ∈W 2,2
loc (Ω);

(ii) ∇ · a = 0 in Ω;
(iii)a = 0 at ∂Ω;

(iv) a = v
(1)
0 in ΩR

1 , a = v
(2)
0 in ΩR

2 , for some R > 0, where, for a > 0,

Ωa
1 = {x ∈ Ω1 : xn < −a}

Ωa
2 = {x ∈ Ω2 : xn > a} .

A way of constructing such a field will be described. Let ζi(x), i = 1, 2, be
functions from C∞(Rn) such that

ζi(x) =





1 if x ∈ ΩR
1

0 if x ∈ Ω −Ω
R/2
1

and set

V (x) =

2∑

i=1

ζi(x)v
(i)
0 .

Clearly, V ∈ C∞(AR) where

AR ≡ Ω −
[
ΩR

1 ∪ΩR
2

]
.

Consider the problem

∇ ·w = −∇ · V in AR

w ∈W 2,2
0 (AR)

‖w‖2,2,AR ≤ c‖∇ · V ‖1,2,AR.

Since ∇ · V ∈W 1,2
0 (AR) and

∫

AR

∇ · V = 0,

w exists, in view of Theorem III.3.3. Extend w to zero outside AR and denote
again by w such an extension. Evidently w ∈ W 2,2(Ω) and so the field
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a(x) = V (x) +w(x)

satisfies all requirements (i)-(iv) listed previously.
We look for a generalized solution to (VI.1.1)–(VI.1.3) of the form

v = u+ a,

where
u ∈ D1,2

0 (Ω).

Since, by inequality (II.5.5)

D1,2
0 (Ω) ⊂W 1,2

0 (Ω),

v satisfies (i) and (iii)-(vi) of Definition 1.1, while, from (VI.1.4), u must solve
the equation

(∇u,∇ϕ) = (∆a,ϕ), for all ϕ ∈ D(Ω). (VI.1.6)

The existence of u is readily established by means of the Riesz representation
theorem. To this end, it suffices to show that the right-hand side of (VI.1.6)
defines a linear functional in D1,2

0 (Ω), i.e.,

|(∆a,ϕ)| ≤ c|ϕ|1,2, (VI.1.7)

for some constant c (depending on a ) and for all ϕ ∈ D1,2
0 (Ω). We split Ω as

follows:

Ω = ΩR
1 ∪

[
Ω −

(
ΩR

1 ∪ΩR
2

)]
∪ΩR

2 ≡ ΩR
1 ∪Ω0R ∪ΩR

2 , (VI.1.8)

and observe that in each ΩR
i the field a coincides with the Poiseuille solution

v
(i)
0 satisfying (VI.0.4). Therefore, we have

∫

ΩR
i

∆a · ϕ =

∫

ΩR
i

∆v
(1)
0 · ϕ = −C1

∫ R

−∞

[∫

Σ1

ϕ · ndΣ1

]
dxn = 0 (VI.1.9)

since ϕ carries no flux. Likewise
∫

ΩR
2

∆a · ϕ = 0. (VI.1.10)

In Ω0R, by the Schwarz inequality and inequality (II.5.5), we have

∣∣∣∣
∫

Ω0R

∆a · ϕ
∣∣∣∣ ≤ c‖∆a‖2,Ω0R |ϕ|1,2,Ω (VI.1.11)

and so (VI.1.7) follows from (VI.1.9)–(VI.1.11) and property (i) of a . Exis-
tence is then acquired. To show uniqueness, let v1 be another weak solution

corresponding to the same flux Φ and Poiseuille velocity fields v
(i)
0 . Then, it

is readily shown that w = v − v1 belongs to D1,2
0 (Ω). In fact, we have in ΩR

1
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w = u− (v1 − v(1)
0 ) + (a− v(1)

0 ) = u− (v1 − v(1)
0 )

and, likewise, in ΩR
2

w = u− (v1 − v(2)
0 ).

Therefore, taking into account condition (vi) of Definition VI.1.1 and that v
is in C∞(Ω′), for any bounded Ω′ ⊂ Ω, we obtain

w ∈ D1,2(Ω).

Since w is zero at the boundary, from Exercise VI.1.1 we have

w ∈ D1,2
0 (Ω)

and, w being solenoidal, we conclude

w ∈ D̂1,2
0 (Ω).

However, by Exercise III.5.1,

D̂1,2
0 (Ω) = D1,2

0 (Ω)

so that

w ∈ D1,2
0 (Ω).

This having been established, from (VI.1.4) it follows that

(∇w,∇ϕ) = 0, for all ϕ ∈ D1,2
0 (Ω),

implying w = 0 a.e. in Ω, which is what we wanted to prove.

For a more general uniqueness result we refer the reader to Exercise VI.2.2.

Exercise VI.1.1 Let Ω be an infinite “distorted pipe” of the type specified above

and let w ∈ D1,2(Ω). Assume that the trace of w at ∂Ω is zero. Show w ∈ D1,2
0 (Ω).

Hint: Let ψR be a C∞ function in Ω that is one in Ω0R (see (VI.1.8)) and vanishes

in Ω2R
i , i = 1, 2. Then ψRw → w in D1,2

0 (Ω). Moreover, since w = 0 at ∂Ω, ψRw

belongs to W 1,2
0 (Ω02R) and therefore it can be approximated there by functions from

C∞
0 (Ω02R) ⊂ C∞

0 (Ω).

In order to solve Leray’s problem completely, it remains to study the
asymptotic behavior of v. This will follow as a corollary to a general re-
sult concerning estimates of solutions to the Stokes problem in a semi-infinite
channel which we are going to derive.

Lemma VI.1.2 Let

Ω = {x ∈ Rn : xn > 0, x′ ∈ Σ}
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with Σ a C∞-smooth, bounded, and simply connected domain in Rn−1. Given
f ∈ C∞(Ω′),Ω′ any bounded subset of Ω, denote by u, τ ∈ C∞(Ω′) a solution
to the problem

∆u = ∇τ + f

∇ · u = 0

}
in Ω

u = 0 at ∂Ω −Σ0

(VI.1.12)

with
Σ0 =

{
x ∈ Ω : xn = 0

}
.

For s ≥ 1 and δ ∈ (0, s], set

ωs = {x ∈ Ω : s < xn < s+ 1} ,
ωs,δ = {x ∈ Ω : s− δ < xn < s+ δ + 1} .

Then, for all m ≥ 0 and q ≥ 1 the following estimate holds

‖u‖m+2,q,ωs + ‖∇τ‖m,q,ωs ≤ c
(
‖f‖m,q,ωs,δ + ‖u‖1,q,ωs,δ

)
(VI.1.13)

where c = c(m, q, n, δ, Σ).2

Proof. Evidently, it is enough to prove (VI.1.13) for s = 1, since the estimate
for arbitrary s ≥ 1 follows by making the change of variable xn → xn − ξ,
ξ ≥ 0. This will automatically imply that the constant c is independent of s.
Choose ψ ∈ C∞(R) such that ψ(t) = 0 for t ≤ 1, ψ(t) = 1 for t ≥ 2 and put

ψk(x) = ψ
(
k(k + 1)xn − k2 + 2

)
[1 − ψ (k(k + 1)xn − k(2(k + 1) + 1) + 1]

with k a positive integer. Of course,

ψk(x) =





0 if xn ≤ 1 − 1/k

1 if 1 − 1/(1 + k) ≤ xn ≤ 2 + 1/(1 + k)

0 if xn ≥ 2 + 1/k.

We also put

Uk = {x ∈ Ω : 1 − 1/(k+ 1) ≤ xn ≤ 2 + 1/(1 + k)} .

Let k1 ∈ N be such that
Uk1 ⊆ ω1,δ.

For k > k1, by setting
wk = ψku, qk = ψkτ,

2 The assumptions of regularity on f ,u, and τ are made for the sake of simplicity.
Actually, for fixed m ≥ 0, s ≥ 1, and δ ∈ (0, s], it would suffice to suppose
u ∈ W 1,q(ωs,δ), τ ∈ Lq(ωs,δ), and f ∈Wm,q (ωs,δ).
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from (VI.1.11) it follows that

∆wk = ∇qk + fk + F k

∇ ·wk = gk

}
in D

wk = 0 at ∂D,

(VI.1.14)

where D is any C∞-smooth, bounded domain containing Uk1 and

fk = ψkf ,

F k = 2∇ψk · ∇u+ u∆ψk − τ∇ψk,

gk = ∇ψk · u.
Fix k2 > k1, k2 ∈ N, and apply to (VI.1.14) the results of Theorem IV.6.1
with m = 0 along with those contained in Exercise IV.6.3 to obtain

‖u‖2,q,Uk2
≤ c1

(
‖f‖q,Uk1−1 + ‖F k2‖q,Uk1−1 + ‖gk2‖1,q,Uk1−1

)
. (VI.1.15)

Recalling the definitions of F k and gk we at once deduce

‖F k2‖q,Uk1−1 + ‖gk‖1,q,Uk1−1 ≤ c2
(
‖u‖1,q,Uk1−1 + ‖τ‖q,Uk1−1

)

which, possibly modifying τ by adding a suitable constant, in view of Lemma
IV.1.1 in turn gives

‖F k2‖q,Uk1−1 + ‖gk2‖1,q,Uk1−1 ≤ c3‖u‖1,q,Uk1−1 .

Replacing this estimate back into (VI.1.15) furnishes

‖u‖2,q,Uk2
≤ c4

(
‖f‖q,Uk1−1 + ‖u‖1,q,Uk1−1

)
(VI.1.16)

and so, in particular,

‖u‖2,q,ω1 ≤ c4
(
‖f‖q,ω1,δ + ‖u‖1,q,ω1,δ

)
,

which, by virtue of (VI.1.11)1, proves (VI.1.13) for m = 0. We next choose
k3 = k2 + 1 and apply to solutions to (VI.1.14) the results contained in
Theorem IV.6.1 and Exercise IV.6.3 with m = 1, to deduce

‖u‖2,q,Uk3
≤ c5

(
‖f‖1,q,Uk2

+ ‖F k3‖1,q,Uk2
+ ‖gk3‖2,q,Uk2

)
. (VI.1.17)

Reasoning as before, we replace the obvious inequality

‖F k3‖q,Uk2
+ ‖gk3‖1,q,Uk2

≤ c6‖u‖2,q,Uk2

into (VI.1.17) and use (VI.1.16) to recover

‖u‖3,q,Uk3
≤ c7

(
‖f‖1,q,Uk1−1 + ‖u‖1,q,Uk1−1

)

and so, in particular,

‖u‖3,q,ω1 ≤ c7
(
‖f‖1,q,ω1,δ + ‖u‖1,q,ω1,δ

)
,

which, by (VI.1.12)1, proves (VI.1.13) for m = 2. Iterating this procedure as
many times as we please, we prove (VI.1.13) for all m ≥ 0. ut



VI.1 Leray’s Problem: Existence, Uniqueness, and Regularity 377

Let us now come back to the asymptotic estimate for v and p. Recalling
that v = u+ a, from (VI.1.1)–(VI.1.3) we have

∆u = ∇τ

∇ · u = 0

}
in ΩR

2

u = 0 at ∂ΩR
2 −ΣR

2

∫

Σ

u · n = 0,

(VI.1.18)

where
τ = p−C2xn, ΣR

2 = {x ∈ Ω2 : xn = R} .
(A system analogous to (VI.1.18) is verified in ΩR

1 .) Employing (VI.1.13) with
δ = 1, s = R + j, j = 1, 2, . . . , q = 2, f ≡ 0, and summing from j = 1 to
j = ∞ it follows that

‖u‖m+2,2,ΩR+1
2

+ ‖∇τ‖m,2,ΩR+1
2

≤ 3c‖u‖1,2,ΩR
2

(VI.1.19)

for all m ≥ 0. Since an analogous estimate holds with Ω1 in place of Ω2 and
since u, τ ∈ C∞(Ω0R), for all R > 0 (Ω0R defined in (VI.1.8)), we deduce

u ∈Wm,2(Ω), for all m ≥ 0. (VI.1.20)

By using the embedding Theorem II.3.4 along with (VI.1.20) it is then easily
established that for each multi-index α with |α| ≥ 0, it holds that (see Exercise
VI.1.2)

|Dαu(x)| → 0 as |x| → ∞ in Ωi. (VI.1.21)

Furthermore, by (VI.1.18)1 and (VI.1.20) we deduce ∇τ ∈ Wm,2(Ω) for all
m ≥ 0 and so

|Dα∇τ (x)| → 0 as |x| → ∞ in Ωi, (VI.1.22)

which completes the study of the asymptotic behavior.

The results obtained in this section can be summarized in

Theorem VI.1.2 Let Ω satisfy the assumptions stated at the beginning of
this section. Then, for every prescribed flux Φ ∈ R, Leray’s problem admits
one and only one generalized solution v, p. This solution is in fact infinitely dif-
ferentiable in the closure of every bounded subset of Ω and satisfies (VI.1.1)–
(VI.1.2) in the ordinary sense. Furthermore, v, together with all its derivatives
of arbitrary order, tends to the corresponding Poiseuille velocity field in Ωi

as |x| → ∞ and the same property holds for ∇p.
Exercise VI.1.2 Let C be a semi-infinite cylinder of type Ω2. Show that Theorem

II.3.4 holds for Wm,q(C). Hint: Let Cs = {x ∈ C : s < xn < s+1}, s = 0, 1, 2 . . ., and

apply Theorem II.3.4 to Wm,q(Cs). The general case follows by noticing that the

constants c1, c2, and c3 entering the inequalities (II.3.17), (II.3.18) do not depend

on s.
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Exercise VI.1.3 Assume that instead of two exits to infinity, Ω1 and Ω2, the
domain Ω has m ≥ 3 exits Ω′

1, . . . , Ω
′
`, where Ω′

1, . . . , Ω
′
j can be represented as Ω1

(“upstream” exits) and Ω′
j+1, . . . , Ω

′
` as Ω2 (“downstream” exits). Assume also that

Ω −∪`
i=1Ω

′
i

is bounded and that Ω is of class C∞. Denote by Φi the fluxes in Ω′
i. Then show

that, for every choice of Φi satisfying the compatibility condition of zero total flux

Pj
i=1 Φi =

P`
i=j+1 Φi,

Leray’s problem is solvable in Ω.

Remark VI.1.1 As already noticed at the beginning of this chapter, when
the exits Ωi have a uniformly bounded but not necessarily constant cross sec-
tion, one does not know, in general, the explicit form of the limiting velocity
field v∞i, as |x| → ∞ in Ωi. However, in such a case, one can alternatively pre-
scribe “growth” conditions at large distances (Ladyzhenskaya & Solonnikov
1980, Problem 1). For this type of question we wish to mention the following
result, whose proof can be found in the paper of Ladyzhenskaya & Solonnikov.

�

Theorem VI.1.3 Let

Ω = {x ∈ Rn : xn ∈ R, x′ ∈ Σ(xn)} ,

with Σ = Σ(xn) a simply connected domain of Rn−1, possibly varying with
xn. Assume there exist two constants Σ1 and Σ2 such that

0 < Σ1 ≤ |Σ(xn)| < Σ2 <∞,

and that, in addition, there exists a ∈W 1,2
loc (Ω) such that

(i) ∇ · a = 0 in Ω;

(ii)

∫

Σ

a ·n = 1;

(iii) |a|1,2,Ωt,t+1 + |a|1,2,Ω−t,−t+1 ≤ c, for all t ≥ 1,

where, for s ∈ R,

Ωs,s+1 = Ω ∩ {x ∈ Rn : s < xn < s+ 1} (VI.1.23)

and c is a constant independent of t. (Such a field certainly exists if the
boundary ∂Ω is sufficiently smooth.) Then, for any Φ ∈ R, there exists a pair

v, p ∈ C∞(Ω) ∩W 1,2
loc (Ω)3

solving the Stokes problem

3 Clearly, reasoning as in the case of a constant cross section, if Ω is of class C∞,
then v, p ∈ C∞(Ω

′
), for all bounded Ω′ ⊂ Ω.
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∆v = ∇p
∇ · v = 0

}
in Ω

v = 0 at ∂Ω
∫

Σ

v ·n = Φ

Furthermore, the velocity field v satisfies for all t ≥ 1 and all s ∈ R the
estimates ∫

Ωt

∇v : ∇v ≤ c1t

∫

Ωs,s+1

∇v : ∇v ≤ c2,

(VI.1.24)

where
Ωt = Ω ∩ {x ∈ Rn : |xn| < t}

and c1, c2 are constants independent of t and s, respectively. Finally, if w, π
is another solution corresponding to the same flux Φ and satisfying a growth
condition of the type (VI.1.24)1, then w ≡ v, ∇π ≡ ∇p.

For a more general uniqueness result related to the above solutions, we
refer the reader to Exercise VI.2.2.

VI.2 Decay Estimates for Flow in a Semi-infinite
Straight Channel

The next objective is to establish the rate at which solutions determined in
the previous section decay to the corresponding Poiseuille flow. We shall show
that they decay exponentially fast as |x| → ∞. This result will be achieved
as a corollary to a more general one holding for a large class of motions that
includes those determined in Theorem VI.1.2.

We shall restrict our attention to flows occurring in a straight cylinder
Ω = {xn > 0} ×Σ, where the cross section Σ is a C∞-smooth, bounded and
simply connected domain in Rn−1, even though some of the results can be
extended to a more general class of domains; see Exercise VI.2.1. The cross
section at distance a from the origin is denoted by Σ(a), despite all cross
sections having the same shape and size. Denote by u, τ a solution to the
problem

∆u = ∇τ
∇ ·u = 0

}
in Ω

u = 0 at ∂Ω −Σ(0)
∫

Σ

u · n = 0.

(VI.2.1)
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For simplicity, we assume u, τ regular, that is, infinitely differentiable in the
closure of any bounded subset of Ω. We also note, however, that the same
conclusions may be reached merely assuming u and τ to possess the same
regularity of generalized solutions to Leray’s problem. Our first goal is to show
that every regular solution to (VI.2.1) with u satisfying a general “growth”
condition as |x| → ∞ has, in fact, square summable gradients over the whole
of Ω. Successively, we prove that these solutions decay exponentially fast in
the Dirichlet integral, i.e.,

‖u‖2
1,2,ΩR ≤ c‖u‖2

1,2,Ω exp(−σR), (VI.2.2)

where
Ωa = {x ∈ Ω : xn > a}

and c, σ are constants depending on Σ. Once (VI.2.2) has been established, it
is easy to prove that u and its derivatives decay exponentially fast. Actually,
combining (VI.2.2) and (VI.1.19) (with ΩR

2 = ΩR) gives

‖u‖m+2,2,ΩR+1 + ‖∇τ‖m,2,ΩR+1 ≤ c1‖u‖1,2,Ω exp(−σR/2) (VI.2.3)

and so, using the results of Exercise VI.1.2 into (VI.2.3), we obtain

|Dαu(x)| + |Dα∇τ (x)| ≤ c2‖u(x)‖1,2,Ω exp(−σxn/2) (VI.2.4)

for every x ∈ Ω with xn ≥ 1 and every |α| ≥ 0.

Remark VI.2.1 Estimate (VI.2.4) implies, in particular, that as |x| → ∞,
τ (x) tends to some constant, exponentially fast. Actually, denoting by x =

(x′, xn), y = (y′, yn) two arbitrary points in Ω
1

and applying the mean value
theorem, we have for some η′ ∈ Σ(yn)

|τ (x) − τ (y)| ≤
∣∣∣∣
∫ yn

xn

∂τ (x′, ξ)

∂ξ
dξ

∣∣∣∣+
n−1∑

i=1

|Diτ (η
′, yn)||xi − yi|

which, by (VI.2.4), implies that τ (x) tends to a constant τ1 (say). Then, the
stated property follows from the identity

τ (x′, xn) = τ1 +

∫ ∞

xn

∂τ (x′, ξ)

∂ξ
dξ

and again from the estimate (VI.2.4). �

To recover the fundamental estimate (VI.2.2) we need some results con-
cerning differential inequalities which we are going to show.

Lemma VI.2.1 Let y ∈ C1(R+) be a non-negative function satisfying the
inequality

ay(t) ≤ b+ y′(t), for all t ≥ 0, (VI.2.5)
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where a > 0, b ≥ 0. Then, if 1

lim inf
t→∞

y(t)e−at = 0, (VI.2.6)

it follows that y(t) is uniformly bounded and we have

sup
t≥0

y(t) ≤ b/a. (VI.2.7)

Proof. From (VI.2.5) it follows that

− d

dt
[y(t)e−at] ≤ be−at

which, once integrated from t to t1 (> t), furnishes

−y(t1)e−at1 + y(t)e−at ≤ b

a
[e−at − e−at1 ].

If we take the inferior limit of both sides of this relation as t1 → ∞ and use
(VI.2.6), we then deduce (VI.2.7). ut

Lemma VI.2.2 Let β ≤ ∞ and let y be a real, non-negative continuous
function in [0, β) such that

y ∈ C1(0, β),

lim
t→β

y(t) = 0.

Then, if y satisfies the integro-differential inequality

y′(t) + a

∫ β

t

y(s)ds ≤ by(t), for all t ∈ (0, β) (VI.2.8)

with a > 0 and b ∈ R,2 it follows that

y(t) ≤ ky(0) exp(−σt), for all t ∈ (0, β) , (VI.2.9)

where

k =

√
b2 + 4a

σ
, σ = 1

2

(√
b2 + 4a− b

)
.

1 Notice that the assumption b ≥ 0 is necessary for (VI.2.6) to hold.
2 Notice that if b < 0, (VI.2.8) at once implies (VI.2.9) with k = 1 and σ = −b.
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Proof. Making the change of variable

ψ(t) = y(t)e−bt,

(VI.2.8) gives

ψ′(t) + a

∫ β

t

e−b(t−s)ψ(s)ds ≤ 0.

From this relation, setting

F (t) = ψ(t) + δ

∫ β

t

e−b(t−s)ψ(s)ds, δ > 0,

we recover

F ′(t) + δF (t) = ψ′(t) + a

∫ β

t

e−b(t−s)ψ(s)ds

+(δ2 − δb− a)

∫ β

t

e−b(t−s)ψ(s)ds ≤ 0

(VI.2.10)

provided we choose δ as the positive root to the equation

δ2 − δb− a = 0,

that is,

2δ = b+
√
b2 + 4a.

Integrating the differential inequality in (VI.2.10) furnishes

F (t) ≤ F (0)e−δt,

which can be equivalently rewritten as

y(t) + δ

∫ β

t

y(s)ds ≤ F (0)e−(δ−b)t. (VI.2.11)

We now estimate F (0) in terms of y(0). From (VI.2.11), setting

σ1 = 2δ − b,

it follows that

− d

dt

[
eδt

∫ β

t

y(s)ds

]
≤ F (0)e−σ1t

which, upon integration from zero to β, gives

∫ β

0

y(s)ds ≤ F (0)
1− e−σ1β

σ1
.
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If we substitute the value of F (0) into this last inequality we deduce

∫ β

0

y(s)ds ≤ y(0)
1 − e−σ1β

σ1 − δ(1 − e−σ1β)

and so we obtain

F (0) = y(0) + δ

∫ β

0

y(s)ds ≤ y(0)σ1

σ
,

which along with (VI.2.11) completes the proof of the lemma. ut

We are now ready to show the main results of this section.

Theorem VI.2.1 Let u, τ be a regular solution to (VI.2.1) with

lim inf
xn→∞

(∫ xn

0

[∫

Σ(ξ)

∇u : ∇udΣ
]
dξ

)
e−axn = 0, (VI.2.12)

where
a−1 ≡

(
1
2

+ c0
)√

µ,

c0 is the constant specified in (VI.2.14), and µ is the Poincaré constant for Σ
(see (II.5.3) and (VI.2.15)). Then

|u|1,2 <∞.

Proof. Multiplying both sides of (VI.2.1) by u and integrating by parts in
(0, xn) ×Σ we obtain

G(xn) ≡
∫ xn

0

[∫

Σ(ξ)

∇u : ∇udΣ
]
dxn

=

∫

Σ(xn)

(
τun − 1

2

∂u2

∂xn

)
−
∫

Σ(0)

(
τun − 1

2

∂u2

∂xn

)
.

If we integrate this relation from t to t + 1, t ≥ 0, we have

∫ t+1

t

G(xn)dxn =

∫

Ωt,t+1

(
τun − 1

2

∂u2

∂xn

)
+B, (VI.2.13)

where Ωt,t+1 is defined in (VI.1.23) and

B ≡ −
∫

Σ(0)

(
τun − 1

2

∂u2

∂xn

)
.

Let us consider the problem
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∇ · ω = un in Ωt,t+1

ω ∈ W 1,2
0 (Ωt,t+1)

|ω|1,2,Ωt,t+1 ≤ c0‖un‖2,Ωt,t+1.

(VI.2.14)

Since ∫

Ωt,t+1

un = 0,

from Theorem III.3.1 and Lemma III.3.3 problem (VI.2.14) admits a solution
with a constant c0 independent of t. Thus, from (VI.2.13) and (VI.2.1) it
follows that

∫ t+1

t

G(xn)dxn =

∫

Ωt,t+1

(
−∇τ · ω − 1

2

∂u2

∂xn

)
+ B

=

∫

Ωt,t+1

(
−∇u : ∇ω − 1

2

∂u2

∂xn

)

≤
(
c0 + 1

2

)
‖u‖2,Ωt,t+1|u|1,2,Ωt,t+1 + B.

We next observe that, since u vanishes at ∂Ω, µ = µ(Σ) > 0 (the Poincaré
constant for Σ) exists such that

‖u‖2
2,Σ ≤ µ‖∇u‖2

2,Σ; (VI.2.15)

see (II.5.3). From (II.5.5) and Exercise II.5.2 we may give the following esti-
mate for µ:

µ ≤





1
2
|Σ| if n = 3

(2d)2

π2 if n = 2.

By using this inequality, we obtain

y(t) ≡
∫ t+1

t

G(xn)dxn ≤ √
µ
(
c0 + 1

2

)
|u|21,2,Ωt,t+1

+ B.

Since

|u|21,2,Ωt,t+1
=
dy

dt
,

the preceding inequality furnishes

ay(t) ≤ b+
dy(t)

dt
,

where a is defined in the statement of the theorem. Thus, we recover that
y(t) satisfies (VI.2.5) with b = |B|. Furthermore, it is readily shown that, in
view of (VI.2.12), y(t) also satisfies (VI.2.6) and consequently Lemma VI.2.1
implies
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∫ t+1

t

G(xn)dxn ≤ |B|
a
, for all t > 1. (VI.2.16)

This inequality yields

` ≡ lim
xn→∞

G(xn) = |u|1,2,Ω <∞.

Actually, since G(xn) is monotonically increasing in xn, ` exists (either finite
or infinite) and (VI.2.16) then implies ` <∞. The theorem is proved. ut
Remark VI.2.2 The previous theorem furnishes, in particular, that all reg-
ular solutions to (VI.2.1) satisfying (VI.1.12) must decay to zero uniformly,
according to (VI.1.21) and (VI.1.22). This follows from (VI.1.19) and Exercise
VI.1.2. �

Exercise VI.2.1 Let

Ω =
˘
x ∈ R

n : xn > 0, x′ ∈ Σ(xn)
¯
,

with Σ(xn) a smooth, simply connected domain of R
n−1, possibly varying with xn

and satisfying the assumptions of Theorem VI.1.3. Assume Ω uniformly Lipschitz,

i.e., for every x0 ∈ ∂Ω there is Br(x0) with r independent of x0 such that ∂Ω∩Br(x0)

is a boundary portion of class C0,1, with a Lipschitz constant independent of x0. Show

that Theorem VI.2.1 can be extended to such a domain Ω. Hint: It suffices to show

that problem (VI.2.14) is solvable with a constant c0 independent of t. This fact,

however, can be established via the hypotheses on Ω and with the aid of estimate

(III.3.13).

Exercise VI.2.2 (Ladyzhenskaya & Solonnikov 1980). Let

Ω =
˘
x ∈ R

n : xn ∈ R, x′ ∈ Σ(xn)
¯
,

and suppose that Ω and Σ satisfy the same assumptions of Exercise VI.2.1. Show

that if u, τ is a regular solution to (VI.2.1)1,2 vanishing at ∂Ω, having zero flux

through Σ and satisfying (VI.2.12), then u ≡ ∇τ ≡ 0.

In the next theorem we establish the fundamental inequality (VI.2.2).

Theorem VI.2.2 Let u, τ be a regular solution to (VI.2.1) satisfying (VI.2.12).
Then

|u|1,2 <∞
and, for all R > 0, the following inequality holds:

‖u‖2
1,2,ΩR ≤ c‖u‖2

1,2,Ω exp(−σR), (VI.2.17)

with

c =
2(c20 + 2)1/2

(c20 + 2)1/2 − c0

σ =
1√
µ

[
(c20 + 2)1/2 − c0

]
,

where c0 is the constant specified in (VI.2.14) and µ is the Poincaré constant
for Σ. Moreover, for all |α| ≥ 0, u, τ satisfy the pointwise estimate (VI.2.4).
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Proof. By Theorem VI.2.1 and what we have observed at the beginning of this
section, we have to show only the validity of estimate (VI.2.17). For the sake
of simplicity we shall restrict ourselves to treat the case n = 3; also, Cartesian
coordinates will be denoted by x1, x2, x3 and x, y, z, indifferently. Proceeding
as in the proof of the previous theorem we may write the identity

−
∫ z1

z

(∫

Σ(ζ)

∇u : ∇udΣ
)
dζ

=

∫

Σ(z1)

(
τu3 − 1

2

∂u2

∂z

)
−
∫

Σ(z)

(
τu3 − 1

2

∂u2

∂z

)
.

(VI.2.18)
From Theorem VI.2.1 and Lemma VI.1.2 we know that u,∇τ ∈Wm,2(Ω) for
all m ≥ 0 and so, in particular, it easily follows that

ı(z1) ≡
∫

Σ(z1)

τu3(x
′, z1)dx

′ = o(1) as z1 → ∞. (VI.2.19)

In fact, setting

τ (z1) =
1

|Σ|

∫

Σ

τ (x′, z1)dx
′,

from (VI.2.1)4 and Poincaré’s inequality (II.5.10) it follows that

|ı(z1)| =

∣∣∣∣∣

∫

Σ(z1)

(τ − τ )u3(x
′, z1)dx

′

∣∣∣∣∣ ≤ c|τ |1,2,Σ‖u‖2,Σ

and (VI.2.19) becomes a consequence of (VI.1.21) and (VI.1.22). Thus, from
(VI.2.19) and (VI.1.21), by letting z1 → ∞ into (VI.2.18), we find

H(z) ≡
∫ ∞

z

(∫

Σ(ζ)

∇u : ∇udΣ
)
dζ =

∫

Σ(z)

(
τu3 − 1

2

∂u2

∂z

)
. (VI.2.20)

We next integrate both sides of (VI.2.20) between t+ ` and t+ `+ 1 with ` a
non-negative integer to obtain

∫ t+`+1

t+`

H(z) =

∫ t+`+1

t+`

∫

Σ(z)

τu3 − 1
2

∫

Σ(t+`+1)

u2 + 1
2

∫

Σ(t+`)

u2. (VI.2.21)

By writing u3 = ∇ · ω, with ω a solution to (VI.2.14) and by arguing as in
the proof of Theorem VI.2.1, from (VI.2.21) it follows that

∫ t+`+1

t+`

H(z) ≤ c0
√
µ|u|21,2,Ωt+`,t+`+1

− 1
2

∫

Σ(t+`+1)

u2 + 1
2

∫

Σ(t+`)

u2.

Summing both sides of this relation from ` = 0 to ` = ∞ and observing that,
by Remark VI.2.1,
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lim
z→∞

∫

Σ(z)

u2(x′, z) = 0,

leads to ∫ ∞

t

H(z) ≤ c0
√
µH(t) + 1

2

∫

Σ(t)

u2. (VI.2.22)

Since, by (VI.2.15), we have

∫

Σ(t)

u2 ≤ µ

∫

Σ(t)

∇u : ∇u = −µH ′(t),

inequality (VI.2.22) finally gives

H ′(t) +
2

µ

∫ ∞

t

H ≤ 2c0√
µ
H(t)

which, by Lemma VI.2.2, completes the proof of the theorem. ut

VI.3 Flow in Unbounded Channels with Unbounded
Cross Sections. Existence, Uniqueness, and Regularity

In the present section we shall investigate existence and uniqueness of steady,
slow motions of a viscous liquid in a domain Ω ⊂ Rn, n = 2, 3, with m ≥ 2
“exits” to infinity Ωi, i = 1, . . . , m, whose cross sections become suitably
unbounded at large distances. To start, we shall assume m = 2 and that the
domainsΩi are bodies of rotation (see Section III.4.3). Several generalizations
will be considered in Exercise VI.3.1-Exercise VI.3.4. Specifically, we take

Ω =

2⋃

i=0

Ωi

with Ω0 a compact subset of Rn and Ωi, i = 1, 2, disjoint domains which, in
possibly different coordinate systems, are given by

Ωi = {x ∈ Rn : xn > 0, |x′| < fi(xn)} ,

where the functions fi satisfy, for all t, t1, t2 > 0 and i = 1, 2,

(i) fi(t) ≥ f0 = const. > 0;
(ii) |fi(t2) − fi(t1)| ≤M |t2 − t1|
withM a positive constant. Furthermore, we shall assume fi (and therefore Ω)
of class C∞.1 We shall also suppose that the planar cross section Σi = Σi(xn)

1 See footnote 1 in Section VI.1.
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of Ωi, i = 1, 2, perpendicular to the axis x′ = 0 and passing through the point
(0, xn) tends to infinity as |x| → ∞ in such a way that

∫ ∞

0

f
−(n+1)
i (t)dt <∞, i = 1, 2. (VI.3.1)

This condition is equivalent to condition (i) stated in the introduction to the
chapter.

We denote, as usual, by Σ a cross section of Ω, that is, any bounded
intersection of Ω with an (n − 1)-dimensional plane that in Ωi, i = 1, 2,
reduces to Σi and by n a unit vector normal to Σ and oriented from Ω1

toward Ω2 (say). We want to study the following problem: given Φ ∈ R, to
determine a pair v, p such that

∆v = ∇p
∇ · v = 0

}
in Ω

v = 0 at ∂Ω

∫

Σ

v ·n = Φ

lim
|x|→∞

v(x) = 0 in Ωi, i = 1, 2.

(VI.3.2)

To solve this problem, analogously to what we did in Section VI.1, we
shall put it into an equivalent form that can be handled by the technique of
generalized solutions. To this end, by multiplying (VI.3.1) by ϕ ∈ D(Ω) and
integrating by parts we obtain formally

(∇v,∇ϕ) = 0, for all ϕ ∈ D(Ω). (VI.3.3)

We then give the following.

Definition VI.3.1. A field v : Ω → Rn is called a weak (or generalized )
solution to problem (VI.3.2) if and only if

(i) v ∈ D̂1,2
0 (Ω);

(ii) v satisfies (VI.3.3);
(iii) v satisfies (VI.3.2)4 in the trace sense.

The meaning of conditions (ii) and (iii) is quite obvious. Let us comment

on condition (i). First, we observe that it requires v ∈ D̂1,2
0 (Ω) and not v ∈

D1,2
0 (Ω). As already remarked, this allows for a nonzero flux Φ of v through Σ;

actually, if we required, instead, v ∈ D1,2
0 (Ω) we would automatically impose

Φ = 0. Moreover, (i) ensures a certain degree of regularity for v and that v
vanishes on the boundary in the trace sense. Finally, as we are going to show,
condition (i) implies
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1

|Σ(xn)|

∫

Σ(xn)

v2(x) → 0 as |x| → ∞ in Ωi, i = 1, 2, (VI.3.4)

which represents the generalized form of (VI.3.2)5. Property (VI.3.4) is a
consequence of the general inequality

∫

Σ(t)

|w|q(x′, t)dx′ ≤ cfq−1(t)

∫

Ω(t)

|∇w|q, (VI.3.5)

where
Ω(t) = {x ∈ Rn : xn > t ≥ 0, |x′| < f(xn)}
Σ(t) =

{
x′ ∈ Rn−1 : |x′| ≤ f(t)

}
,

f satisfies assumptions of the type (i), (ii) stated for fi and, finally, w is an
arbitrary member fromD1,q(Ω(t)), 1 < q <∞, vanishing at the lateral surface
|x′| = f(xn), xn > t. To show (VI.3.5) we observe that (II.5.5) furnishes for
almost all t ≥ 0

∫

Σ(t)

|w|q(x′, t)dx′ ≤ c1f
q(t)

∫

Σ(t)

|∇w(x′, t)|qdx′, 1 < q <∞. (VI.3.6)

Consider, next, the function g(xn) ≡ f−q+1(xn)en with en unit vector in the
direction xn. Integrating the identity

∇ · (g|w|q) = |w|q∇ · g + g · ∇|w|q

over Ωt,t1 , in virtue of assumption (ii) on f we deduce for all t1 > t

1

fq−1(t)

∫

Σ(t)

|w|q ≤ 1

fq−1(t1)

∫

Σ(t1)

|w|q

+q

∫ t1

t

1

fq−1(τ )

(∫

Σ(τ)

|w|q−1|∇w|dΣ
)
dτ

+M

∫

Ωt,t1

|w|q
fq

and so, from (VI.3.6) and the Hölder inequality, it follows that

1

fq−1(t)

∫

Σ(t)

|w|q ≤ 1

fq−1(t1)

∫

Σ(t1)

|w|q + c2

∫

Ω(t)

|∇w|q.

However, again by (VI.3.6) and assumption (ii) on f , since w ∈ D1,q(Ω(t)),
we have that the first term on the right-hand side of this latter inequality
must tend to zero as t1 tends to infinity, at least along a sequence of values.
Therefore, (VI.3.5) is proved.
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Remark VI.3.1 By using Lemma IV.1.1 and Theorem VI.1.1, one can show
that to every weak solution there corresponds a pressure field p satisfying the
identity (VI.1.5) and that the pair v, p is infinitely differentiable up to the
boundary. �

Our next objective is to show existence and uniqueness of a generalized
solution. To this end, we observe that in view of hypothesis (i) on fi, from
the results of the first part of Section III.5 and, in particular, from Theorem
III.5.2, a vector field a ∈ C∞(Ω) vanishing near ∂Ω exists such that

a ∈ D̂1,2
0 (Ω)

∫

Σ

a · n = 1.
(VI.3.7)

We then look for a generalized solution to (VI.3.2) of the form v = u + Φa,
with u ∈ D1,2

0 (Ω) obeying the identity

(∇u,∇ϕ) = −Φ(∇a,∇ϕ), for all ϕ ∈ D(Ω). (VI.3.8)

Clearly, if such a u exists, the vector field v satisfies all requirements of Def-
inition VI.3.1. On the other hand, the existence of u is at once established
by means of the Riesz theorem for, evidently, the right-hand side of (VI.3.8)
defines a linear functional in D1,2

0 (Ω). Let us next establish uniqueness. Let
v1 be another generalized solution to (VI.3.2) corresponding to the same flux

Φ. Letting w = v − v1 we have w ∈ D̂1
0(Ω) and the flux of w through Σ is

zero. Therefore, by Theorem III.5.2, w ∈ D1,2
0 (Ω). However, from (VI.3.3) we

also have
(∇w,∇ϕ) = 0, for all ϕ ∈ D1,2

0 (Ω),

so that we conclude w ≡ 0.

Finally, we wish to give an estimate for weak solutions. We recall that, by
Theorem III.5.2, any v ∈ D̂1,2

0 (Ω) can be written as v = u + Φa, where a

is a given vector in D̂1,2
0 (Ω) (independent of v) and u is a vector in D1,2

0 (Ω)
uniquely related to v. Writing (VI.3.3) for ϕ ∈ D1,2

0 (Ω) and taking ϕ = u we
thus readily recover

|v|1,2 ≤ |Φ||a|1,2 ≤ c|Φ|,
where c depends only on Ω and n.

Results obtained so far can then be summarized in the following.

Theorem VI.3.1 For any Φ ∈ R there exists one and only one generalized
solution v to problem (VI.3.2). Such a solution satisfies the estimate

|v|1,2 ≤ c|Φ|,

where c depends only on Ω and n. Furthermore, denoting by p the correspond-
ing pressure field, v, p are infinitely differentiable in Ω′, with Ω′ any bounded
domain contained in Ω , and satisfy (VI.3.1)–(VI.3.4) in the ordinary sense.



VI.3 Existence of Flow in Channels with Unbounded Cross Sections 391

Remark VI.3.2 If the cross sections widen at such a rate that condition
(VI.3.1) on fi is violated, then the unique solvability of problem (VI.3.2)
becomes much more complicated. In this respect, we quote the results of
Amick & Fraenkel (1980), when Ω is two-dimensional with two exits to infinity,
and the more recent ones of Pileckas (1996a, 1996b, 1996c) valid for two-
dimensional and three-dimensional domains as well, under the assumption
that fi satisfies (i), (ii) and the following condition

∫ ∞

0

f
−(n−1)(q−1)−q
i (t)dt <∞, for some q ∈ (1,∞). (VI.3.9)

A typical result proved there is the following one.

Theorem VI.3.2 Let Ω ⊂ Rn, n = 2, 3, with fi satisfying (i), (ii) and
(VI.3.9). Then, for any Φ ∈ R there exists a unique solution v, p to (VI.3.2)

with v ∈ D̂1,q
0 (Ω), and satisfying the estimate

|v|1,q ≤ c|Φ|

where c = c(Ω, n, q).

�

Remark VI.3.3 Another approach to unique solvability that holds in both
two and three dimensions and for cross sections that need not verify (VI.3.1)
is that proposed by Ladyzhenskaya and Solonnikov (1980) and Solonnikov
(1983). However, it is not known if their solutions, which have a finite Dirichlet
integral only on bounded subdomains of Ω, verify the condition at infinity
(VI.3.2)5. �

Exercise VI.3.1 Assume that a body force is acting on the liquid and add its
contribution f to the right-hand side of (VI.3.2)1. Denoting by [F ,ϕ] the value of a
linear functional F on D1,2

0 (Ω) at ϕ, show that, given any bounded linear functional
f on D1,2

0 (Ω) and any Φ ∈ R, there exists one and only one vector field v satisfying
(i) and (ii) of Definition VI.3.1 and the identity

(∇v,∇ϕ) = −[f ,ϕ], for all ϕ ∈ D1,2
0 (Ω). (VI.3.10)

Moreover, prove that v satisfies the estimate

|v|1,2 ≤ c (|Φ|+ |f |−1,2) (VI.3.11)

with |f |−1,2 denoting the norm of f . Finally, show that if f is infinitely differentiable

up to the boundary, the same holds for v and for the corresponding pressure p.

Exercise VI.3.2 Assume Ω has m > 2 exits Ωi, i = 1, . . . ,m, all of the form speci-
fied at the beginning of this section and verifying (VI.3.1). Given m real numbers Φi

subject to the restriction
Pm

i=1 Φi = 0, we shall say that v is a generalized solution
to the Stokes problem in Ω corresponding to the fluxes Φi if v satisfies (i) and (ii)
of Definition VI.3.1 and if
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Z

Σi

v · n = Φi, in the trace sense.

Show existence and uniqueness of this generalized solution. Hint: Use Lemma III.4.3.

Exercise VI.3.3 Extend the results of Exercise VI.3.2 to the case when Ωi are not
necessarily bodies of rotation but rather verify the more general conditions:

(a) D1
i ⊂ Ωi ⊂ D2

i where

D1
i = {x ∈ R

n : xn > 0, |x′| < fi(xn)}
D2

i = {x ∈ R
n : xn > 0, |x′| < aifi(xn), ai > 1}

and

(b) In the domains

{x ∈ Ω : Ri < xn < R+ f(Ri)} , i = 1, ..,m,

problem (III.4.19) is solvable with a constant c independent of R. Hint: See Remark

III.5.1.

Exercise VI.3.4 Let Ω be a C∞-smooth domain with m ≥ 2 exits to infinity
Ωi. Suppose that the first ` (≤ m) exits satisfy the condition stated in Exercise
VI.3.3, while the remaining m− ` are cylindrical. Show that, given m real numbers
Φi subject to the condition

Pm
i=1 Φi = 0, there exists one and only one pair v, p

infinitely differentiable up to the boundary such that

∆v = ∇p
∇ · v = 0

)
in Ω

v = 0 at ∂Ω

Z

Σi

v · n = Φi, i = 1, . . .m,

v ∈ D1,2
0 (Ωi), i = 1, . . . `,

v − v(i)
0 ∈W 1,2(Ωi), i = ` + 1 . . .m,

where v
(i)
0 are the Poiseuille velocity fields associated to Φi. Hint: Construct suitable

extensions of the Poiseuille velocity fields and vectors having prescribed flux in Ωi

by means of the method used in Section VI.2 and Lemma III.4.3.

Exercise VI.3.5 (Flow through an aperture, Heywood 1976). Let Ω be the domain

(VI.0.7), with S containing the unit disk {|x′| < 1}. Show that, given any bounded

linear functional f on D1,2
0 (Ω) and any Φ ∈ R, there exists one and only one vector

field v satisfying (i) and (ii) of Definition VI.3.1 and identity (VI.3.10) where, in this

case, Φ is the flux of v through S. Furthermore, show that such a solution satisfies

inequality (VI.3.11).
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VI.4 Pointwise Decay of Flows in Channels with
Unbounded Cross Section

To complete the study of problem (VI.3.2), it remains to investigate pointwise
decay to zero of the velocity and pressure fields at large distances in the exits
Ωi. Seemingly, this study is not easily performed by a simple modification of
the methods used in the case of channels with bounded cross sections and we
shall employ a different technique.1

Let v, p be a pair of smooth functions2 satisfying the system

∆v = ∇p
∇ · v = 0

}
in Ω

v = 0 at Γ
∫

Σ

v · n = Φ,

(VI.4.1)

where Ω is a semi-infinite channel with unbounded cross section, Γ its lateral
surface, Σ its cross section, and Φ a prescribed number. For simplicity, we
shall assume hereafter that Ω is a body of rotation. However, the proofs we
give apply unchanged to the more general case where Ω contains a body of
rotation Ω̃. In such a case, the results we find remain valid in Ω̃. We thus take
for n = 2, 3,3

Ω = {x ∈ Rn : xn > 0, |x′| < f(xn)}
Σ = Σ(xn) = {x′ ∈ Ω : |x′| = f(xn)}

(VI.4.2)

with f ∈ C∞(R+) verifying the assumptions (i) and (ii) of the previous sec-
tion, i.e.,

f(t) ≥ f0 = const. > 0

|f(t1) − f(t2)| ≤M |t1 − t2|
(VI.4.3)

for all t, t1, t2 > 0 and with M a positive constant. The aim of this section is
to investigate decay as |x| → ∞ of solutions to (VI.4.1) having v ∈ D1,q(Ω).
Specifically, we show that if 1 < q ≤ n then v and all its derivatives of arbitrary
order tend to zero pointwise; moreover, if 1 < q < n, we are also able to give
the decay rate. Of course, for such solutions to exist, by the conservation of
the flow through Σ, it is necessary that f satisfies the condition

∫ ∞

0

f−(n−1)(q−1)−q(t)dt <∞ (VI.4.4)

1 Alternatively, as suggested by Pileckas (1996a, 1996b, 1996c), one may use a
“weighted de Saint-Venant principle” in conjunction with local estimates for the
Stokes problem, to obtain sharper results than those obtained here.

2 For example, v ∈ C2(Ω′), p ∈ C1(Ω′) for all bounded subdomains Ω′ ⊂ Ω.
3 Some of the results we show, such as those of Theorem VI.4.1, hold in any space

dimension n ≥ 2.
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These results furnish, in the particular case where q = 2, pointwise decay of
solutions whose existence has been established in Theorem VI.3.1. Also, in
such a case, we prove that the pressure field tends to a certain constant value
at large distances.

To show all the above, we need some preliminary considerations. For γ ∈
(0, 1], set

Ωγ = {x ∈ Ω : |x′| < γf(xn)} , Ω1 ≡ Ω.

The following result gives a basic a priori estimate for solutions to (VI.4.1).

Lemma VI.4.1 Let Ω ⊂ R3. Assume that for some γ ∈ (0, 1], q ≥ 2 and
r ≥ 0 4 the following conditions hold:

(i) fr∇v ∈ Lq(Ωγ),
(ii)fr−1v ∈ Lq(Ωγ),

where assumption (ii) is needed only if γ < 1. Then, for every |α| ≥ 2 we
have

f |α|+r−1Dαv ∈ Lq(Ωγα),

where γα is any positive number less than γ/2. If Ω ⊂ R2 the same conclusion
holds with q = 2.

Proof. First of all we notice that hypothesis (ii) follows from (i) if γ = 1,
as a consequence of inequality (VI.3.6). To show the theorem we need a
suitable“cut-off” function. Denote by ψ ∈ C∞(R) a function such that
ψ(t) = 1 if t ≤ 1 and ψ(t) = 0 if t ≥ 2 and set for β ∈ (0, γ), R0 ≥ 0
and all R > 2R0

χβ,γ(x) = ψ

[
1

γ2 − β2

( |x′|2
δ2(xn)

+ γ2 − 2β2

)]

ϕR,R0(x) = ψ

( |x|
R0

)[
1 − ψ

( |x|
R0

)]
,

where the function δ(t) has been introduced in Lemma III.4.2. Clearly, the
function

uβ,γ,R,R0 ≡ χβ,γϕR,R0

vanishes in the set
{x ∈ Ω : |x′| ≥ γf(xn)}

and for |x| ≥ 2R, while

uβ,γ,R,R0(x) = 1 for x ∈
[
[ωβ ∩BR) − B2R0

]
,

4 Evidently, if γ = 1, for such solutions to exist the conservation of flux requires
Z ∞

0

f−(n−1)(q−1)+q(r−1)(t)dt < ∞.
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where
ωβ = {x ∈ Ω : |x′| ≤ βδ(xn)} .

By the properties of the function δ(t), ωβ can be taken arbitrarily close to
Ωγ/2 by picking β sufficiently close to γ. Using Lemma III.4.2, it is not difficult
to see that

|D`uβ,R,R0(x)| ≤
c

f |`|(xn)
, for all |`| ≥ 0, (VI.4.5)

with c = c(`, β, ψ, R0). We begin to show the lemma for |α| = 2, the general
case being obtained by iteration. To this end, letting

Ψ(x) = δ1+r(xn)uβ,R,R0(x) (VI.4.6)

taking the curl of both sides of (VI.4.1)1, we obtain with ω = ∇× v5

∆(Ψω) = ∇Ψ · ∇ω + ∇ · [∇Ψ ⊗ ω]. (VI.4.7)

Multiplying both sides of (VI.4.7) by Ψω furnishes

(∇(Ψω),∇(Ψω)) = 1
2

∫

Ω

(Ψ∆Ψ + |∇Ψ |2)ω2 + (∇Ψ ⊗ ω,∇(Ψω))

≡ I1 + I2.

(VI.4.8)

From (VI.4.6), (VI.4.5), and Lemma III.4.2 it follows that

|∇Ψ(x)| ≤ c1f
r(xn)

|D2Ψ(x)| ≤ c2f
r−1(xn)

(VI.4.9)

and, consequently, by (VI.4.3)1 and the Young inequality (II.2.5),

|I1| ≤ c3‖frω‖2
2,Ωγ

|I2| ≤ c4‖frω‖2
2,Ωγ

+ 1
2
‖∇(Ψω)‖2,Ω2,γ .

(VI.4.10)

Thus, (VI.4.8) and (VI.4.10) along with the assumption on ∇v give

‖∇(Ψω)‖2,Ω ≤ c5 (VI.4.11)

with c5 independent of R. Letting R→ ∞ into (VI.4.11) yields

‖∇(ζω)‖2,Ω ≤ c5 (VI.4.12)

with

ζ(x) = δ1+r(xn)χβ,γ(x)ψ

( |x|
R0

)
.

5 In two space dimension ω has only one nonzero component given by ∂v2/∂x1 −
∂v1/∂x2.
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Clearly, ζ(x) satisfies estimates of the type (VI.4.9) and so, using the identity

∇(ζv) = ∇ζ ×ω + ζ∇ ×ω + v∆ζ 6

together with (VI.4.12) it follows that

‖∆(ζv)‖2,Ω ≤ c6
(
‖frω‖2,Ωγ + ‖fr−1v‖2,Ωγ

)
≤ c7 (VI.4.13)

where, in the last step, we made use of the assumption on v. By considering ζv
as a function defined in the whole of Rn, (VI.4.13) furnishes ∆(ζv) ∈ L2(Rn)
and, by the Calderón–Zygmund Theorem II.11.4 (see Exercise II.11.9 and
Exercise II.11.11) we have D2(ζv) ∈ Rn. Since

ζD2
ijv = −DiζDjv −DjζDiv − vD2

ijζ +D2(ζv)

we prove, as before,
ζD2v ∈ L2(Rn).

Recalling the relations

χβ,γ(x) = 1, δ(xn) = f(xn) in ωβ,

and the properties of ωβ , from this latter information we conclude

f1+rD2v ∈ L2(Ωγ2 ), (VI.4.14)

where γ2 can be taken arbitrarily close to γ/2. The lemma is thus shown for
|α| = 2 and q = 2. Still assuming q = 2, the case |α| > 2 can be easily proved
by iteration. Actually, setting ωj ≡ Djω, j = 1, . . . , n, we obtain that ωj

satisfies (VI.4.7) with ωj in lieu of ω. Replace now Ψ with

Ψ1 = δ2+r(xn)uβ,γ2,R,R0(x),

so that
|∇Ψ1(x)| ≤ c1f

1+r(xn)

|D2Ψ1(x)| ≤ c2f
r(xn)

and, consequently,

∣∣∣∣∣
1
2

∫

Ω

(Ψ1∆Ψ1 + |∇Ψ1|2)ω2
j + (∇Ψ1 ⊗ ωj ,∇(Ψ1ωj))

∣∣∣∣∣

≤ c3‖f1+rD2v‖2
2,Ωγ2

+ (1/2)‖∇(Ψ1ωj)‖2
2,Ω.

6 In two space dimension this identity is replaced by

∆(ζv) = 2∇ζ · ∇v + (1/2)ζϑ+ v∆ζ

with ϑ = (−∂ω/∂x2, ∂ω/∂x1).



VI.4 Decay of Flow in Channels with Unbounded Cross Section 397

Therefore, from (VI.4.7) and (VI.4.8) with ω ≡ ωj , Ψ ≡ Ψ1 and from (VI.4.14)
we deduce

‖∇(Ψ1ωj)‖2,Ω ≤ c4.

Repeating step by step the arguments previously used for the case |α| = 2 we
may thus conclude for all |`| = 3

f2+rD`v ∈ L2(Ωγ3 ), (VI.4.15)

where γ3 < γ2 can be taken arbitrarily close to γ2, i.e., to γ/2. Iterating this
procedure as many times as we please we finally prove the lemma for q = 2.
In showing the result for arbitrary q > 2 we shall confine ourselves to proving
it for |α| = 2; the general case |α| > 2 can be obtained by the same iterating
procedure just used. Consider (VI.4.7) in three space dimensions. By the Lq-
theory for the Laplace operator in the whole space (see Exercise II.11.9) it
follows that

‖∇(Ψω)‖q,R3 ≤ c|f |−1,q,R3, (VI.4.16)

where f denotes the right-hand side of (VI.4.7). If ϕ indicates an arbitrary
vector function from C∞

0 (R3) we have

|(f,ϕ)| = |(∇Ψ · ∇ω,ϕ) − (∇Ψ ⊗ ω,∇ϕ)| ≡ |F1 + F2|.

Use of (VI.4.9) then gives

|F2| ≤ c1‖frω‖q,Ωγ‖∇ϕ‖q′,R3 ; (VI.4.17)

furthermore,
|F1| = |(ω∆Ψ,ϕ) − (∇Ψ · ∇ϕ,ω)|. (VI.4.18)

Since ϕ ∈ C∞
0 (R2) and q > 2, we find that ϕ obeys inequality (II.6.10), i.e.,

∫

R2

|ϕ|q′

(x2
1 + x2

2)
q′/2

≤ 2

2 − q′

∫

R2

|∇ϕ|q′
(VI.4.19)

and so, by (VI.4.9) and (VI.4.19), by recalling that |x′| ≤ f(x3), for all x ∈ Ω,
we deduce

|(ω∆Ψ,ϕ)| ≤ c2

∫

Ωγ

fr |ω||ϕ|
|x′|

≤ c2‖frω‖q,Ωγ

{∫ ∞

0

(∫

R2

|ϕ|q′

(x2
1 + x2

2)
q′/2

dx′
)
dx3

}

≤ c3‖frω‖q,Ωγ‖∇ϕ‖q′,R3 .

(VI.4.20)

On the other hand, again by (VI.4.19), it is clear that

|(∇Ψ · ∇ϕ,ω)| ≤ c4‖frω‖q,Ωγ‖∇ϕ‖q′,R3 (VI.4.21)
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and therefore, collecting (VI.4.16)–(VI.4.18), (VI.4.20), and (VI.4.21) we re-
cover

‖∇(Ψω)‖q,Ω ≤ c5. (VI.4.22)

By reasoning as in the case where q = 2, from (VI.4.22) we obtain

f1+rD2v ∈ Lq(Ωγ2 )

and the proof of the lemma is then completed. ut

Remark VI.4.1 The only point in the proof just given where we need the
assumption q > 2 is in increasing the first integral on the right-hand side of
(VI.4.18), by means of (VI.4.19) (see (VI.4.20)). However, if

f(t) = f0 +Mt, (VI.4.23)

i.e., Ω is an infinite portion of a straight cone, we have |x| ≤ cf(xn) for all
x ∈ Ω and so if q′ < n, that is, q > n/(n− 1), using (II.6.10) we have

|(∆Ψω,ϕ)| ≤ c2‖frω‖q,Ω‖ϕ/|x|‖q′,Rn ≤ c3‖frω‖q,Ωγ‖∇ϕ‖q′,Rn .

Therefore, if f satisfies (VI.4.23), Lemma VI.4.1 is valid for all q ≥ 3/2 if
n = 3 and for all q ≥ 2 if n = 2. �

Remark VI.4.2 If f satisfies |f ′′(t)f(t)| ≤ c, Lemma VI.4.1 can be proved
with γα arbitrarily close to one. This is easily seen by using, throughout the
proof, f(t) in place of δ(t). �

The theorem to follow gives pointwise decay for a solution v ∈ D1,q(Ω).

Theorem VI.4.1 Assume v is a regular solution to (VI.4.1) such that v ∈
D1,q(Ω), for some q > 1. Then for all |α| ≥ 0 and all γ ∈ (0, 1)

lim
|x|→∞

|Dα∇v(x)| = 0, uniformly in Ωγ (VI.4.24)

and, if 1 < q ≤ n,

lim
|x|→∞

|v(x)| = 0, uniformly in Ωγ′ , (VI.4.25)

where γ′ ∈ (0, 1) [respectively, γ′ ∈ (0, 1/2)] can be taken arbitrarily close to
1 [respectively, to 1/2] if 1 < q < n [respectively, q = n].

Proof. From Lemma V.3.1 we have for all x ∈ Ω

vj(x) =

∫

Rn

H
(d)
ij (x− y)vi(y)dy, (VI.4.26)

where d < (1 − γ)f0 . Differentiating once (VI.4.26), and then differentiating
it again |α| times, after using the Hölder inequality we obtain
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|DαDkvj(x)| ≤ ‖DαH
(d)
ij (x− y)‖q′,Rn‖Dkvi‖q,Bd ≤ c‖Dkvi‖q,Bd ,

which proves (VI.4.24). Assume now 1 < q < n. By the Sobolev inequality we
have ‖v‖s,Ω <∞, s = nq/(n− q) (see Exercise VI.4.1) and (VI.4.26) gives

|vj(x)| ≤ ‖H(d)
ij (x− y)‖s′,Rn‖vi‖s,Bd

showing (VI.4.25) if 1 < q < n. To prove the theorem completely, it remains
to prove (VI.4.25) for q = n. To this end, setting for a ∈ (0, 1]

Σa(xn) = {x ∈ Σ(xn) : |x′| < af(xn)} (VI.4.27)

we denote by ψ = ψ(|x′|) a smooth function that is one in Σσ(xn) and zero
outside Σσ+ε(xn), ε > 0. Moreover, we take

|∇ψ(|x′|)| ≤ c1
f(xn)

with c independent of x. Since q > n − 1 and ψv ∈ W 1,n
0 (Σ), we may apply

inequality (II.11.14) to ψv and use the latter to obtain for all x = (x′, xn) ∈ Ωσ

|v(x′, xn)|n ≤ c

[
1

fn−1(xn)

∫

Σσ+ε(xn)

vn(ξ′, xn)dξ′

+f(xn)

∫

Σσ+ε(xn)

|∇v(ξ′, xn)|ndξ′
]

≡ I1(xn) + I2(xn).

From (VI.3.5) and (VI.4.24) it follows that

lim
|x|→∞

I1(xn) = 0 in Ωσ

and so it remains to show

lim
|x|→∞

I2(xn) = 0 in Ωσ. (VI.4.28)

By a simple calculation we derive

∣∣∣∣
d

dt
‖∇v‖n

n,Σσ+ε(t)

∣∣∣∣ ≤ c3

{
f−1(t)‖∇v‖n

n,Σσ+ε(t)
+ ‖∇v‖n−1

n,Σσ+ε(t)

+‖D2v‖n,Σσ+ε(t)

}

and so, by employing inequality (II.2.7), it follows that
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∣∣∣∣
dI2
dt

∣∣∣∣ ≤ c4

[
‖∇v‖n

n,Σσ+ε(t)
+ fn(t)‖D2v‖n

n,Σσ+ε(t)

]
.

By assumption and Lemma VI.4.1 with |α| = 2, r = 0 we have, for all σ < 1/2,

dI2
dt

∈ L1(0,∞)

and therefore ` ∈ R+ exists such that

lim
|t|→∞

I2(t) = `.

However, again by assumption, there exists at least a sequence {tk} tending
to infinity along which it holds

|v|n1,n,Σσ+ε(tk) = o(1/tk)

while, by (VI.4.3)2,
f(tk) = O(tk).

As a consequence,
lim

tk→∞
I(tk) = 0,

which shows (VI.4.28). The proof of the theorem is therefore completed. ut

In the following theorem we establish the decay rate.

Theorem VI.4.2 Let v satisfy the hypotheses of Theorem VI.4.1. If n = 3,
then for all x ∈ Ωγα and all |α| ≥ 0

|Dαv(x)| ≤ c1

f |α|+ϑ(x3)
, 1 < q < 3

|Dα∇v(x)| ≤ c2

f |α|(x3)
, q ≥ 3

(VI.4.29)

where ϑ = 1/2 if 1 < q ≤ 2, while if 2 < q < 3, ϑ = (3 − q)/q for α = 0 and
ϑ = 0 for |α| ≥ 1. If n = 2, then for all x ∈ Ωγα and |α| ≥ 0

|Dα∇v(x)| ≤ c3

f |α|(x2)
, 1 < q ≤ 2. (VI.4.30)

Here γα is any number less than 1/4; moreover, the constants ci depend on
n, q, α,M , and on the norm |v|1,q.

Proof. We begin to prove (VI.4.29)1. By assumption

v ∈ D1,q(Ωγ), γ < 1,

and, by (VI.3.6), v/f ∈ Lq(Ωγ). Without loss we may assume q ≥ 2 since, by
Theorem VI.4.1 and the regularity hypothesis on v, if
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v ∈ D1,q(Ω), for some q > 1,

then
v ∈ D1,r(Ωγ), v/f ∈ Lr(Ωγ) for all r ≥ q.

Set
w = δuβ,γ,R,R0v,

where δ is the function constructed in Lemma III.4.2 and uβ,R,R0 is the “cut-
off” function introduced in the proof of Lemma VI.4.1. From (VI.4.5) and the
properties of δ we derive

‖D2w‖q,Ω ≤ c1
(
‖v/f‖q,Ωγ + ‖∇v‖q,Ωγ + ‖fD2v‖q,Ωγ

)

with c1 independent of R and γ < 1/2 arbitrarily close to 1/2. From Lemma
VI.4.1 it follows that

‖D2w‖q,Ω ≤ c2. (VI.4.31)

Considering the function w in the whole of R3 and recalling that q < 3, from
the Sobolev inequality and (VI.4.31) we have

‖∇w‖s,R3 ≤ κ‖D2w‖q,R3 ≤ c3, s = 3q/(3 − q)

with c3 independent ofR. By taking into account the properties of the function
δ it is not hard to show that the preceding inequality in the limit R → ∞
furnishes

‖f∇v‖s,Ωγ1
≤ c4, (VI.4.32)

where γ1 < γ can be taken arbitrarily close to γ/2, i.e., to 1/4. Since q < 3
we may apply to v the Sobolev inequality to deduce v ∈ Ls(Ω) (see Exercise
VI.4.1). Thus, from (VI.4.32) it follows that v satisfies the assumption of
Lemma VI.4.1 and for all |α| ≥ 1 we conclude

‖f |α|Dαv‖s,Ωγα
≤ c5, (VI.4.33)

where γα can be taken close to 1/4. Take x ∈ Ωγα , d < dist (x, ∂Ωγα) and set

uα = δ|α|Dαv

with δ ≡ f in Ωγα . Applying Theorem II.3.2 to θuα with θ = 1 in Bd/2(x)
and θ = 0 outside B(3/4)d(x) we obtain

|f |α|(x3)D
αv(x)| ≤ c‖uα‖m,s,Bd(x) (VI.4.34)

whenever m ≥ s/3. However, from the properties of the function δ we easily
deduce

‖uα‖m,s,Bd(x) ≤ ‖f |α|Dαv‖s,Bd(x) +

m∑

|`|=1

‖f |α|D`Dαv‖s,Bd(x) (VI.4.35)
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and so by (VI.4.33)–(VI.4.35) we recover (VI.4.29)1. Using Theorem II.11.2
and inequality (II.11.11), and proceeding as in the proof of Theorem VI.4.1,
we establish the estimate

f3(x3)|v(x′, x3)|s ≤ c2

{
f(x3)‖v‖s

s,Σσ+ε(x3)
+ fs+1(x3)‖∇v‖s

s,Σσ+ε(x3)

}

≡ I(x3).
(VI.4.36)

Denoting, temporarily, x3 by t, we want to show that the function I = I(t) is
bounded for all sufficiently large t. To this end, it is sufficient to show that

dI/dt ∈ L1(0,∞).

We have
∣∣∣∣
dI

dt

∣∣∣∣ ≤ c3

{
‖v‖s

s,Σσ+ε(t)
+ f(t)‖v‖s−1

s,Σσ+ε(t)
‖∇v‖s,Σσ+ε(t)

+fs(t)‖∇v‖s
s,Σσ+ε(t)

+ fs+1(t)‖∇v‖s−1
s,Σσ+ε(t)

‖D2v‖s,Σσ+ε(t)

}

≤ c4

{
‖v‖s

s,Σσ+ε(t)
+ fs(t)‖∇v‖s

s,Σσ+ε(t)
+ f2s(t)‖D2v‖s

s,Σσ+ε(t)

}

(VI.4.37)
and since, by the Sobolev inequality (see Exercise VI.4.1)

‖∇v‖s
s,Σ(t) ∈ L1(0,∞),

from (VI.4.33), (VI.4.36) and (VI.4.37) we obtain (VI.4.29)1 also in the case
where α = 0. In order to show (VI.4.29)2 we set

uα = δ|α|Dα∇v,

with δ ≡ f in Ωγα . Proceeding as in the proof of (VI.4.29)1 we may establish
the inequality (see (VI.4.34))

|f |α|(x3)D
α∇v(x)| ≤ c‖uα‖2,q,Bd(x), (VI.4.38)

where x ∈ Ωγα , d < dist (x, ∂Ωγα). Therefore, since

‖uα‖2,q,Bd(x) ≤ c


‖f |α|Dα∇v‖q,Bd(x) +

2∑

|`|=1

‖f |α|D`Dα∇v‖q,Bd(x)


 ,

(VI.4.39)
(VI.4.29)2 follows from (VI.4.38), (VI.4.39) and Lemma VI.4.1. The proof of
(VI.4.30) is entirely identical to the one just given for (VI.4.29), if one recalls
that, as already observed, v ∈ D1,q(Ω) for some q < 2 implies

v ∈ D1,2(Ωσ), v/f ∈ L2(Ωσ) for all σ < 1.

The proof of the theorem is therefore completed. ut
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Remark VI.4.3 If f(t) verifies (VI.4.23), then estimate (VI.4.30) holds for
any q ∈ (1,∞). This is a consequence of Remark VI.4.1. �

Remark VI.4.4 If |f ′′(t)f(t)| ≤ c, then all conclusions in Theorem VI.4.2
remain valid for γ, γα < 1. �

Exercise VI.4.1 Let Ω be a domain of the type introduced at the beginning of this

section and let u be a smooth function in Ω, vanishing on Γ and with u ∈ D1,q(Ω),

1 < q < n. Show that ‖u‖s < ∞, s = nq/(n− q) (Sobolev inequality). Hint: Extend

u to zero outside Ω. The function ψ(x/R0)u(x), with ψ given in the proof of Lemma

VI.4.1 belongs to D1,q(Rn).

We now turn our attention to the behavior of the pressure. First of all,
from Theorem VI.4.1, Theorem VI.4.2, and (VI.4.1)1 we at once obtain

Theorem VI.4.3 Let v satisfy the assumptions of Theorem VI.4.1. Then for
all |α| ≥ 0

lim
|x|→∞

Dα∇p(x) = 0

uniformly in Ωγ , γ < 1. Moreover if n = 3, then for all x ∈ Ωγα

|Dα∇p(x)| ≤ c1

f |α|+1(x3)
1 < q < 3

|Dα∇p(x)| ≤ c2

f |α|(x3)
q ≥ 3

while, if n = 2,

|Dα∇p(x)| ≤ c3

f |α|(x2)
1 < q ≤ 2,

where γα < 1/4 and, for fixed α, it can be taken arbitrarily close to 1/4.

Furthermore, using Theorem VI.4.2 we can prove the following result.

Theorem VI.4.4 Let v ∈ D1,2(Ω). Then, there exists a constant p0 ∈ R
such that

lim
|x|→∞

p(x) = p0

uniformly in Ωγ , for any γ < 1/4.

Proof. Denote by p(xn) the mean of the pressure p over Σ(xn), i.e.,

p(xn) =
1

|Σσ(xn)|

∫

Σσ(xn)

p(x′, xn)dx′,

where Σσ is defined in (VI.4.27). The following inequality holds:
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|p(x′, xn) − p(xn)|n ≤ cf(xn)

∫

Σσ(xn)

|∇p(x′, xn)|ndx′, (VI.4.40)

with x′ ∈, and γ an arbitrary number less than σ. Actually, applying inequality
(II.11.14) to ψ(p − p), with ψ the “cut-off” function introduced in the proof
of Theorem VI.4.1, we readily deduce

|p(x′, xn) − p(xn)|n

≤ c

[
f1−n(xn)

∫

Σσ(xn)

|p(x′, xn) − p(xn)|ndx′

+f(xn)

∫

Σσ(xn)

|∇p(x′, xn)|ndx′
]
.

(VI.4.41)

Increasing the first integral on the right-hand side of (VI.4.41) by means of
inequality (II.5.10), we recover (VI.4.40). Denoting temporarily xn by t and
the right-hand side of (VI.4.40) by I = I(t), we also have

∣∣∣∣
dI

dt

∣∣∣∣ ≤ c1

{
‖∇p‖n

n,Σσ(t) + f(t)‖∇p‖n,Σσ(t)‖D2p‖n,Σσ(t)

}

which, by Lemma VI.4.1 and (VI.4.1)1, in turn implies dI/dt ∈ L1(0,∞) for
all σ < 1/4. Thus,

lim
t→∞

I(t)

exists and since
lim

tk→∞
I(tk) = 0

at least along a suitable sequence {tk} (as a consequence of the summability
of ∇p in Ln(Ωγ), which follows from (VI.4.1)1, Lemma VI.4.1 and Theorem
VI.4.3, and of the fact that f(t) = O(t)) we may conclude

lim
|x|→∞

|p(x′, xn) − p(xn)| = 0 (VI.4.42)

uniformly in Ωγ . Next, we shall show that p tends to a prescribed limit as
|x| → ∞. From the nth component of (VI.4.1) we derive

∂

∂xn
p(xn) =

1

|Σσ(xn)|

∫

Σσ(xn)

∆vn

which in turn furnishes

|p(t2) − p(t1)| ≤ c1

∫ t2

t1

f1−n(t)

(∫

Σσ(t)

|D2v(x′, xn)|dx′
)
dt

for arbitrary t2, t1 > 0. Use of the Schwarz inequality gives
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|p(t2) − p(t1)| ≤ c2

∫ t2

t1

f−(n+1)/2(t)
(
f(t)‖D2v‖2,Σσ(t)

)

≤ c3

∫ t2

t1

(
f−n−1(t) + f2(t)‖D2v‖2

2,Σσ(t)

)
dt

≡ I1(t) + I2(t).

Now, as t2, t1 → ∞, I1(t) tends to zero because the assumption v ∈ D1,2(Ω)
implies (VI.4.4) with q = 2, while I2 tends to zero by Lemma VI.4.1 and we
conclude

lim
xn→∞

p(xn) = p0

for some constant p0. The theorem then follows from this latter condition and
(VI.4.42). ut

Remark VI.4.5 If |f ′′(t)f(t)| ≤ c, in the previous theorem we can take
γ < 1. �

Remark VI.4.6 If f does not satisfy (VI.4.4) with q ≤ 2 and, consequently,
if v 6∈ D1,2(Ω), it is not expected that the pressure field tends to a constant at
large distances in the exit. Actually, if n = 2, Amick & Fraenkel (1980) prove
that p diverges. However, using the following heuristic argument, it is easy
to convince oneself that the same property should hold also for n = 3. Since
f(xn) is the only “natural length” of the problem, by the incompressibility
condition ∇ · v = 0 the longitudinal velocity component v3 has to have the
asymptotic form g(|x′|/f(xn))/f2(xn). Now, if we take the third component
of the Stokes equations we find ∂p/∂x3 = ∂2v3/∂x

2
1 + ∂2v3/∂x

2
2 ≈ f−4(x3).

As a consequence, if f does not verify (VI.4.4) with some q ≤ 2, p diverges;
see also Pileckas (1996a, 1996b, 1996c). �

Remark VI.4.7 The physical meaning of the constant to which the pres-
sure tends in the exits is very important and it is tightly related to the flux
Φ. Specifically, for solutions whose existence has been established in Theorem
VI.3.1, to prescribe the flux is equivalent to prescribing the difference p0 be-
tween the constant values p0i to which the pressure field p(x) tends in the exits
Ωi(i = 1, 2). This property, which was originally discovered for a particular
region of flow by Heywood (1976, Section 6), is simply proved in our case as
follows. Since p is defined up to a constant, we can always adjust it in such a
way that

lim
|x|→∞

p(x) = 0 in (Ω1)γ ≡ Ω1γ

lim
|x|→∞

p(x) = p0 in (Ω2)γ ≡ Ω2γ .

By the linearity of the problem (VI.4.1), it is sufficient to show that if p0 = 0
then the solution v determined in Theorem VI.3.1 is identically zero. On the
other hand, this will follow if we show



406 VI Steady Stokes Flow in Domains with Unbounded Boundaries

(∇v,∇a) = 0, (VI.4.43)

where a is the basis of D̂1,2
0 (Ω) / D1,2

0 (Ω) determined in Theorem III.5.2. To

prove this we observe that v ∈ D̂1,2
0 (Ω) and v is orthogonal to allϕ ∈ D1,2

0 (Ω),

see (VI.3.3). Therefore, since every ψ ∈ D̂1,2
0 (Ω) can be written as ψ = ϕ+λa,

λ ∈ R, from (VI.4.43) it follows that v is orthogonal to all functions of D̂1,2
0 (Ω)

and thus v ≡ 0. To show (VI.4.43) we multiply (VI.4.1)1 by a and integrate
by parts to obtain

−
∫

ω(t)

∇v : ∇a = −
∫

Σ1(t1)∪Σ2(t1)

n · ∇v · a+ p0

∫

Σ2(t1)

a ·n

+

∫

Σ2(t1)

(p− p0)a · n+

∫

Σ2(t1)

pa ·n,
(VI.4.44)

where

ω(t) = Ω0 ∪ {x ∈ Ω1 : xn < t} ∪ {x ∈ Ω2 : xn < t} .

From Theorem III.5.2 we know that a can be taken to be zero in a
neighborhood of the lateral surfaces of Ωiγ , γ < 1/4, and furthermore,
a(x) ≤ cf−n−1(x3). Therefore, if p0 = 0, we can pass to the limit as t → ∞
in (VI.4.44) and use Theorem VI.4.1 and Theorem VI.4.4 to obtain (VI.4.43).

�

Remark VI.4.8 The decay results of Theorem VI.4.1–Theorem VI.4.4 can
be fairly improved. In this respect, we refer the reader to Pileckas (1996a,
1996b, 1996c). A typical result proved there is the following one.

Theorem VI.4.5 Let Ω and v be as in Theorem VI.3.2 and let p be the
corresponding pressure given by Lemma IV.1.1. Assume, further, that Ω is of
class C l+2,δ, l ≥ 0, δ ∈ (0, 1). Then the following decay estimate hold

|Dαv(x)| ≤ C|φ|f−n+1−|α|
i (xn)

|Dα∇p(x)| ≤ C|φ|f−n+1−|α|
i (xn),

for x ∈ Ωi, l ≥ |α| ≥ 0. Moreover, there exists p0 ∈ R such that for x ∈ Ωi

|p(x)| ≤ C|φ|
∫ xn

0

f−n+1
i (t)dt+ p0.

In these relations, C = C(Ω, q, n).

�
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VI.5 Existence, Uniqueness, and Asymptotic Behavior of
Flow Through an Aperture

Let us consider the “aperture domain” (VI.0.7), i.e.,

Ω = {x ∈ Rn : xn 6= 0 or x′ ∈ S} , (VI.5.1)

where S is a bounded domain of Rn−1. As we have seen in Section VI.3 (see
Exercise VI.3.5), given any continuous linear functional f on D1,2

0 (Ω) and any

Φ ∈ R, there exists one and only one vector field v ∈ D̂1,2
0 (Ω) such that

(∇v,∇ϕ) = − [f ,ϕ] , for all ϕ ∈ D(Ω)

∫

S

vn = Φ,
(VI.5.2)

where [f,ϕ] denotes the value of f at ϕ. The aim of this section is to pro-
vide further existence results for problem (VI.5.2) with v in D1,q(Ω), q 6= 2,
together with corresponding estimates. Moreover, we shall also derive the
asymptotic structure of such solutions.

In what follows, we shall denote by D−1,q
0 (Ω) the dual space of D1,q′

0 (Ω)
and by |f |−1,q the norm of f ∈ D−1,q

0 (Ω). We also set

Σ = S ∪m
i=1 ωi

where ωi, i = 1, . . .m, are the connected components of Rn−1 − S, and

δS = δ(Σ).

Finally, with the origin of coordinates in Σ, we put

Ωδ
± = Ω2δS ∩ Rn

±.

The following theorem holds.

Theorem VI.5.1 Let Ω be given in (VI.5.1), n ≥ 2, with S a bounded,
locally Lipschitz domain of Rn−1. Given

f ∈ D−1,2
0 (Ω) ∩D−1,q

0 (Ω), Φ ∈ R,

where q ∈ (1, 2n/(n− 2)] if n ≥ 3, and q ∈ (1,∞) if n = 2, there exists one
and only one field v satisfying (VI.5.2) with

v ∈ D1,2
0 (Ω) ∩D1,q

0 (Ωδ
±).

Moreover, denoting by p the pressure field associated to v by Lemma IV.1.1,
there exist constants p+, p− ∈ R such that
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p− p± ∈ L2(Rn
±) ∩ Lq((Ωδ

±),

and the following estimate holds:

|v|1,2 + |v|1,q,Ωδ
±

+ ‖p− p+‖2,Rn
+

+ ‖p− p−‖2,Rn
−

+‖p− p+‖q,Ωδ
+

+ ‖p− p−‖q,Ωδ
−

≤ c (|f |−1,2 + |f |−1,q + |Φ|) .

Proof. The uniqueness part is proved exactly as in Theorem VI.3.1, and it is
left to the reader as an exercise. To show existence, we look for a solution of
the form

v = u+ Φb

where the field b has been given at the beginning of Section III.4.3. We have
(see (III.4.6)–(III.4.8))

b ∈ C∞(Ω)

∇ · b(x) = 0

|b(x)| ≤ c|x|−n+1

|∇b(x)| ≤ c|x|−n

∫

S

bn = 1

while u obeys

(∇u,∇ϕ) = −(∇b,∇ϕ) − [f ,ϕ] , for all ϕ ∈ D(Ω)

∫

S

un = 0.
(VI.5.3)

Since the right-hand side of (VI.5.3)1 defines a bounded linear functional

in D−1,2
0 (Ω), we deduce the existence of u ∈ D1,2

0 (Ω) satisfying (VI.5.3).
Furthermore, putting u in place of ϕ into (VI.5.3)1 (this can be done by a
simplest density procedure) furnishes

|u|21,2 ≤ (|Φ||b|1,2 + |f|−1,2) |u|1,2

implying
|v|1,2 ≤ c1 (|Φ|+ |f|−1,2) (VI.5.4)

with
c1 = (1 + 2|b|1,2).

In view of Lemma IV.1.1 we can associate to v a pressure field p ∈ L2
loc(Ω)

such that
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(∇v,∇ψ) = (p,∇ · ψ) − [f ,ψ] , for all ψ ∈ C∞
0 (Ω). (VI.5.5)

Let us show that there exist constants p+, p− ∈ R such that

p− p+ ∈ L2(Rn
+)

p− p− ∈ L2(IRn
−)

(VI.5.6)

and that the following inequality holds

‖p− p+‖2,Rn
+

+ ‖p− p−‖2,IRn
− ≤ c2 (|f |−1,2 + |v|1,2) . (VI.5.7)

Actually, consider the functional

F(ψ) = (∇v,∇ψ) + [f ,ψ], ψ ∈ D1,2
0 (Rn

+).

Clearly, F is linear and bounded in ψ ∈ D1,2
0 (Rn

+) and, in view of (VI.5.2),

it vanishes identically on D1,2
0 (Rn

+). Thus, by Corollary III.5.1, there exists
π+ ∈ L2(Rn

+) such that

F(ψ) = (π+,∇ · ψ)

which, once compared with (VI.5.5), proves (VI.5.6)1. In a completely analo-
gous way one shows (VI.5.6)2. We now write (VI.5.5) with p− p+ in place of

p. By density, we deduce that (VI.5.5) continues to hold for all ψ ∈ D1,2
0 (Rn

+).
Choosing ψ as a solution to the problem

∇ ·ψ = p− p+

ψ ∈ D1,2
0 (Rn

+)

|ψ|1,2 ≤ c‖p− p+‖2,Rn
+

(VI.5.8)

(such a solution certainly exists in view of Corollary IV.3.1), from (VI.5.5)
and (VI.5.8) we obtain

‖p− p+‖2
2,Rn

+
= (∇v,∇ψ) + [f ,ψ] ≤ c (|v|1,2 + |f |−1,2) ‖p− p+‖2,Rn

+
.

Analogously,

‖p− p+‖2,Rn
+
≤ c (|v|1,2 + |f |−1,2)

and (VI.5.7) follows from these latter inequalities. We shall next derive esti-
mates for v in D1,q . For R ≥ 2δS , we let ζ = ζ(|x|) denote a non-decreasing,
smooth function with ζ(|x|) = 0 if |x| ≤ R/2 and ζ(|x|) = 1 if |x| ≥ R. Setting

w = ζv, τ = ζ(p− p±),

we easily obtain that w is a generalized solution to the following problem (see
Section IV.3):
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∆w = ∇τ + F±

∇ ·w = g

}
in Rn

±

w = 0 on Σ ≡ Rn−1 × {0},

(VI.5.9)

where
F± = 2∇ζ · ∇v−∆ζv − (p− p±)∇ζ + ζf

g = ∇ζ · v.
For R > 0, we put

Ω±
R,2R =

{
x ∈ Rn

± : R < |x| < 2R
}

Ω±
R =

{
x ∈ Rn

± : |x| < R
}
,

ΩR = Rn −BR,

ΩR
± = Rn

± ∩ΩR.

Evidently,

|F±|−1,q ≤ c3

(
‖v‖q,Ω±

R,2R
+ ‖p− p±‖−1,q,Ω±

R,2R
+ |f |−1,q

)

‖g‖q ≤ ‖v‖q,Ω±
R,2R

.
(VI.5.10)

Employing the embedding Theorem II.3.4 and inequality (II.5.18), from the
assumptions made on q we easily find

‖v‖q,Ω±
2R

+ ‖p− p±‖−1,q,Ω±
2R

≤ c (|v|1,2 + ‖p− p±‖2) . (VI.5.11)

Thus, recalling that ζ(|x|) is equal to one for |x| ≥ R, from Theorem IV.3.3
together with (VI.5.4), (VI.5.7), and (VI.5.11) we find

|v|1,q,ΩR + ‖p− p+‖q,ΩR
+

+ ‖p− p−‖q,ΩR
−
≤ c (|f|−1,2 + |f |−1,q) (VI.5.12)

and the theorem follows from (VI.5.12), (VI.5.11), (VI.5.4), and (VI.5.7). ut
Remark VI.5.1 The fact that, in the theorem just shown, we must require
that f belong simultaneously to D−1,2

0 (Ω) and toD−1,q
0 (Ω), that q be suitably

restricted, and that ∇v, p belong to Lq(Ω ∩ BR), only for sufficiently large
R, is due to the circumstance that Ω has no regularity near the boundary of
S, since S is (n − 1)-dimensional. However, if we assume that the “hole” S
has “thickness,” becoming a domain of Rn of class C2, in such a way that Ω
becomes likewise of class C2, then one can show that, for any f ∈ D−1,q

0 (Ω),
1 < q <∞, there is one and only one solution v ∈ D1,q

0 (Ω) to (VI.5.2) and that
the associated pressure field p satisfies p− p+ ∈ Lq(Rn

+), p− p− ∈ Lq(Rn
−) for

some constants p+, p−. Moreover, v and p obey the corresponding estimates.
Finally, we would like to observe that, if S has no “thickness,” and n = 2, one
can still prove that v ∈ L∞(Ω), see Solonnikov (1988) and Galdi, Padula and
Solonnikov (1996). �
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Remark VI.5.2 Arguing as in Remark VI.4.7, one can show that, for f ≡ 0,
p+ = p− if and only if the flux Φ is zero. Actually, if f 6≡ 0, one cannot deduce
p+ = p−, even if Φ = 0. In fact, taking, for instance, f ∈ C∞

0 (Ω) we could
prove that, for φ = 0, the following relation holds:

p− − p+ =

∫

Ω

f ·w,

where w is a solution to (VI.5.2) with f ≡ 0 and Φ = 1. �

In the last part of this section we shall analyze the asymptotic structure
of the generalized solutions just obtained. We begin to show a general repre-
sentation formula in the case when f is in divergence form.

Lemma VI.5.1 Let v ∈ D̂1,q
0 (Ω), 1 < q <∞, satisfy (VI.5.2)1. The following

assertions hold true:

(i) Suppose
[f ,ϕ] = −(F ,∇ϕ),

where
F ∈ Lq(Ω) ∩ Lr(Ω) , for some r ∈ (1, n).

Then, for a.a. x ∈ Rn
±:

vj(x) = −
∫

Rn
±

D`G
±
ij(x, y)F`i(y)dy −

∫

S

vi(y)Ti`(G
±
j , g

±
j )(x, y)n`(y)dσy,

(VI.5.13)
where G± = {G±

ij}, g± =
{
g±i
}

is the Green’s tensor for the Stokes problem

in Rn
± (see (IV.3.46)–(IV.3.51)), and G±

j ≡ (G±
1j, G

±
2j, . . . , G

±
nj).

(ii)Suppose that
f ∈ Lq(Ω), with bounded support.

Then, there exist p+, p− ∈ R such that for a.a. x ∈ Rn
±:

vj(x) =

∫

Rn
±

G±
ij(x, y)fi(y)dy −

∫

S

vi(y)Ti`(G
±
j , g

±
j )(x, y)n`(y)dσy

p(x) = p± −
∫

Rn
±

g±i (x, y)fi(y)dy − 2

∫

S

vi(y)
∂g±i (x− y)

∂x`
n`(y)dσy ,

(VI.5.14)

where p is the pressure field associated to v by Lemma IV.1.1.

Proof. Since the proof is exactly the same for Rn
+ and Rn

−, we shall show the
validity of (i) and (ii) for Rn

+. Moreover, for simplicity, the Green’s tensor
in Rn

+ will be denoted by G, g. Let us commence to show (i). We begin to
observe that, reasoning as in the proof of Theorem VI.5.1, we can associate to
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v a pressure field p in the sense of Lemma IV.1.1 such that p− p+ ∈ Lq(Rn
+).

We next notice that from inequality (II.5.18) it follows that v ∈W 1,q(C), for
every cube C with a side at xn = 0 and so, setting Σ = Rn−1 × {0}, the
trace of v at Σ belongs W 1−1/q,q(S) ⊂ D1−1/q,q(Σ) (see Sections II.3 and
II.6) with support contained in S. Therefore, in view of Theorem II.4.1 and
Theorem II.3.1, there exist two sequences

{F (k)} ⊂ C∞
0 (R

n

+), {η(k)} ⊂ C∞
0 (Σ)

approximating F and v in the norms of Lq(Rn
+) ∩ Lr(Rn

+) and D1−1/q,q(Σ),

respectively. Let us denote by v(k) and p(k), k ∈ N, velocity and pressure
fields of the Stokes problem in Rn

+, corresponding to the force −∇ · F (k) and

to the velocity η(k) at Σ . From Theorem IV.3.3, we obtain that, as k → ∞,
v(k), p(k) converge to v, p− p+ in the norm of D1,q(Rn

+)×Lq(Rn
+). Therefore,

in particular, we may select a subsequence, denoted again by v(k), p(k), such
that

∇v(k)(x) → ∇v(x), p(k)(x) → p(x) a.e. in Rn
+. (VI.5.15)

Since v and vk are identically vanishing on Σ − S, from (II.5.18) we readily
obtain

‖v − v(k)‖q,C ≤ c(C)|v − v(k)|1,q,C, (VI.5.16)

for any cube C with a side at xn = 0 strictly containing S. Choosing an
increasing sequence of cubes of type C invading Rn

+ and employing the Cantor
diagonalization method, from (VI.5.15) and (VI.5.16) we finally deduce the
existence of a sequence, which will be denoted again by v(k), satisfying

lim
k→∞

v(k)(x) = v(x), for a.a. x ∈ Rn
+. (VI.5.17)

Now, because of the results of Exercise IV.8.2, the following representation
holds for v(k):

v
(k)
j (x) =

∫

Rn
+

D`Gij(x, y)F
(k)
`i (y)dy +

∫

S

η
(k)
i (y)Ti`(Gj, gj)(x, y)n`(y)dσy .

(VI.5.18)
We wish to let k → ∞ into this relation. Set

F (k)(x) =

∫

Rn
+

D`Gij(x, y)[F
(k)
`i (y) − F`i(y)]dy. (VI.5.19)

Since
|D`Gij(x, y)| ≤ c|x− y|−n+1

(see (IV.3.50), (IV.3.52)), from the assumption made on F and the Sobolev
Theorem II.11.3, we derive, along a subsequence at least,

lim
k→∞

F (k)(x) = 0 for a.a. x ∈ Rn
+. (VI.5.20)
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It remains to prove the convergence of the last term in (VI.5.18). Taking into
account

|Ti`(Gj, gj)(x, y)| ≤ c|x− y|−n+1

(see (IV.3.50), (IV.3.52)), and setting

V(k)(x) =

∫

S

[η
(k)
i (y) − vi(y)]Ti`(Gj, gj)(x, y)n`(y)dσy , (VI.5.21)

from the Hölder inequality we obtain

|V(k)(x)| ≤ c‖η(k) − v‖q,S ,

where c = c(S, d), d = dist (x, S). Thus,

V(k)(x) → 0 in Rn
+. (VI.5.22)

Representation (VI.5.13) is then a consequence of (VI.5.17)–(VI.5.22). The
proof of (VI.5.14) is similar. Actually, we now start with a sequence of func-

tions {f (k)}, {η(k)} where η(k) is the same as before, while f (k) ∈ C∞
0 (ω),

with ω = supp (f ), converge to f in Lq(Ω) ∩ Lr(Ω). By the same technique
used before, we then show the validity of (VI.5.14)1, with the only change
that, to prove the convergence of the term

∫

Rn
+

Gij(x, y)f
(k)
i (y)dy =

∫

ω

Gij(x, y)f
(k)
i (y)dy,

we have to employ exactly the same reasoning used to show the convergence
of the term Vj in the proof ofTheorem IV.8.1. This is made possible by the
fact that G and U obey pointwise estimates of the same type. Concerning the
representation of the pressure, we easily establish, as before, the a.e. pointwise
convergence of p(k) to p−p+. Moreover, the a.e. pointwise convergence of the
term ∫

ω

gi(x, y)f
(k)
i (y)dy

is acquired by taking into account the estimate

|g(x, y)| ≤ c|x− y|−n+1

(see (IV.3.50), (IV.3.51)) and Exercise IV.3.3, and by using a reasoning sim-
ilar to that adopted to show the convergence of the term P in the proof of
Theorem IV.8.1 (details are left to the reader). Finally, observing that again
from (IV.3.50), (IV.3.51), and Exercise IV.3.3,

|∇g(x, y)| ≤ c|x− y|−n,

we have ∣∣∣∣
∫

S

[η
(k)
i (y) − vi(y)]n`(y)dσy

∣∣∣∣ ≤ c‖η(k) − v‖q,S

which also implies the pointwise convergence of the boundary integral. The
lemma is therefore completely proved. ut
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The result just shown furnishes the following one as a simple corollary.

Theorem VI.5.2 Let v ∈ D̂1,q
0 (Ω), 1 < q <∞, satisfy (VI.5.2)1 correspond-

ing to f ∈ Lq(Ω) of bounded support. Then, there exist constants p+, p− such
that v and the corresponding pressure field p admit the following asymptotic
expansion as |x| → ∞ in Rn

±:

vj(x) = b±i Tin(G±
j , g

±
j )(x, 0) + ϕ±

j (x)

p(x) = p± + 2b±i Dn(g±i )(x, 0) + β±(x),
(VI.5.23)

where

b±i = ±
∫

S

vi (VI.5.24)

and, for all |α| ≥ 0,

Dαϕ±
j = O(|x|−n+1−|α|)

Dαβ± = O(|x|−n−|α|).
(VI.5.25)

In particular, if f ≡ 0, then

Dαϕ±
j = O(|x|−n−|α|)

Dαβ± = O(|x|−n−1−|α|).
(VI.5.26)

Proof. By the fundamental property of the Green’s tensor we have that
G±(x, 0) = 0 for all x ∈ Rn

±. Therefore, from (VI.5.14)1 we find

vj(x) = b±i Tin(G±
j , g

±
j )(x, 0) +

∫

Rn
±

[G±
ij(x, y) −G±

ij(x, 0)]fi(y)dy

−
∫

S

vi(y)[Ti`(G
±
j , g

±
j )(x, y) − Ti`(G

±
j , g

±
j )(x, 0)]n`(y)dσy.

(VI.5.27)
Applying the Lagrange theorem in the integrands of (VI.5.27) and using
(IV.3.50), (IV.3.51), and Exercise IV.3.3 we may proceed as in the proof of
Theorem V.3.2 to show the validity of (VI.5.23)1, (VI.5.24), and (VI.5.25)1
and, for f ≡ 0, of ((VI.5.26)1. Observing that, by (IV.3.46)–(IV.3.49), it also
follows that g(x, 0) = 0, we may establish in a completely analogous way
(VI.5.23)2, (VI.5.24), (VI.5.25)2, and, for f ≡ 0, (VI.5.26)2. The proof of the
theorem is acquired. ut

Remark VI.5.3 In view of the estimates on G and g given in (IV.3.50),
(IV.3.51) and Exercise IV.3.3, Theorem VI.5.2 implies, in particular, that at
large distances, v behaves as |x|−n+1 for n ≥ 2. �
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VI.6 Notes for the Chapter

Section VI.1. Although differing in details, the material presented here is
based on the treatment of Amick (1977). In particular, Theorem VI.1.2 can
be deduced from the work of this author.

Section VI.2. The main result of this section, Theorem VI.2.2, is due to me.
It has been obtained by coupling the ideas of Horgan & Wheeler (1978) with
those of Amick (1977,1978) and of Ladyzhenskaya & Solonnikov (1980). In
particular, Lemma VI.2.1 and Theorem VI.2.1 are due to Ladyzhenskaya and
Solonnikov, while Lemma VI.2.2 is proved by Horgan and Wheeler. Somewhat
weaker results than those of Theorem VI.2.2 can be deduced from the papers
of Horgan (1978) and Ames & Payne (1989). Extension of these results to
compressible fluids has been recently proved by Padula & Pileckas (1992, §7).

Section VI.3. The guiding ideas are essentially taken from the works of
Heywood (1976, §6) and Solonnikov & Pileckas (1977).

Concerning domains with varying cross-sections (not necessarily unbounded),
we refer the reader to the papers of Fraenkel (1973), Iosif’jan (1978), Pileckas
(1981), and Nazarov & Pileckas (1983).

Section VI.4. The approach proposed here is due to me. The proof of The-
orem VI.4.3 is inspired by the work of Gilbarg & Weinberger (1978, §4).

The study of certain asymptotic behavior in domains with outlets contain-
ing a semi-infinite cone has been performed by Pileckas (1980a).

Results on existence, uniqueness and asymptotic decay of solutions in do-
mains that become “layer-like” at infinity are provided by Nazarov & Pileckas
(1999a, 2001). It is interesting to observe that, for n = 3, solutions show only
a power-like decay, and not an exponential one.

Section VI.5. The “flow through an aperture” (or “flow through a slit” in
the two-dimensional case) is a well studied problem in classical fluid dynam-
ics, mostly, for its applications to resonance phenomena in narrow-mouthed
harbors; see, e.g. Miles & Lee (1975). As a matter of fact, in absence of body
forces, explicit solutions can be exhibited in the two-dimensional inviscid case
(Lamb 1932, p. 73; Milne-Thomson 1938, §§6.10, 11.53) and in the viscous
case as well (Stokes problem), when the aperture is a circle (Milne-Thomson
1938, §15.56). In the mathematical community, seemingly, this type of flow
became popular and thoroughly investigated in its viscous formulation, only
after the publication of the fundamental paper of Heywood (1976).

The theory described in this section is due to Galdi & Sohr (1992); see also
Farwig and Sohr (1994b). Similar results have been obtained, independently
and by different tools, by Borchers & Pileckas (1992). However, the asymptotic
estimates given in Theorem VI.5.2 are somewhat more detailed than those
provided by the latter authors.





VII

Steady Oseen Flow in Exterior Domains

e vidi le fiammelle andare avante,
lasciando retro a sè l’aer dipinto.

DANTE, Purgatorio XXIX, vv. 73-74

Introduction

As we emphasized in the Introduction to Chapter V, the Stokes approximation
may fail to describe the physical properties of a system constituted by an
object B moving by assigned rigid motion with “small” translational (v0) and
angular (ω) velocities in a viscous liquid, at least at “large” distances from
B, where the viscous effects become less important.

In particular, for B a ball translating without rotating (that is, ω = 0),
the explicit solution one finds (see (V.0.4)) exhibits no wake behind the body
and is, therefore, unacceptable from the physical viewpoint. Moreover, for B a
circle (plane motion), the analogous problem admits no solution except for the
trivial one, thus leading to the Stokes paradox. It is interesting to remark that
a sort of similar paradox also arises in the three-dimensional case, the moment
one tries to evaluate the first-order (in the Reynolds number) correction to
the zero-th order solution (V.0.4); see Whitehead (1888). In addition to all
the above, as observed by Oseen (1927, p.165), for the solution (V.0.4) we
obtain, after a simple calculation,

∣∣∣∣
v · ∇v
∆v

∣∣∣∣→ ∞ as |x| → ∞,

no matter how small |v0| is, thus violating the assumption under which the
Stokes equations are derived (see the Introduction to Chapter IV).
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As we already remarked, it is reasonable to argue that these “anomalous
behaviors” must be chiefly ascribed to the fact that the Stokes approximation
completely disregards the inertia of the liquid or, in equivalent mathematical
terms, it ignores possibly significant information arising from the nonlinear
term in the Navier-Stokes equation (I.0.1)1. One is thus naturally lead to
introduce other linearizations of (I.0.1)1 that may, somehow, take into account
this feature.

With this in mind, C.W. Oseen proposed in 1910 (see also Oseen 1927,
§15) a linearization of the Navier-Stokes equations with the main objective of
avoiding the paradoxes and the incongruities related to the Stokes approxima-
tion.1 The original equations introduced by Oseen (which we will refer to as
Oseen approximation) are formally obtained by linearizing the Navier-Stokes
equations around a nonzero purely translational motion v = v0, p = p0,
where v0 and p0 are given constant vector and scalar quantities, respectively.
However, for reasons that are mainly dictated by a considerable number of
significant applications (see Galdi 2002, and the references therein), we shall
analyze a more general approximation (which we will refer to as generalized
Oseen approximation), consisting of linearizing (I.2.2)1 around the (nonzero)
rigid motion, v = v0 +ω×x ≡ V (x), p = p0, where v0 and ω are prescribed
(constant) vectors and p0 is a given scalar quantity. We recall that, from a
physical viewpoint, v0 and ω represent the (constant) translational and the
angular velocity of the body B, respectively, when the motion of the liquid is
referred to a frame attached to B.2

Thus, denoting by Ω the exterior region occupied by the liquid, from
(I.2.3)1 we obtain the following generalized Oseen system3

ν∆v+ V · ∇v− ω × v = ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

(VII.0.1)

where v∗ is a prescribed field at the boundary wall. To (VII.0.1) we append
the condition at infinity4

lim
|x|→∞

v(x) = 0 . (VII.0.2)

1 As kindly pointed out to me by Professor Josef Bemelmans, an independent anal-
ysis of these questions, mostly motivated by the study of the range of validity of
Stokes formula for the drag, was performed by Fritz Noether (1911).

2 See also the introductions to Chapter X and Chapter XI.
3 Sometimes, the system (VII.0.1) with V = 0 is also referred to as Sobolev system;

see, e.g., Maslennikova (1973).
4 The Oseen approximation is typical for a flow occurring in an exterior region.

In a bounded region it loses its physical meaning, while, from the mathematical
point of view, it presents no difficulties and can be handled as a corollary to
the theory developed for the Stokes problem in Section IV.4–Section IV.6; see
Theorem VII.1.1.
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In the current chapter we begin to investigate the properties of solutions
to problem (VII.0.1)–(VII.0.2) in the simpler case when ω = 0, that is, to the
problem originally formulated by Oseen, whereas in the next chapter we shall
study it in its full generality, namely, with both v0 and ω being non-zero.

It should be stressed that results from the original Oseen approximation
have long been recognized to be much more successful than that of Stokes. As
a matter of fact, at least in the particular case of the translational motion of
a ball into a liquid, Oseen found a paraboloidal wake region behind the body
(Oseen 1910, 1927 §16; Goldstein 1929). Furthermore, in the two-dimensional
analogue, i.e., an infinite circular cylinder moving steadily in a viscous liquid,
Lamb (1911) first proved the existence of a solution to (VII.0.1), (VII.0.2)
with V ≡ v0 6= 0, that exhibit a wake region, thus removing the paradox
coming from the Stokes approximation.

The aim of this chapter is to investigate existence, uniqueness, and the
validity of corresponding estimates in homogeneous Sobolev spaces Dm,q for
solutions to (VII.0.1), (VII.0.2) with V ≡ v0 6= 0, in an arbitrary exterior
domain Ω. All main ideas are taken from Galdi (1992).

The lines we shall follow are essentially the same we followed in Chapter V
for the exterior Stokes problem, even though the study is here somehow com-
plicated by the more involved form of the fundamental solution to (VII.0.1)1,2

in the whole space Rn. However, because of the different structure of the equa-
tions, the results we shall obtain are substantially different from those proved
for the Stokes problem. In this respect, we will show that problem (VII.0.1),
(VII.0.2) (with V ≡ v0 6= 0 and with sufficiently smooth data) is solvable in
three dimensions and two dimensions and that, if f is of bounded support, the
corresponding solutions exhibit a paraboloidal “wake region” in a direction
opposite to v0. This fact implies, in particular, that for problem (VII.0.1),
(VII.0.2) with V ≡ v0 6= 0, no “Stokes paradox” arises and that the Os-
een approximation is, in this respect, better than that proposed by Stokes.5

Also, as in the Stokes problem, the existence of q-generalized (in D1,q) and
“strong” solutions (in Dm,q , m > 1) is proved only for q in a certain range
Rn depending on the space dimension n; however, we find that Rn is larger
than the analogous range R′

n for the Stokes problem. Precisely, we show that,
formally, Rn = R′

n+1. This circumstance will lead to important consequences
in the nonlinear context, when treating the motion of an object translating
with constant velocity into a viscous liquid; see Chapters X, and XII.

Finally, we shall consider the behavior of solutions to (VII.0.1), (VII.0.2)
with V ≡ v0 in the limit of vanishing v0, with special emphasis on the case of
plane motion. In this latter circumstance, we find that such solutions tend to
those of the analogous Stokes system, i.e., (VII.0.1) with v0 = 0. However, as

5 It should be observed, however, that the Oseen approximation leads to other
paradoxical consequences in disagreement with the actual slow motion of a body
into a viscous liquid; see Filon (1928), Imai (1951), Olmstead & Hector (1966),
Olmstead & Gautesen (1968), and Olmstead (1968); see also Exercise VII.6.5.
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expected in view of the Stokes paradox, the limiting process does not preserve
condition (VII.0.2), which is, in fact, satisfied if and only if the data obey the
compatibility condition determined in Section V.8.

For later purposes, we shall find it convenient to put (VII.0.1), (VII.0.2)
with V ≡ v0 into a suitable dimensionless form, and so we need comparison
length d and velocity U . Without loss, we set v0 = v0 e1, v0 > 0, and take
U = v0. Moreover, if |Ωc| 6= ∅, we can take d = δ(Ωc), and so, introducing
the Reynolds number

R =
Ud

ν
,

system (VII.0.1) becomes

∆v + R ∂v

∂x1
= ∇p+ Rf

∇ · v = 0





in Ω

v = v∗ at ∂Ω,

(VII.0.3)

where v, v∗, p and f are now nondimensional quantities. If Ω ≡ Rn the above
choice of d is no longer possible, even though we can still give a meaning to
(VII.0.3), which is what we shall do hereafter.

VII.1 Generalized Solutions. Regularity and Uniqueness

In analogy with similar questions treated for the Stokes approximation, we
shall begin to give a generalized formulation of the Oseen problem. To this
end, let us multiply (VII.0.3)1 by ϕ ∈ D(Ω) and integrate by parts to obtain
formally

(∇v,∇ϕ) −R(
∂v

∂x1
,ϕ) = −R[f ,ϕ]. (VII.1.1)

Definition VII.1.1. A vector field v : Ω → Rn is called a q-weak (or q-
generalized) solution to (VII.0.2), (VII.0.3) if for some q ∈ (1,∞)

(i) v ∈ D1,q(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v assumes the value v∗ at ∂Ω (in the trace sense) or, if the velocity at

the boundary is zero, v ∈ D1,q
0 (Ω);

(iv) lim
|x|→∞

∫

Sn−1

|v(x)| = 0;

(v) v verifies (VII.1.1) for all ϕ ∈ D(Ω).

If q = 2, v will be simply called a weak (or generalized) solution to (VII.0.2),
(VII.0.3).
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Remark VII.1.1 If v is a q-weak solution, then, by Lemma II.6.1, we have
that v ∈ W 1,q

loc (Ω), and, if Ω is locally Lipschitz, v ∈W 1,q
loc (Ω). Regarding (iii),

see Remark V.1.1. �

If the function f has some mild degree of regularity, to each q-weak solution
we can associate a corresponding pressure field in the usual way. Specifically,
we have the following lemma whose proof, being entirely analogous to that of
Lemma IV.1.1, will be omitted.

Lemma VII.1.1 Let Ω be an exterior domain in Rn, n ≥ 2. Suppose f ∈
W−1,q

0 (Ω′), 1 < q <∞, for any bounded subdomain Ω′, with Ω′ ⊂ Ω. Then,
to every q-weak solution v we can associate a pressure field p ∈ Lq

loc(Ω) such
that

(∇v,∇ψ) −R(
∂v

∂x1
,ψ) = (p,∇ ·ψ) −R[f ,ψ] (VII.1.2)

for all ψ ∈ C∞
0 (Ω). Furthermore, if Ω is locally Lipschitz and f ∈

W−1,q
0 (ΩR), R > δ(Ωc), then p ∈ Lq(ΩR).

Remark VII.1.2 The last result stated in Lemma VII.1.1 is weaker than
the analogous one proved for the Stokes problem in Lemma V.1.1, where, for
Ω locally Lipschitz, one has p ∈ Lq(Ω) whenever f ∈ D−1,q

0 (Ω). This is due
to the fact that, in the case at hand, the functional

(∇v,∇ψ) −R(
∂v

∂x1
,ψ) + R[f ,ψ]

is not continuous in ψ ∈ D1,q′

0 (Ω) if v ∈ D1,q(Ω) only, because a priori we
can not find a constant c = c(v) such that

|( ∂v
∂x1

,ψ)| ≤ c |ψ|1,q′ , for all ψ ∈ C∞
0 (Ω) .

Consequently, we cannot apply Corollary III.5.1 but only the weaker version,
Corollary III.5.2. Notice, however, that, by the very definition of q-weak so-
lution, if f ∈ D−1,q

0 (Ω), then we can find C > 0 such that

|( ∂v
∂x1

,ϕ)| ≤ C |ϕ|1,q′ , for all ϕ ∈ D(Ω) .

In any case, by using a completely different approach, in Section VII.7 (see
Theorem VII.7.2), we shall show that if the region of motion is of class C2

and the exponent q ranges in the interval (n/(n−1), n+1), the pressure field
p belongs to Lq(Ω), provided, of course, that f ∈ D−1,q

0 (Ω). Furthermore, in
Theorem VII.7.3 it will be proved that the same property continues to hold
for q ≥ n+ 1. It seems therefore an open question to ascertain whether or not
for q-weak solutions with q in the interval (1, n/(n − 1)] the corresponding
pressure p has a suitable degree of summability at large distances. �
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The next result establishes the regularity of q-weak solutions.

Theorem VII.1.1 Let f ∈Wm,q
loc (Ω), m ≥ 0, 1 < q <∞, and let

v ∈W 1,q
loc (Ω), p ∈ Lq

loc(Ω), 1

with v weakly divergence-free, satisfy (VII.1.2) for all ψ ∈ C∞
0 (Ω). Then

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω).

In particular, if f ∈ C∞(Ω), then v, p ∈ C∞(Ω). Furthermore, if Ω is of class
Cm+2 and

f ∈Wm,q
loc (Ω), v∗ ∈Wm+2−1/q,q(∂Ω),

then
v ∈ Wm+2,q

loc (Ω), p ∈Wm+1,q
loc (Ω) ,

provided v ∈ W 1,q
loc (Ω).2 In particular, if Ω is of class C∞and f ∈ C∞(Ω),

v∗ ∈ C∞(∂Ω) then v, p ∈ C∞(Ω′), for all bounded Ω′ ⊂ Ω.

Proof. The proof is an easy consequence of Theorem IV.4.1, and Theorem
IV.5.1, if one bears in mind that (VII.1.2) can be viewed as a weak form of

the Stokes equation with f replaced by R(f − ∂v

∂x1
). ut

In the remaining part of this section we shall be concerned with the unique-
ness of generalized solutions. Such a study is slightly more complicated than
the analogous one for the Stokes problem. To see why, let v and w denote
two generalized solutions corresponding to the same data. Setting u = w−v,
from (VII.1.1) we obtain that u obeys the identity

F(ϕ) ≡ (∇u,∇ϕ) −R(
∂u

∂x1
,ϕ) = 0, for all ϕ ∈ D(Ω). (VII.1.3)

Assuming Ω locally Lipschitz, as in the case of Stokes problem, we easily show
that u ∈ D1,2

0 (Ω). However, it is not obvious that we can replace in (VII.1.3),
ϕ with u, nor is it obvious that, even if this replacement is permitted, we can
conclude that

(
∂u

∂x1
,u) = 0 . (VII.1.4)

1 We observe that these assumptions are definitely satisfied by any q-weak solution.
Actually, they are implied by the following one:

v ∈ L1
loc(Ω) , ∇v ∈ Lq

loc(Ω), with v satisfying (VII.1.1) for all ϕ ∈ D(Ω).

In fact, under these conditions, by Lemma II.6.1, we have v ∈W 1,q
loc (Ω) and then,

by Lemma VII.1.1, it follows p ∈ Lq
loc(Ω); see also Remark VII.1.2.

2 By Remark VII.1.2, this latter condition is certainly satisfied by any q-weak
solution under the stated assumption on Ω.
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Notwithstanding, if f ∈ D−1,2
0 (Ω), one has that the functional

ϕ ∈ D(Ω) → (
∂u

∂x1
,ϕ) ∈ R

can be extended to a (bounded) linear functional, δ1u, on D1,2
0 (Ω); see Remark

VII.1.2 and Theorem II.1.7. Since, clearly, (∇u, ·) defines a (bounded) linear
functional, A(u), on D1,2

0 (Ω) one can then equivalently rewrite (VII.1.3) in
the following abstract form

A(u) −Rδ1u = 0 in D−1,2
0 (Ω). (VII.1.5)

Now, Galdi (2007, Proposition 1.2) shows, in a different context, the “ab-
stract” counterpart of (VII.1.4), namely, [δ1u,u] = 0. Once we employ this
information back in (VII.1.5), we immediately find [A(u),u] ≡ |u|21,2 = 0,
which, in turn, implies u(x) = 0, for all x ∈ Ω.

Here, in order to show uniqueness, we will use a different argument, based
on the asymptotic behavior of solutions to (VII.1.3), that will be completely
justified in Section VII.6. Another, still different, approach will be presented
in Section VIII.2 for the more general case of generalized Oseen problem.
We begin to observe that, from Theorem VII.1.1 it follows that u and the
corresponding pressure field π, say, are infinitely differentiable in Ω so that
(VII.1.3) can be written pointwise:

∆u+ R ∂u

∂x1
= ∇π

∇ ·u = 0.

(VII.1.6)

Furthermore, for any R > δ(Ωc), from Theorem II.4.2 we find the existence
of a sequence {uR

k } ⊂ C∞(ΩR) vanishing near ∂Ω for all k ∈ N and approx-
imating u in the norm of the space W 1,2(ΩR). Multiplying (VII.1.6) by uR

k

and integrating by parts over ΩR we easily deduce

∫

ΩR

{
∇u : ∇uR

k −R ∂u

∂x1
· uR

k

}
=

∫

∂BR

n ·
{
∇u · uR

k − πuR
k

}
,

where n is the outer normal to ∂BR. We now let k → ∞ into this relation,
and recalling that u, π ∈ C∞(Ω), with the aid of Theorem II.4.1 we deduce

|u|21,2,ΩR
− R

2

∫

ΩR

∇ · (u2e1) =

∫

∂BR

n · {∇u ·u − πu} .

We next apply the results of Exercise II.4.3 to the second integral on the left-
hand side of this identity and recall that u has zero trace at ∂Ω to recover

|u|21,2,ΩR
=

∫

∂BR

n ·
{
∇u · u+

R
2
u2e1 − πu

}
. (VII.1.7)
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In Theorem VII.6.2 of Section VII.6 it will be proved that every sufficiently
smooth solution to the Oseen system corresponding to a body force of compact
support and having a certain degree of summability at infinity must decay
there in a suitable way. In particular, such a theorem ensures for u and π the
following estimates for every large R (see Exercise VII.6.1)

∫

∂BR

(
∇u : ∇u+ u2

)
≤ cR−(n−1)/2

∫

∂BR

π2 ≤ cR−(n−1).

(VII.1.8)

Then, employing the Schwarz inequality on the right-hand side of (VII.1.7),
using (VII.1.8), and letting R→ ∞ we conclude u ≡ 0.

We have thus proved

Theorem VII.1.2 Let Ω be locally Lipschitz and let v be a generalized solu-
tion to (VII.0.2), (VII.0.3) corresponding to f ∈W−1,2

0 (Ω′), Ω′ any bounded

subdomain with Ω
′ ⊂ Ω, and v∗ ∈W 1/2,2(∂Ω). Then, if w is another gener-

alized solution corresponding to the same data, it is v ≡ w.

Remark VII.1.3 Theorem VII.1.2 will be extended to the case of arbitrary
q-generalized solutions (q 6= 2) in Exercise VII.6.2. �

VII.2 Existence of Generalized Solutions for
Three-Dimensional Flow

This section is devoted to proving existence of generalized solutions when Ω
is a three-dimensional domain, the two-dimensional case being postponed to
Section VII.5; see also Remark VII.2.1. To reach this goal, we begin to ob-
serve that, unlike for the Stokes problem, we can no longer employ the Riesz
representation theorem, since the left-hand side of (VII.1.1) does not define a
symmetric form for all R 6= 0. We shall then use another method which, in-
terestingly enough, though introduced by B.G. Galerkin in 1915 for studying
linear problems, was used in the fluid dynamical context directly in the nonlin-
ear case at the beginning of the fifties and sixties by E. Hopf and by H. Fujita,
respectively, and only in 1965 was it used by R. Finn in linearized approxi-
mations of the Navier–Stokes equations. To apply this method, however, we
need a preliminary result concerning the existence of a special complete set
in D1,2

0 (Ω).

Lemma VII.2.1 Let Ω be an arbitrary domain of Rn, n ≥ 2. Then, there ex-
ists a denumerable set of functions {ϕk} whose linear hull is dense in D1,2

0 (Ω)
and has the following properties

(i) ϕk ∈ D(Ω), for all k ∈ N;
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(ii) (∇ϕk,∇ϕj) = δkj or (ϕk,ϕj) = δkj, for all k, j ∈ N;
(iii)Given ϕ ∈ D(Ω), and κ ∈ N, for any ε > 0 there exist m = m(ε) ∈ N and

γ1, ..., γm ∈ R, such that

‖∇ϕ−
m∑

i=1

γi∇ϕi‖s + ‖ρ(ϕ−
m∑

i=1

γiϕi)‖s < ε ,

for all s ≥ 2 , where ρ = (|x|+ 1)κ/s.

Proof. Let H`
0,ρ(Ω), with ` > n/2+1, be the completion of D(Ω) in the norm

‖ϕ‖`,2,ρ ≡ ‖ρϕ‖2 + ‖ϕ‖`,2 .

Clearly, H`
0,ρ(Ω) is a subspace of W `,2(Ω). Moreover, it is also isomorphic to

a closed subspace of [L2(Ω)]N , for suitable N = N(`, n), via the map

ϕ ∈ H`
0,ρ(Ω) →

(
ρϕ1, . . . , ρϕn ; (Dαϕ1)1≤|α|≤` ; . . . ;

(Dαϕn)1≤|α|≤`

)
∈ [L2(Ω)]N .

Thus, in particular, H`
0,ρ(Ω) is separable (see Theorem II.1.5), and so is its

subset D(Ω) (see Theorem II.1.1). As a consequence, there exists a basis
in H`

0,ρ(Ω) of functions from D(Ω), which we will denote by {ψk}. Since

H`
0,ρ(Ω) ↪→ D1,2

0 (Ω), the linear hull of {ψk} must be dense in D1,2
0 (Ω) as well.

Take ϕ ∈ D(Ω) and fix ε > 0; there exist N = N(ε) ∈ N and α1, . . . , αN ∈ R
such that

‖ϕ−
N∑

i=1

αiψi‖`,2,ρ < ε.

By the embedding Theorem II.3.2, it follows that

‖ϕ−
N∑

i=1

αiψi‖C1 < c ε

with c = c(Ω, n, `). We may orthonormalize {ψk} in D1,2
0 (Ω) or in L2(Ω)

by the Schmidt procedure, to obtain another denumerable set {ϕk} whose
linear hull is still dense in D1,2

0 (Ω). Since every ϕr is a linear combination of
ψ1, . . . ,ψr and, conversely, every ψr is a linear combination of ϕ1, . . . ,ϕr, it
is easy to check that the system {ϕk} satisfies all the statements in the lemma
which is thus completely proved. ut

We are now in a position to prove the following.

Theorem VII.2.1 Let Ω be a three-dimensional exterior, locally Lipschitz
domain. Given

f ∈ D−1,2
0 (Ω), v∗ ∈W 1/2,2(∂Ω) ,
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there exists one and only one generalized solution to (VII.0.2), (VII.0.3). This
solution satisfies the estimates 1

‖v‖2,ΩR + |v|1,2 ≤ c1
{
R|f |−1,2 + (1 + R)‖v∗‖1/2,2(∂Ω)

}

∫

S2

|v(x)| = o(1/
√
|x|) as |x| → ∞

‖p‖2,ΩR/R ≤ c2 {R|f |−1,2 + (1 + R)|v|1,2}

(VII.2.1)

for allR > δ(Ωc). In (VII.2.1) p is the pressure field associated to v by Lemma
VII.1.1, while ci = ci(R,Ω) (ci → ∞ as R → ∞).

Proof. We look for a solution of the form

v = w + V 1 + σ, (VII.2.2)

where

σ =
Φ

4π
∇
(

1

|x|

)

Φ =

∫

∂Ω

v∗ · n

(the origin of coordinates has been taken in Ω̇c). Further, V 1 ∈ W 1,2(Ω)
denotes the solenoidal extension of v∗ − σ|∂Ω, of bounded support in Ω, that
was constructed in the proof of Theorem V.1.1. We have

|V 1|1,2 ≤ c ‖v∗‖1/2,2(∂Ω)

Dασ = O(1/|x|2+|α|) , |α| = 0, 1, as |x| → ∞.
(VII.2.3)

Finally, w is requested to be a member of D1,2
0 (Ω) and to satisfy the identity

(∇w,∇ϕ) −R(
∂w

∂x1
,ϕ)

= −R[f ,ϕ] − (∇V 1,∇ϕ) + R(V 1 + σ,
∂ϕ

∂x1
),

(VII.2.4)

for all ϕ ∈ D(Ω). It is clear that, provided we show the existence of such a
functionw, the field (VII.2.2) satisfies all requirements of generalized solution
to (VII.0.2), (VII.0.3) given in Definition VII.1.1. Actually, from (VII.2.3)2
and the properties of V 1 and w, we have v ∈ D1,2(Ω); also, v is divergence-
free and assumes the value v∗ at the boundary. Finally, in view of (VII.2.3)2,
we have, as |x| → ∞,

∫

S2

|v(x)| ≤
∫

S2

|w(x)| +O(1/|x|2) (VII.2.5)

1 See (IV.6.1) for the definition of the norm involving p.
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and by Theorem II.7.6 and Lemma II.6.2 we obtain (VII.2.1)2. Thus, to show
the theorem it remains to prove the existence of the field w and the validity
of estimates (VII.2.1)1,3. To this end, let {ϕk} be the base of D1,2

0 (Ω) deter-
mined in Lemma VII.2.1. We shall construct an “approximate solution” wm

to (VII.2.4) in the following way:

wm =

m∑

`=1

ξ`mϕ`

(∇wm,∇ϕk) −R(wm,
∂ϕk

∂x1
)

= −R[f ,ϕk] − (∇V 1,∇ϕk) −R(V 1 + σ,
∂ϕk

∂x1
) ≡ Fk,

k = 1, 2, . . . , m.

(VII.2.6)

Using (ii) of Lemma VII.2.1 we obtain

m∑

`=1

(ξ`mδ`k −Rξ`mA`k) = Fk, k = 1, 2, . . . , m (VII.2.7)

where

A`k ≡ (
∂ϕ`

∂x1
,ϕk).

System (VII.2.7) is linear in the unknowns ξ`m, ` = 1, . . . , m, and since A`k =
−Ak` it is readily seen that the determinant of the coefficients is non-zero. As
a consequence, for each m ∈ N, system (VII.2.6) admits a uniquely determined
solution. Let us multiply (VII.2.6)2 by ξkm and sum over k from 1 to m. We
obtain

|wm|21,2 = −R[f ,wm] − (∇V 1,∇wm) −R(V 1 + σ,
∂wm

∂x1
). (VII.2.8)

Using (VII.2.3) and recalling that f ∈ D−1,2
0 (Ω), we easily show

−[f ,wm] ≤ |f |−1,2|wm|1,2

−(∇V 1,∇wm) ≤ c1‖v∗‖1/2,2(∂Ω)|wm|1,2

−(V 1 + σ,
∂wm

∂x1
) ≤ c2‖v∗‖1/2,2(∂Ω)|wm|1,2

and (VII.2.7) furnishes

|wm|1,2 ≤ c
{
R|f |−1,2 + (1 + R)‖v∗‖1/2,2(∂Ω)

}
. (VII.2.9)

Therefore, the sequence {wm} remains uniformly bounded in D1,2
0 (Ω) and,

by Exercise II.6.2, there exist a subsequence, denoted again by {wm}, and a
function w ∈ D1,2

0 (Ω) such that in the limit m→ ∞
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(∇wm,∇ϕ) → (∇w,∇ϕ), for all ϕ ∈ D1,2
0 (Ω).

Also, by (VII.2.9) and Theorem II.2.4 we infer

|w|1,2 ≤ c
{
R|f |−1,2 + (1 + R)‖v∗‖1/2,2(∂Ω)

}
(VII.2.10)

with c = c(Ω). For fixed k, we then pass to the limitm→ ∞ into (VII.2.6)2 to
deduce with no difficulty that v satisfies (VII.1.1) for all ϕk. Since, by Lemma
VII.2.1, every ϕ ∈ D(Ω) can be approximated in the W 1,2-norm by a linear
combination of ϕk, we establish the validity of (VII.1.1) for all ϕ ∈ D(Ω).
Let us next prove estimates (VII.2.3)1,3. We observe that, in view (VII.2.3)2,
Theorem II.6.1 and the Hölder inequality, we deduce

‖v‖2,ΩR ≤ |ΩR|1/3‖v‖6,ΩR ≤ c |ΩR|1/3|v|1,2 (VII.2.11)

where c = c(Ω), and so, since

|v|1,2 ≤ |w|1,2 + |V 1|1,2 + |σ|1,2,

inequality (VII.2.1)1 follows from (VII.2.10), (VII.2.11), and the properties of
V 1 and σ. Let us finally show (VII.2.1)3. For fixed R > δ(Ωc), we add to the
pressure p (defined through Lemma VII.1.1) the constant

C(R) = − 1

|ΩR|

∫

ΩR

p

so that ∫

ΩR

(p+ C) = 0.

Successively, we take ψ into (VII.1.2) as a solution to the problem

∇ψ = p+ C in ΩR

ψ ∈ W 1,2
0 (ΩR)

‖ψ‖1,2 ≤ c1‖p+ C‖2,ΩR

for some c1 = c1(ΩR). This problem is resolvable in virtue of Theorem II.4.1
and so from (VII.1.2) and the Schwarz inequality we have

‖p+ C‖2,ΩR ≤ c1 (|v|1,2 + R‖v‖2,ΩR + R|f |−1,2) (VII.2.12)

which, by (VII.2.11), in turn implies (VII.2.1)3. The solution v just con-
structed is unique in view of Theorem VII.1.2 and therefore the proof of
the theorem is accomplished. ut

Remark VII.2.1 The methods of Theorem VII.2.1 apply with no change
to show existence of solutions in arbitrary space dimension n ≥ 3, the only
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difference resulting in the asymptotic estimate (VII.2.1)2, which has to be
replaced by ∫

Sn

|v(x)| = o(1/|x|n/2−1).

If n = 2, by the same technique we can still establish the existence of a
vector field v satisfying (i), (ii), (iii), and (v) of Definition VII.1.1, for q = 2;
however, by this technique we are not able to show the validity of condition
(iv) since, as we know, functions in D1,2(Ω) for n = 2 need not tend to a
prescribed value at infinity. Nevertheless, unlike the Stokes approximation,
for the problem at hand we can prove existence of generalized solutions by
means of more complicated tools, as will be shown in Theorem VII.5.1. �

Remark VII.2.2 The observations made in Remark V.2.1 apply equally to
the present situation. In particular, if v∗ = v0+ω×x, for some v0,ω ∈ R3, the
existence of a generalized solution is proved without regularity assumptions
on Ω. �

Exercise VII.2.1 Theorem VII.2.1 can be generalized to the case when ∇·v = g 6≡
0, where g is a suitably prescribed function. Specifically, show that for Ω, f and v∗

satisfying the same assumptions of Theorem VII.2.1 and for all g ∈ L2(Ω)∩D−1,2
0 (Ω)

there exists one and only one generalized solution to the nonhomogeneous Oseen
problem, that is, a field v : Ω → R

n satisfying (i) (with q = 2), (iii), (iv), and (v)
of Definition VII.1.1 together with ∇ · v = g in the weak sense. Show, in addition,
that, in such a case, estimate (VII.2.1)1 is modified by adding to its right-hand side
the term

‖g‖2 + R|g|−1,2.

VII.3 The Oseen Fundamental Solution and the
Associated Volume Potentials

In order to derive further properties of solutions to the Oseen problem in
exterior domains, we shall introduce a suitable singular solution to equations
(VII.0.3)1,2 in the whole space. Though such a solution can be considered, for
the problem at hand, the analogue of the Stokes fundamental solution (IV.2.3),
(IV.2.4), it differs from this latter in several respects; the main difference is the
behavior at large distances. Specifically, the Oseen fundamental solution has
a “nonsymmetric” structure, presenting a “wake region” which, as we know,
does not appear in the Stokes approximation.

Following Oseen (1927, §4), we denote by E and e tensor and vector fields,
respectively, defined by
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Eij(x, y) =

(
δij∆− ∂2

∂yi∂yj

)
Φ(x, y)

ej(x, y) = − ∂

∂yj

(
∆− 2λ

∂

∂y1

)
Φ(x, y).

(VII.3.1)

Here i, j = 1, . . . , n, λ = R/2, while Φ(x, y), with x, y ∈ Rn, is any real
function that is smooth for x 6= y. Moreover, the Laplace operator acts on the
y-variables. Observe that if λ = 0, E and e formally coincide with U and q
introduced in (IV.2.1). It is at once checked that fields (VII.3.1) satisfy the
following relations for all x 6= y and all i, j = 1, . . . , n

(
∆− 2λ

∂

∂y1

)
Eij −

∂

∂yi
ej = δij∆

(
∆− 2λ

∂

∂y1

)
Φ

∂

∂y`
E`j = 0.

(VII.3.2)

In order to render (VII.3.1) a singular solution to (VII.0.3)1,2, as in the case
of the Stokes system, we choose the function Φ such that

∆

(
∆− 2λ

∂

∂x1

)
Φ(x, y) = ∆E(|x− y|), (VII.3.3)

where, we recall, E(x) is the fundamental solution (II.9.1) to the Laplace
equation.1 A solution to (VII.3.3) is now sought into the form

Φ(x, y) =
1

2λ

∫ x1−y1

[Φ2(τ, x2 − y2, . . . , xn − yn)

−Φ1(τ, x2 − y2, . . . , xn − yn)]dτ

(VII.3.4)

1 Let L be a (spatial) differential operator and let h(x, y) be a smooth function of
x, y ∈ R

n except at x = y. By the notation

Lh(x, y) = ∆E(|x− y|) (∗)

we mean, as customary, Lh(x, y) = 0 for all x 6= y, while, at x = y, h(x, y)
becomes singular in such a way that for any ψ ∈ C∞

0 (Rn) it holds that
Z

Rn

h(x, y)L∗ψ(y)dy = ψ(x),

where L∗ denotes the formal adjoint of L. Another usually adopted way of writing
(∗) is

Lh(x, y) = δ(x− y),

where δ(x) is the symbolic Dirac function, i.e., a distribution defined by the
relation Z

Rn

δ(x)ψ(x) = ψ(0)

for all ψ ∈ C∞
0 (Rn).



VII.3 The Oseen Fundamental Solution 431

with Φ1 and Φ2 to be selected appropriately. Replacing formally (VII.3.4) into
(VII.3.3) we obtain that Φ2 − Φ1 must obey

∆

(
∆− 2λ

∂

∂y1

)
(Φ2 − Φ1) = −2λ∆(

∂E
∂y1

). (VII.3.5)

Choosing

Φ2(x, y) = E(|x− y|), (VII.3.6)

for Φ1 to be a solution to (VII.3.5) it is sufficient to take

(
∆− 2λ

∂

∂y1

)
Φ1 = ∆E . (VII.3.7)

We notice, in passing, that with the above choice of Φ, from (VII.3.1)2 we
may take

ej(x, y) = − ∂

∂yj
E(|x− y|), (VII.3.8)

which shows that the “pressure” ej coincides with the “pressure” qj of the
fundamental Stokes solution, see (IV.2.3)2, (IV.2.4)2. Writing

Φ1 =
e−λ(x1−y1)

|x− y|(n−2)/2
f(λ|x− y|), (VII.3.9)

by a direct computation we deduce

(
∆− 2λ

∂

∂y1

)
Φ1 =

e−λ(x1−y1)

|x− y|(n+2)/2

{
z2f ′′ + zf ′ −

[(
n− 2

2

)2

+ z2

]
f

}

≡ e−λ(x1−y1)

|x− y|(n+2)/2
L(f),

where z = λ|x − y| and the prime denotes differentiation with respect to
z. Now the equation L(f) = 0 is the well-known Bessel’s modified equation
which admits two independent solutions,

I(n−2)/2(z) and K(n−2)/2(z),

called modified Bessel functions of the first and of the second kind, respectively
(MacRobert 1966, §100). However, I(n−2)/2(z) is regular for all values of the
argument, while K(n−2)/2(z) is singular at z = 0 in such a way that

K(n−2)/2(z) = log
1

z
+ log2 − γ + σ1(z), if n = 2

K(n−2)/2(z) =
2(n−2)/2Γ (n/2)

n− 2

1

z(n−2)/2
+ σ2(z), if n > 2,

(VII.3.10)
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where γ is the Euler constant, Γ is the gamma function, and the remainders
σi satisfy

σ1(z) = o(1),
dkσ1

dzk
= o(z−k), k ≥ 1 as z → 0

dkσ2

dzk
=o(z(2−n)/2−k), k ≥ 0 as z → 0

(Watson 1962, p. 80). Since Φ1 must satisfy (VII.3.7) in the neighborhood
of z = 0, it has to behave there like the fundamental solution E . Thus, with
a view to (II.9.1) and taking into account that ωn = 2πn/2/nΓ (n/2), from
(VII.3.9) and (VII.3.10) it follows that we must take

Φ1 = − 1

2π

(
λ

2π|x− y|

)(n−2)/2

K(n−2)/2(λ|x− y|)eλ(y1−x1). (VII.3.11)

For n = 3, K1/2(z) takes the following simple form (Watson 1962, p. 80):

K1/2(z) =
( π

2z

)1/2

e−z , (VII.3.12)

and consequently, from (VII.3.4), (VII.3.6), and (VII.3.11) we obtain

Φ(x− y) =
1

8πλ

∫ x1−y1 1 − exp
{
−λ
[√

τ2 + (x2 − y2)2 + (x3−y3)2−τ
]}

√
τ2 + (x2 − y2)2 + (x3 − y3)2

dτ.

Therefore, fixing the constant up to which Φ is defined by requiring Φ(0) = 0,
it follows that

Φ(x− y) =
1

8πλ

∫ λ(|x−y|+(x1−y1))

0

1 − e−τ

τ
dτ. (VII.3.13)

Correspondingly, the pressure field e given in (VII.3.8) takes the form

ej(x− y) =
1

4π

xj − yj

|x− y|3 . (VII.3.14)

Let us now consider the case n = 2. From (VII.3.4), (VII.3.6) and (VII.3.11)
we find

Φ(x− y) =
1

2λ

∫ x1−y1

0

[Φ2(τ, x2 − y2) − Φ1(τ, x2 − y2)] dτ + Φ0(x2 − y2)

where

Φ2(x− y) =
1

2π
log |x− y|, Φ1(x− y) = − 1

2π
K0(λ|x− y|)eλ(y1−x1)

and Φ0 is a function of x2 − y2 only, to be fixed appropriately. The function
K0(z) cannot be expressed in terms of elementary functions; however, we can
provide an asymptotic expansion for large z:
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K0(z) =
( π

2z

)1/2

e−z

[
ν−1∑

k=0

Γ (k + 1/2)

k!Γ (1/2− k)
(2z)−k + σν(z)

]

=
( π

2z

)1/2

e−z

[
1 − 1

8z
+

9

2!(8z)2
+ . . .+ σν(z)

]
,

(VII.3.15)

where

dkσν

dzk
= O(z−k−ν) as z → ∞, k ≥ 0

(Watson 1962, p. 202). In order to choose Φ0, we observe that from (VII.3.6),
(VII.3.7) it follows that

∂2

∂y2
2

(Φ2 − Φ1) = − ∂

∂y1

[
∂

∂y1
(Φ2 − Φ1) + 2λΦ1

]
,

and so
∂2Φ

∂y2
2

= − 1

2λ

[
∂

∂y1
(Φ2 − Φ1) + 2λΦ1

]

+
1

2λ

[
∂

∂y1
(Φ2 − Φ1) + 2λΦ1

]

y1=x1

+
∂2Φ0

∂y2
2

.

Since
∂

∂y1
log |x− y|

∣∣∣∣
y1=x1

=
∂

∂y1
K0(λ|x− y|)

∣∣∣∣
y1=x1

= 0,

we conclude

∂2Φ

∂y2
2

= − 1

2λ

[
∂

∂y1
(Φ2 − Φ1) + 2λΦ1

]
+

1

4π
K0(λ|x2 − y2|) +

∂2Φ0

∂y2
2

.

Now, letting x2 − y2 → 0 in this relation, K0(λ|x2 − y2|) diverges logarithmi-
cally fast, while the first three terms on the right-hand side remain bounded.
This would lead, by (VII.3.1), to an unacceptable singularity for E22, unless
we choose Φ0 in such a way that

Φ′′
0(t) = − 1

4π
K0(λ|t|).

If we do this and impose Φ0(0) = Φ′(0) = 0, we find

Φ0(x2 − y2) = − 1

4π

∫ y2−x2

0

(y2 − x2 − τ )K0(λ|τ |)dτ,

which, in turn, furnishes the following expression for Φ:
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Φ(x− y) =
1

4πλ

∫ x1−y1

0

{
log
√
τ2 + (x2 − y2)2

+K0

(
λ
√
τ2 + (x2 − y2)2

)
e−λτ

}
dτ

− 1

4π

∫ y2−x2

0

(y2 − x2 − τ )K0(λ|τ |)dτ.

(VII.3.16)

Correspondingly, the pressure field e (VII.3.8) becomes

ej(x− y) =
1

2π

xj − yj

|x− y|2 . (VII.3.17)

The pairE, e defined by (VII.3.1), (VII.3.13), and (VII.3.14) for n = 3 and by
(VII.3.1), (VII.3.16), and (VII.3.17) for n = 2 is called the Oseen fundamental
solution. In arbitrary dimensions n > 3, the Oseen fundamental solution is
defined by (VII.3.1), (VII.3.4), (VII.3.8), and (VII.3.11). In view of (VII.3.2)
and (VII.3.3) this solution satisfies

(
∆− 2λ

∂

∂y1

)
Eij(x− y) =

∂

∂yi
ej(x− y)

∂

∂y`
E`j(x− y) = 0

for x 6= y; (VII.3.18)

this is the system adjoint to (VII.0.3). However, since

∂Eij

∂x1
= −∂Eij

∂y1

∂ej

∂x1
= −∂ej

∂y1

we also have

(
∆+ 2λ

∂

∂x1

)
Eij(x− y) =

∂

∂xi
ej(x− y)

∂

∂x`
E`j(x− y) = 0

for x 6= y (VII.3.19)

with ∆ operating now on the x-variables.
We wish to investigate the properties of E(x) and e(x) for large |x|. While

those of e are quite obvious, those of E require a little more care. Let us
begin to consider the case where n = 3. Setting r = |x−y|, s = λ(r+x1 −y1)
from (VII.3.1)1 and (VII.3.13) we derive the following expression for the nine
components of the tensor E
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E11(x− y) =
1

4πr

{
−e−s +

1

2λr

[
x1 − y1

r
(1 − e−s) + se−s

]}

E22(x− y) =−e
−s

4πr
+

1

8π

{[
1

r
− (x2 − y2)

2

r3

]
1 − e−s

s

+ λ
se−s − 1 + e−s

s2
(x2 − y2)

2

r2

}

E33(x− y) =−e
−s

4πr
+

1

8π

{[
1

r
− (x3 − y3)

2

r3

]
1 − e−s

s

+ λ
se−s − 1 + e−s

s2
(x3 − y3)

2

r2

}

E12(x− y) =E21(x− y) =
1

8πr

{
y2 − x2

r

[
e−s − 1 − e−s

λr

]}

E13(x− y) =E31(x− y) =
1

8πr

{
y3 − x3

r

[
e−s − 1 − e−s

λr

]}

E23(x− y) =E32(x− y) =
1

8π

{
(x2 − y2)(x3 − y3)

r3

[
e−s − 1

s

+ λr
se−s − 1 + e−s

s2

]}
.

(VII.3.20)
From (VII.3.20) it readily follows that in the limit of vanishing λr the tensor
E reduces to the tensor U (IV.2.3)1 associated to the Stokes fundamental
solution. Specifically, we have

Eij(x− y) = Uij(x− y) + o(1), as λr → 0. (VII.3.21)

In view of (VII.3.21) and (VII.3.14), from the calculations leading to (IV.8.15)
we can then show that the Oseen fundamental solution E, e becomes singular
at x = y in such a way that, for any vector field v continuous at x and all
j = 1, 2, 3, it holds that

lim
ε→0

∫

|x−y|=ε

v · T (wj , ej) · ndσy = −vj(x), (VII.3.22)

where n is the outer normal to ∂Bε(x) and

wj ≡ (E1j, E2j, E3j).

The estimates ofE(x−y) at infinity are, however, completely different from
those of U(x−y). Denote by ϕ the polar angle made by a ray that starts from
x and is directed toward y with the positively directed x1-axis. We present the
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estimates for E(x− y) as a function of y for fixed x. Considered as a function
of x, all estimates remain true if ϕ is replaced by π − ϕ, see Remark VII.3.1.
Taking x as the origin of coordinates (this produces no loss of generality since
E is a function of x− y only) and noticing that

e−s ≤ (1 − e−s)/s, s > 0, |(yj − xj)/s| ≤ 2/λ, j = 2, 3,

from (VII.3.20) we obtain

|E(y)| ≤ c1
|y|

1 − e−s

s
, (VII.3.23)

where c1 = c1(λ) and

s = λ(|y| − y1) = λ|y|(1 − cosϕ).

The bound (VII.3.23) furnishes, in particular, the uniform estimate

|E(y)| ≤ c1
|y| , (VII.3.24)

which coincides with that given for U in (IV.2.6). However, improved bounds
can be derived from (VII.3.23) as a function of ϕ. Specifically, if

(1 − cosϕ) ≥ |y|−1+2σ for some σ ∈ [0, 1/2], (VII.3.25)

then (VII.3.23) implies

|E(y)| ≤ c2
|y|1+2σ

, (VII.3.26)

with c2 = c2(λ). From (VII.3.23)–(VII.3.26) it follows that if y belongs to the
region defined by

|y|(1 − cosϕ) ≤ 1 (VII.3.27)

then (VII.3.24) holds. This region represents a paraboloid with the axis in the
direction of the negative x1-axis and can be interpreted as a “wake.”

Remark VII.3.1 The tensor E(x − y) considered as a function of y thus
exhibits a “wake” region in the direction opposite to what is expected for a
body moving in a liquid with the velocity v0 directed in the positive x1-axis
(as we have assumed at the beginning of the chapter). This is due to the fact
that, as a function of y, E satisfies the adjoint system (VII.3.18). However,
if we consider E as a function of x, then ϕ should be changed in π − ϕ and
the paraboloidal wake region becomes appropriately located with its axis in
the direction of the negative x1-axis. This remark is important in the context
of the asymptotic structure of solutions to the Oseen system; see Theorem
VII.6.2 and Remark VII.6.1. �



VII.3 The Oseen Fundamental Solution 437

Starting from (VII.3.23) we may also derive the summability properties
of E(y) in the exterior A of a ball of unit (say) radius. In particular, by a
straightforward calculation we show

E(y) ∈ Lq(A) for all q > 2. (VII.3.28)

This estimate is sharp; actually, from (VII.3.20)1 we have with a = 1/λr

|E11(y)| =

(
1

8πr

)
|e−s[1 + (1 − a) cosϕ] + a cosϕ|

Thus, for all r ≥ λ and all ϕ ∈ [0, π/2], we find

|E11(y)| ≥
1

8πr
e−λr(1−cosϕ) .

From this relation it follows that

‖E11‖q
q,A ≥ c

∫ ∞

λ

r−q+2e−λqr

(∫ π/2

0

eλqr cosϕ sinϕdϕ

)
dr

= c

∫ ∞

λ

r−q+2e−λqr

(∫ 1

0

eλqrxdx

)
dr

= c1

∫ ∞

λ

r−q+1(1 − e−λqr) dr .

(VII.3.29)

Therefore, setting

R = max

{
λ,− 1

λq
ln

(
1

2

)}
,

from (VII.3.29) we obtain

‖E11‖q
q,A ≥ c1

∫ ∞

R

r−q+1 dr,

showing that E11 does not belong to Lq(A) for all q ∈ [1, 2]. A similar con-
clusion can be reached for the other components of E, by means of the same
technique, which allows us to conclude

E(y) 6∈ Lq(A), for all q ∈ [1, 2]. (VII.3.30)

The summability properties (VII.3.28), (VII.3.30) should be contrasted with
the analogous properties of the Stokes fundamental tensor U , for which (in
dimension 3) we have that U belongs to Lq(A) for all and only all q > 3.

Estimates similar to (VII.3.23) can be derived for first derivatives. Specif-
ically, from (VII.3.20) the following inequalities are directly obtained
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∣∣∣∣
∂E(y)

∂yi

∣∣∣∣ ≤
c

|y|3/2

[
1 − e−s − se−s

s3/2
+

1

|y|1/2

1 − e−s

s

]
, i = 2, 3

∣∣∣∣
∂E(y)

∂y1

∣∣∣∣ ≤
c

|y|2
1 − e−s

s

(VII.3.31)

with c = c(λ). These formulas imply, in particular, the uniform bound for |y|
greater than any fixed R0 > 0:

|∇E(y)| ≤ c1

|y|3/2
(VII.3.32)

with c1 = c1(λ, R0). However, better estimates can be derived outside the
“wake region” (VII.3.27), in a way completely analogous to that used previ-
ously, and we leave them to the reader as an exercise. Concerning the summa-
bility of ∇E in a neighborhood of infinity, we notice that by (VII.3.31) we
have

∂E(y)

∂yi
∈ Lq(A), for all q > 4/3, i = 2, 3

∂E

∂y1
∈ Lq(A), for all q > 1,

(VII.3.33)

where A, as before, denotes the exterior of a unit ball. Condition (VII.3.33)1
is sharp in the sense that

∂E(y)

∂yi
6∈ Lq(A), for all q ∈ [1, 4/3], i = 2, 3 (VII.3.34)

as a result of a calculation similar to that used to show (VII.3.30). It is inter-
esting to observe that, even though the uniform bound (VII.3.32) is weaker
than the analogous one for the Stokes fundamental tensor U (see (IV.2.6)),
the summability properties (VII.3.33) are stronger than those for U , where
(in dimension 3) ∇U ∈ Lq(A) for all and only all q > 3/2.

Further estimates can be obtained for derivatives of order higher than one.
Here, we shall limit ourselves to presenting some bounds of particular interest,
leaving their proofs to the reader.

∣∣∣∣
∂2E(y)

∂yi∂yj

∣∣∣∣ ≤
c

|y|2
[
1 − e−s − se−s

4s2|y| +
1 − e−s

2s

]
, y ∈ R3 − {0}

|DαE(y)| ≤ c|y|−1−|α|/2, |α| ≥ 2 , sufficiently large |y|.
(VII.3.35)

Exercise VII.3.1 Show that (in three dimensions) the tensor E satisfies the fol-
lowing estimates for all R > 0:
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Z

∂BR

|E(y)|2 ≤ cR−1,

Z

∂BR

|∇E(y)| ≤ cR−1/2,

Z

∂BR

|∇∇E(y)| ≤ cR−1.

Hint: Use estimates (VII.3.23), (VII.3.33), and (VII.3.35); see also Solonnikov (1996).

We next derive the form and corresponding estimates for E(x− y) in two
space dimensions. From (VII.3.1) and (VII.3.16) we find

E11(x− y) =
∂

∂y1
Ψ(x − y) − 1

2π
K0(λ|x− y|)e−λ(x1−y1)

E12(x− y) = E21(x− y) = − ∂

∂y2
Ψ(x− y)

E22(x− y) = − ∂

∂y1
Ψ(x− y)

where

Ψ(x− y) =
1

4πλ

(
log |x− y| +K0(λ|x− y|)e−λ(x1−y1)

)
.

From (VII.3.16) and the properties (VII.3.10) of the function K0(z) near z =
0, we easily obtain, with r = |x− y|

Eij =− 1

4π

[
δij log

1

2λr
+

(xi − yi)(xj − yj)

r2

]
+ o(1)

=Uij(x− y) − 1

4π
δij log

1

2λ
+ o(1), as λr → 0,

(VII.3.36)

where U is the Stokes fundamental tensor (IV.2.4). Using (VII.3.36) and
(VII.3.17), we then show the validity of (VII.3.22) also in two dimensions.
It should be observed that, unlike the three-dimensional case (see (VII.3.21)),
relation (VII.3.36) for arbitrarily fixed x, y becomes singular as λ → 0. This
is to be expected for, as we are going to show, the tensor E vanishes at large
spatial distances, while U grows there logarithmically. Denote by ϕ the angle
made by a ray that starts from x and is directed toward y, with the direction
of the positive x1-axis. From (VII.3.1), (VII.3.15) and (VII.3.16) we derive in
the limit λr → ∞
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E11(x− y) = −cosϕ

4πλr
+

e−s

4
√

2λπr

(
1 + cosϕ − 1 − 3 cosϕ

8λr
+ R(λr)

)

E12(x− y) = E21(x− y) =
sinϕ

4πλr
− e−s sinϕ

4
√

2λπr

(
1 +

3

8λr
+ R(λr)

)

E22(x− y) =
cosϕ

4πλr
+

e−s

4
√

2π(λr)3/2

(
s− 1 + 3 cosϕ

8
+ R(λr)

)
,

(VII.3.37)
where

s = λr(1 − cosϕ)

and the remainder R(t) satisfies

dkR
dtk

= O(t−2−k), as t→ ∞, k ≥ 0.

From (VII.3.37) it follows that unlike the Stokes fundamental tensor, which
grows logarithmically rapid for r → ∞, the Oseen fundamental tensor van-
ishes at large distances. It is this difference that allowed Oseen to remove
the discrepancy generating the Stokes paradox. Relations (VII.3.37) produce
some useful estimates. We shall present them as a function of y, fixing the
origin of coordinates at x = 0. Analogous estimates of E as a function of x
remain true if ϕ is replaced by π−ϕ, and the considerations made in Remark
VII.3.1 apply here.

From (VII.3.37)1 it readily follows that E11(y) exhibits the same parabolic
“wake” region that was obtained in the three-dimensional case. In fact, if y is
interior to the parabola2

|y|(1 − cosϕ) = 1

we deduce the uniform bound

|E11(y)| ≤
c

|y|1/2
, as |y| → ∞, (VII.3.38)

while if

(1 − cosϕ) ≥ |y|−1+2σ for some σ ∈ [0, 1/2] (VII.3.39)

we have
|E11(y)| ≤

c

|y|1/2+σ
, as |y| → ∞. (VII.3.40)

However, unlike the three-dimensional case, the remaining components of E
do not present such a nonuniform behavior. In fact, observing that

2 Setting θ = π−ϕ, the parabolic region can be approximately described, for large
|y|, by

|θ| ≤ (2)1/2|y|−1/2.
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e−2sλr sin2 ϕ = se−2s(1 + cosϕ) ≤ e−1

from (VII.3.37)2,3 we recover the uniform estimates

|Ei2(y)| ≤
c

|y| , i = 1, 2, as |y| → ∞. (VII.3.41)

Concerning the summability properties of E, denoting by A the exterior
of a unit circle, from (VII.3.41) we recover at once

Ei2(y) ∈ Lq(A), for all q > 2, i = 1, 2. (VII.3.42)

Moreover, setting cosϕ = ∓(y − λqr)/λqr, where “−” is taken if ϕ ∈ [0, π]
and “+” otherwise, by a direct calculation one shows for any q ≥ 1

∫ 2π

0

e−qs(1 + cosϕ)qdϕ ≤ 2

(4λqr)q

∫ 2λqr

0

e−y(2λqr − y)q−1/2y−1/2dy

≤ 2(4λqr)q−1/2

(2λqr)q

∫ ∞

0

e−yy−1/2dy = c1/r
1/2,

with c1 independent of r. As a consequence, from (VII.3.37)1 we obtain

E11(y) ∈ Lq(A), for all q > 3. (VII.3.43)

Likewise, setting

f(ϕ, r) ≡ − cosϕ√
πλr

+
e−s

√
2λπ

(
1 + cosϕ− 1 − 3 cosϕ

8λr

)

one has

∫ 2π

0

|f(ϕ, r)|qdϕ ≥
∫ π

0

|f(ϕ, r)|qdϕ

=
1

(λqr)q

∫ 2λqr

0

∣∣∣∣∣
y − λqr√
λπr

+
e−y/q

√
2λπ

[
2λqr − y

−3y − λqr

8λqr

]∣∣∣∣
q

y−1/2

(2λqr − y)1/2
dy,

and so, for all r sufficiently large

∫ 2π

0

|f(ϕ, r)|qdϕ ≥ c1
rq

∫ 1

0

e−y(2λqr − y)q−1/2y−1/2dy

≥ c2

r1/2

∫ 1

0

e−yy−1/2dy = c3/r
1/2
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with c3 independent of r, and from (VII.3.37)1 it follows that

E11(y) 6∈ Lq(A), for all q ∈ [1, 3]. (VII.3.44)

So far as the behavior of the first derivatives of E is concerned, differentiating
(VII.3.37) we derive the following bounds as |y| → ∞

∣∣∣∣
∂E11(y)

∂y2

∣∣∣∣ ≤
c

|y| ,
∣∣∣∣
∂E12(y)

∂y1

∣∣∣∣ ≤
c

|y|2 ,

∣∣∣∣
∂E1i(y)

∂yi

∣∣∣∣ ≤
c

|y|3/2
,

∣∣∣∣
∂E22(y)

∂yi

∣∣∣∣ ≤
c

|y|2 , i = 1, 2.

(VII.3.45)

Sharper estimates can be obtained for the derivatives of E11 and the deriva-
tive of E12 with respect to y2 whenever y is exterior to the “wake” region,
see Exercise VII.3.2. Moreover, besides the obvious summability properties
obtainable from (VII.3.45) one can show (Exercise VII.3.2)

∂E(y)

∂y1
∈ Lq(A) for all q > 1

∂E(y)

∂y2
∈ Lq(A) for all q > 3/2

(VII.3.46)

while
∂E(y)

∂y2
6∈ Lq(A) for all q ∈ [1, 3/2]. (VII.3.47)

Further asymptotic bounds can be analogously derived for derivatives of
order higher than two. For instance, one shows the validity of the following
properties (see Exercise VII.3.3):

D2E(y) ∈ Lq(A), for all q > 1,

|DαE(y)| ≤ c|y|−(1+|α|)/2, |α| ≥ 2, as |x| → ∞.
(VII.3.48)

Exercise VII.3.2 Let E be given as in (VII.3.37). Show that for all σ ∈ [0, 1/2]
and all sufficiently large |y|,

˛̨
˛̨∂E11(y)

∂y2

˛̨
˛̨ ≤ c

|y|1+2σ

˛̨
˛̨∂E11(y)

∂y1

˛̨
˛̨ ,

˛̨
˛̨∂E12(y)

∂y2

˛̨
˛̨ ≤ c

|y|3/2+σ

in region (VII.3.39). Furthermore, show the validity of (VII.3.46) and (VII.3.47).

Exercise VII.3.3 Show estimate (VII.3.48).
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Exercise VII.3.4 Prove that (in two dimensions) the tensor E obeys the following
estimates for all R > 0:

Z

∂BR

|E(y)|2,
Z

∂BR

|∇E(y)| ≤ cR−1/2.

Hint: Use (VII.3.39) and (VII.3.41).

Exercise VII.3.5 Let E(x − y) ≡ E(x − y; 2λ) denote the Oseen tensor corre-
sponding to 2λ. Show the following homogeneity properties

E(x − y; 2λ) = 2λE(2λ(x − y); 1) for n = 3,

E(x − y; 2λ) = E(2λ(x − y); 1) for n = 2.

Remark VII.3.2 Estimates analogous to those presented for space dimen-
sion n = 2, 3 can be derived for all n ≥ 4. Actually, from (VII.3.10)2 and
(VII.3.11) it follows that the n-dimensional Oseen fundamental tensorE(x−y)
(defined by (VII.3.1), (VII.3.4), and (VII.3.8)) satisfies (VII.3.21) and, conse-
quently, becomes singular at x = y in such a way that (VII.3.22) is verified.
Furthermore, using the asymptotic expansion for large z:

K(n−2)/2 =
( π

2z

)1/2

e−z

[
ν−1∑

k=0

Γ (n/2 + k − 1/2)

k!Γ (n/2− k − 1/2)
(2z)−k + σν(z)

]

=
( π

2z

)1/2

e−z

[
1 +

4(n− 2)2 − 1

8z

+
[4(n− 2)2 − 1][4(n− 2)2 − 32]

2!(8z)2
+ . . .+ σν(z)

]

with
dkσν

dzk
= O(z−k−ν) as z → ∞, k ≥ 0,

see Watson (1962, p. 202), one can obtain estimates at large distances. For
instance, we can show

|DαE(y)| ≤ c|y|−(n−1+|α|)/2, |y| → ∞, |α| ≥ 0,

E(y) ∈ Lq(A), q >
n+ 1

n− 1

∇E(y) ∈ Lr(A), r >
n+ 1

n

D2E(y) ∈ Ls(A), s > 1.

(VII.3.49)

�
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In analogy with what we did for the Stokes problem, we now introduce
the Oseen volume potentials:

u(x) = 2λ

∫

Rn

E(x− y) ·F (y)dy

π(x) = −2λ

∫

Rn

e(x− y) · F (y)dy,

(VII.3.50)

where F ∈ C∞
0 (Rn). Since

∫

Rn

E(x− y) · F (y)dy =

∫

Rn

E(z) · F (x+ z)dz,

one has u ∈ C∞(Rn) and, by the same token, π ∈ C∞(Rn). Moreover, it is
easy to show that u, π satisfy the Oseen system in Rn. Actually, it is obvious
that ∇ · u = 0. Also, using integration by parts and (VII.3.2) we deduce for
all x ∈ Rn

∆u(x) + 2λ
∂u(x)

∂x1
−∇π = ∆(E ∗ F ) = 2λF (x).

Moreover, it is easy to show that the solution u, π behaves at large distances
exactly as the fundamental solution E, e. This immediately follows by ob-
serving that from (VII.3.49) we have

u(x) = 2λE(x) ·
∫

Rn

F (y)dy + σ(x)

π(x) = −2λe(x) ·
∫

Rn

F (y)dy + η(x)

(VII.3.51)

with

σ(x) = 2λ

∫

Rn

(E(x − y) −E(x)) · F (y)dy

π(x) = −2λ

∫

Rn

(e(x− y) − e(x)) ·F (y)dy

and that, using the mean-value theorem and the assumption F ∈ C∞
0 (Rn),

Dασ(x) = O(Dα∇E(x))

Dαη(x) = O(Dα∇e(x))
|α| ≥ 0, |x| → ∞. (VII.3.52)

Remark VII.3.3 Starting with (VII.3.50)1 and using Young’s theorem on
convolution (see Theorem II.11.1) one can prove at once Lq-estimates for u, π
and their first derivatives. This is due to the circumstance that, unlike the
Stokes tensor U , the Oseen tensor possesses global summability properties in
the whole of Rn. For instance, from (VII.3.49) and (VII.3.21) we see that
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E(y) ∈ Lq(Rn) for all q ∈ ((n+ 1)/(n− 1), n) if n > 2,

E(y) ∈ Lq(Rn) for all q ∈ (3,∞) if n = 2.

However, estimates obtained in such a way would not be sharp and, therefore,
we shall not derive them here. Derivation of sharp estimates for the Oseen
potentials, by different tools, will be the object of the next section. �

VII.4 Existence, Uniqueness, and Lq-Estimates in the
Whole Space

The objective of this section is to prove existence, uniqueness, and correspond-
ing estimates of solutions v, p to the nonhomogeneous Oseen system

∆v + R ∂v

∂x1
−∇p = Rf

∇ · v = g





in Rn (VII.4.1)

in homogeneous Sobolev spaces Dm,q(Rn). These results, though sharing some
similarity with the analogous ones established for the Stokes system in Chap-
ter IV, will differ from these latter in some crucial features that essentially
mirror the basic differences existing between the two fundamental tensors U
and E.

In establishing estimates for (VII.4.1), it is important to single out the
dependence of the constants entering the estimates on the dimensionless pa-
rameter R. We shall therefore consider the problem

∆v +
∂v

∂x1
−∇p = f

∇ · v = g





in Rn (VII.4.2)

and establish corresponding estimates for its solutions. The analogous ones
for solutions to (VII.4.1) will then be obtained if we make the replacements

f → f/R
g → g/R
p→ p/R
xi → Rxi.

(VII.4.3)

Unlike the corresponding estimates for the Stokes system, here we cannot
employ the Calderón–Zygmund theorem because the kernel D2

ijEks(x − y)
does not satisfy the assumption (II.11.15) of that theorem, that is,

α−nD2
ijEks(ξ) 6= D2

ijEks(αξ), α > 0.
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Rather, we shall make use of a more appropriate tool due to P. I. Lizorkin
(1963, 1967), which we are going to describe.

Denote by S(Rn) the space of functions of rapid decrease consisting of
elements u from C∞(Rn) such that

sup
x∈Rn

(
|x1|α1 · . . . · |xn|αn|Dβu(x)|

)
<∞

for all α1, . . . , αn ≥ 0 and |β| ≥ 0. For u ∈ S(Rn) we denote by û its Fourier
transform:

û(ξ) =
1

(2π)n/2

∫

Rn

e−ix·ξu(x)dx,

where i stands for the imaginary unit. It is well known that û ∈ S(Rn) and
that, moreover,

u(x) =
1

(2π)n/2

∫

Rn

eix ·ξû(ξ)dξ,

see, e.g., Reed & Simon (1975, Lemma on p. 2). Given a function Φ : Rn → R,
let us consider the integral transform

Tu ≡ h(x) =
1

(2π)n/2

∫

Rn

eix ·ξΦ(ξ)û(ξ)dξ, u ∈ S(Rn). (VII.4.4)

Generalizing the works of Marcinkiewicz (1939) and Mikhlin (1957), Li-
zorkin (1963, 1967) has proved the following result, which we state without
proof.

Lemma VII.4.1 Let Φ : Rn → R be continuous together with the derivative

∂nΦ

∂ξ1 . . . ∂ξn

and all preceding derivatives for |ξi| > 0, i = 1, . . . , n. Then, if for some
β ∈ [0, 1) and M > 0

|ξ1|κ1+β · . . . · |ξn|κn+β

∣∣∣∣
∂κΦ

∂ξκ1

1 . . . ∂ξκn
n

∣∣∣∣ ≤M,

where κi is zero or one and κ =
∑n

i=1 κi = 0, 1, . . .n, the integral transform
(VII.4.4) defines a bounded linear operator from Lq(Rn) into Lr(Rn), 1 < q <
∞, 1/r = 1/q − β, and we have

‖Tu‖r ≤ c‖u‖q,

with c = c0(q, β)M .

With this result in hand, we shall now look for a solution to (VII.4.2)
corresponding to f , g ∈ C∞

0 (Rn) of the form
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v(x) =
1

(2π)n/2

∫

Rn

eix ·ξV (ξ)dξ

p(x) =
1

(2π)n/2

∫

Rn

eix ·ξP (ξ)dξ.

(VII.4.5)

Replacing (VII.4.5) into (VII.4.2) furnishes the following algebraic system for
V and P :

(ξ2 + iξ1)Vm(ξ) + iξmP (ξ) = f̂m(ξ)

iξmVm(ξ) = ĝ,
(VII.4.6)

where m = 1, . . . , n. Solving (VII.4.6) for V and P delivers

Vm(ξ) =Um(ξ) +Wm(ξ)

P (ξ) = Π(ξ) + T (ξ)
(VII.4.7)

with

Um(ξ) =
ξmξk − ξ2δmk

ξ2(ξ2 + iξ1)
f̂k(ξ)

Wm(ξ) = −iξmĝ(ξ)
ξ2

Π(ξ) = i
ξk f̂k(ξ)

ξ2

T (ξ) =

(
i
ξ1

ξ2
+ 1

)
ĝ(ξ).

(VII.4.8)

From (VII.4.5) and (VII.4.7), (VII.4.8) we have that a solution to (VII.4.2) is
given by

v(x) =u(x) +w(x)

p(x) =π(x) + τ (x)
(VII.4.9)

with

u(x) =
1

(2π)n/2

∫

Rn

eix ·ξU(ξ)dξ

w(x) =
1

(2π)n/2

∫

Rn

eix ·ξW (ξ)dξ

π(x) =
1

(2π)n/2

∫

Rn

eix ·ξΠ(ξ)dξ

τ (x) =
1

(2π)n/2

∫

Rn

eix ·ξT (ξ)dξ .

(VII.4.10)

Observe that u, π and w, τ are solutions of (VII.4.2) corresponding to f 6= 0,

g = 0 and to f = 0, g 6= 0, respectively. Since f̂ and ĝ are in S(Rn), it is



448 VII Steady Oseen Flow in Exterior Domains

not hard to show that (VII.4.9) defines a C∞-solution to (VII.4.2). Let us
now determine some Lq-estimates for v and p. This will be done with the aid
of Lemma VII.4.1. In this respect, an important role will be played by the
function

φmk(ξ) =
ξmξk − ξ2δmk

ξ2(ξ2 + iξ1)
, (VII.4.11)

whose properties will be investigated. Specifically, we have

Lemma VII.4.2 Let n ≥ 2 and let φmk be given by (VII.4.11) with m, k
ranging in {1, . . . , n}. Then, the assumptions of Lemma VII.4.1 are satisfied:

(a) by φmk with β = 2/(n+ 1);
(b)by ξ`φmk with β = 1/(n+ 1) and ` ∈ {1, . . . , n};
(c) by ξ1φmk with β = 0;
(d)by ξsξ`φmk with β = 0 and s, ` ∈ {1, . . . , n}.
Finally, if n = 2, for all `, k ∈ {1, 2} the assumptions of Lemma VII.4.1 are
satisfied:

(e) by φ2k with β = 1/2;
(f) by ξ`φ2k with β = 0.

Proof. Clearly, φmk and the product of φmk with any product of the variables
ξk satisfy the regularity assumptions of Lemma VII.4.1. Moreover, for all
`,m, k = 1, . . . , n it is immediately seen that

|ξ1|κ1 · ... · |ξn|κn

∣∣∣∣
∂κφmk

∂ξκ1

1 . . . ∂ξκn
n

∣∣∣∣ ≤ c1
1

|ξ|2 + |ξ1|

for some c1 = c1(n) where κi is zero or one, κ =
∑n

i=1 κi = 0, 1, . . . , n, and
therefore to show assertion (a) it is enough to show that

(|ξ1| · ... · |ξn|)2/(n+1)

|ξ|2 + |ξ1|
≤ c2 (VII.4.12)

with c2 = c2(n). Now, by a repeated use of Young’s inequality (II.2.7)

(|ξ1| · . . . · |ξn|)2/(n+1) ≤ a1[|ξ1|1/2 + (|ξ2| · . . . · |ξn|)1/(n−1)]2 ≤ a2(|ξ1| + |ξ|2),

with ai = ai(n), i = 1, 2, and so (VII.4.12) follows. Likewise, we can show
assertions (b) and (d). Furthermore, observing that

|ξ1|κ1 · ... · |ξn|κn

∣∣∣∣
∂κ(ξ1φmk)

∂ξκ1

1 . . . ∂ξκn
n

∣∣∣∣ ≤ c3
|ξ1|

|ξ|2 + |ξ1|
≤ c3,

with c3 = c3(n), property (c) follows. To prove the last part of the lemma we
notice that if n = 2 from (VII.4.11),
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φ21(ξ) =
ξ2ξ1

ξ2(ξ2 + iξ1)

φ22(ξ) =
−ξ21

ξ2(ξ2 + iξ1)
,

and therefore, for κi = 0, 1, i = 1, 2 and k = 1, 2, we have

|ξ1|κ1 |ξ2|κ2

∣∣∣∣
∂κφ2k

∂ξκ1
1 ∂ξκ2

2

∣∣∣∣ ≤ c4
|ξ1|

|ξ|(|ξ|2 + |ξ1|)
, κ = κ1 + κ2.

Since
(|ξ1||ξ2|)1/2|ξ1|
|ξ|(|ξ|2 + |ξ1|)

≤ 1,

assertion (e) follows. Finally, from the inequality

|ξ1|κ1 |ξ2|κ2

∣∣∣∣
∂κ(ξ`φ2k)

∂ξκ1

` ∂ξκ2
2

∣∣∣∣ ≤ c5
|ξ1|

|ξ|2 + |ξ1|
≤ c5,

(f) is proved and the proof of the lemma . ut

Let us begin to estimate u and π. From (VII.4.8)1 and (VII.4.10), with
the help of Lemma VII.4.1 and Lemma VII.4.2 (c), (d), it follows at once that

∥∥∥∥
∂u

∂x1

∥∥∥∥
q

≤ c‖f‖q (VII.4.13)

and

|u|2,q ≤ c‖f‖q. (VII.4.14)

Also, observing that for all s, k = 1, . . . , n the function ξsξk/ξ
2 satisfies the

assumptions of Lemma VII.4.1 with β = 0, we have

|π|1,q ≤ c‖f‖q.

From (VII.4.13), (VII.4.14) and from this last inequality we conclude

∥∥∥∥
∂u

∂x1

∥∥∥∥
q

+ |u|2,q + |π|1,q ≤ c‖f‖q , 1 < q <∞, (VII.4.15)

with c = c(n, q). In the case of plane flow (n = 2), we are able to obtain a
sharper estimate on the component u2 of the velocity field. Specifically, from
(VII.4.9), (VII.4.7), Lemma VII.4.1, and Lemma VII.4.2(f), we recover

|u2|1,q ≤ c‖f‖q, 1 < q <∞, (VII.4.16)

which, along with (VII.4.14), then furnishes
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|u2|1,q +

∥∥∥∥
∂u1

∂x1

∥∥∥∥
q

+ |u|2,q + |π|1,q ≤ c‖f‖q , 1 < q <∞. (VII.4.17)

Other estimates can be obtained by suitably restricting the range of values
of q. To this end, assume 1 < q < n+ 1; we then obtain from Lemma VII.4.1
and Lemma VII.4.2(b)

|u|1,s1 ≤ c‖f‖q, s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n+ 1, (VII.4.18)

where c = c(n, q). In the case of plane flow, n = 2, in addition to (VII.4.18),
from Lemma VII.4.2(e) we derive

‖u2‖2q/(2−q) ≤ c‖f‖q, 1 < q < 2, (n = 2). (VII.4.19)

Finally, assuming 1 < q < (n + 1)/2, from Lemma VII.4.1 and Lemma
VII.4.2(a) we find

‖u‖s2 ≤ c‖f‖q, s2 =
(n+ 1)q

n+ 1 − 2q
, 1 < q <

n+ 1

2
. (VII.4.20)

Let us now estimate the pair w, τ . Observing that

D̂`h = iξ`ĥ, (VII.4.21)

and recalling that the function ξsξk/ξ
2 satisfies the assumptions of Lemma

VII.4.1 with β = 0, we at once obtain

|w|1,r ≤ c‖g‖r, 1 < r <∞

|w|2,r ≤ c|g|1.r, 1 < r <∞.
(VII.4.22)

Likewise,
|τ |1,r ≤ c‖g‖1,r, 1 < r <∞. (VII.4.23)

Moreover, it is simple to show that ξk/ξ
2, k = 1, . . . , n, satisfies the assump-

tions of Lemma VII.4.1 with β = 1/n and so

‖w‖nr/(n−r) ≤ c‖g‖r, 1 < r < n. (VII.4.24)

Thus, from (VII.4.15), (VII.4.22), and (VII.4.23), it follows that
∥∥∥∥
∂v

∂x1

∥∥∥∥
q

+ |v|2,q + |p|1,q ≤ c(‖f‖q + ‖g‖1,q), 1 < q <∞, (VII.4.25)

and, from (VII.4.16), (VII.4.22), and (VII.4.23),

|v2|1,q +

∥∥∥∥
∂v

∂x1

∥∥∥∥
q

+ |v|2,q + |p|1,q ≤ c(‖f‖q + ‖g‖1,q), 1 < q <∞, (n = 2).

(VII.4.26)
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Remark VII.4.1 Estimates (VII.4.25) and (VII.4.26) have no analogue in
the Stokes problem, because of the presence of the terms in ∂v

∂x1
and v2. Just

these estimates, from the point of view of the Lq-approach, make the difference
between Oseen and Stokes approximations. �

If we restrict the values of q we can obtain other estimates for v. Specifi-
cally, from (VII.4.18) and (VII.4.22) we obtain

|v|1,s1 ≤ c(‖f‖q + ‖g‖s1), s1 =
(n + 1)q

n+ 1 − q
, 1 < q < n+ 1.

On the other hand, by the embedding Theorem II.3.1, it easily follows that

‖g‖s1 ≤ c‖g‖1,q, s1 =
(n + 1)q

n+ 1 − q
, 1 < q < n+ 1,

and so, in particular,

|v|1,s1 ≤ c(‖f‖q + ‖g‖1,q), s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n+ 1. (VII.4.27)

If n = 2, from (VII.4.19) and (VII.4.24) and from the embedding TTheorem
II.3.1, we have

‖v2‖2q/(2−q) ≤ c(‖f‖q + ‖g‖1,q), 1 < q < 2, (n = 2). (VII.4.28)

Finally, if 1 < q < (n+1)/2, we choose in (VII.4.24) the exponent r such that
nr/(n− r) = q(n + 1)/(n+ 1− 2q) to obtain

‖w‖s2 ≤ c‖g‖r1 , r1 =
n(n+ 1)q

n(n + 1 − q) + q
, 1 < q <

(n+ 1)

2
.

(Notice that r1 < n, since q < (n+1)/2.) Again using the embedding Theorem
II.3.1 on the right-hand side of this relation yields

‖w‖s2 ≤ c‖g‖1,q,

which together with (VII.4.20), in turn, implies

‖v‖s2 ≤ c(‖f‖q + ‖g‖1,q), s2 =
(n+ 1)q

n+ 1 − 2q
, 1 < q <

(n+ 1)

2
. (VII.4.29)

The results obtained so far can be immediately extended along the follow-
ing two directions. First of all, estimates (VII.4.25)–(VII.4.29) can be gener-
alized to derivatives of arbitrary order, by operating with D` on both sides
of (VII.4.10) and then using (VII.4.21). Secondly, f and g can be merely as-
sumed to be in Wm,q(Rn) and Wm+1,q(Rn), respectively. In fact, we may
use a standard argument of the type employed in Section IV.2 for the Stokes
problem along with the inequalities just derived (and those for higher-order
derivatives) to establish existence of solutions to (VII.4.2) and related esti-
mates under the above-stated larger assumptions on f and g. Corresponding
results for system (VII.4.1) can then be obtained via transformation (VII.4.3).
The first part of the following theorem is then acquired.
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Theorem VII.4.1 Given

f ∈Wm,q(Rn), g ∈Wm+1,q(Rn), m ≥ 0, 1 < q <∞,

there exists a pair of functions v, p with

v ∈Wm+2,q(BR), p ∈Wm+1,q(BR) , for any R > 0,

and satisfying a.e. the nonhomogeneous Oseen system (VII.4.1). Moreover,
for all integers ` ∈ [0, m], the quantities

∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q

, |v|`+2,q, |p|`+1,q

are finite and satisfy the estimate

R
∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q

+ |v|`+2,q + |p|`+1,q ≤ c (R|f |`,q + |g|`+1,q + R|g|`,q) . (VII.4.30)

If n = 2,
|v2|`+1,q

is also finite and it holds that

R|v2|`+1,q + R
∣∣∣∣
∂v1
∂x1

∣∣∣∣
`,q

+ |v| `+2,q + |p|`+1,q

≤ c (R|f|`,q + |g|`+1,q + R|g|`,q) .
(VII.4.31)

If 1 < q < n+ 1, |v|`+1,s1 is finite, s1 = (n+ 1)q/(n+ 1 − q), and

R1/(n+1)|v|`+1,s1 + R
∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q

+ |v| `+2,q + |p|`+1,q

≤ c (R|f|`,q + |g|`+1,q + R|g|`,q) .
(VII.4.32)

If n = 2 and 1 < q < 2, |v2|`,2q/(2−q) is also finite and we have

R|v2|`,2q/(2−q) + R|v2|`+1,q+ R1/3|v|`+1,3q/(3−q) + R
∣∣∣∣
∂v1
∂x1

∣∣∣∣
`,q

+|v|`+2,q + |p|`+1,q ≤ c (R|f|`,q + |g|`+1,q + R|g|`,q) .
(VII.4.33)

Furthermore, if 1 < q < (n + 1)/2, |v|`,s2 is finite where s2 = (n + 1)q/(n +
1− 2q), and

R2/(n+1)|v|`,s2 + R1/(n+1)|v|`+1,s1 + R
∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q

+|v|`+2,q + |p|`+1,q ≤ c (R|f |`,q + |g|`+1,q + R|g|`,q) ,
(VII.4.34)
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so that, in particular, if n = 2, from (VII.4.33) and (VII.4.34) it follows that

R|v2|`,2q/(2−q) + R|v2|`+1,q + R2/3|v|`,3q/(3−2q)

+R1/3|v|`+1,3q/(3−q) + R
∣∣∣∣
∂v1
∂x1

∣∣∣∣
`,q

+ |v|`+2,q + |p|`+1,q

≤ c (R|f |`,q + |g|`+1,q + R|g|`,q) .

(VII.4.35)

Here the constants ci, i = 1, 2, 3, depend only on n, `, and q. Finally, if w, τ
is another solution to (VII.4.1) corresponding to the same data f , g with1

∣∣∣∣
∂w

∂x1

∣∣∣∣
`,q

, |w|`+2,q

finite, for some ` ∈ [0, m], then
∣∣∣∣
∂

∂x1
(w − v)

∣∣∣∣
`,q

≡ |w− v|`+2,q ≡ |τ − p|`+1,q ≡ 0.

Proof. We have to show the uniqueness part only. In view of Theorem VII.1.1,
we have (w − v), (τ − p) ∈ C∞(Rn). Thus, letting z = Dα(w − v), s =
Dα(τ−p), with |α| = `, we derive, in particular, that z, s is a smooth solution
to the following system in Rn:

∆z + R ∂z

∂x1
= ∇s

∇ · z = 0.

(VII.4.36)

Using (VII.4.36)2 in (VII.4.36)1 we find that s is harmonic in the whole space
and, since ∇s ∈ Lq(Rn), from Exercise II.11.11 we have ∇s ≡ 0, namely,

|∇s|`,q ≡ |τ − p|`+1,q ≡ 0. (VII.4.37)

From this and (VII.4.36)1 we infer

∆z + R ∂z

∂x1
= 0, (VII.4.38)

where z is any component of z. Since D2z ∈ Lq(Rn), from the following
Exercise VII.4.1 we conclude

|D2z|`,q ≡ |w − v|`+2,q ≡ 0. (VII.4.39)

Relations (VII.4.37)–(VII.4.39) complete the proof of the theorem. ut
1 The assumptions on w can be weakened. Weaker assumptions, however, would

be unessential for our aims.
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Exercise VII.4.1 Let z be a function from C2(Rn) ∩ Lr(Rn), r ∈ (1,∞), satisfy-
ing (VII.4.38). Show z ≡ 0. Hint (Rionero & Galdi 1979): Multiply both sides of
(VII.4.38) by ϕRz|z|r−2, where ϕR is a positive C∞-function in R

n that is one in
BR and zero in Bc

2R, and satisfies |DαϕR| ≤ cR−|α|, |α| = 1, 2. Integrating by parts
one arrives at

Z

Rn

ϕR|z|r−2|∇z|2 ≤ c1

Z

Rn

(|∆ϕR| + |∇ϕR|) |z|r, (∗)

for some c1 independent of R. The result then follows by letting R→ ∞ in (∗).

The last part of this section is devoted to show existence and uniqueness
of a q-weak solution to (VII.4.2) (or, what amounts to the same thing, to
(VII.4.1)). By a q-weak solution to (VII.4.2) we mean a field v satisfying the
conditions

(i) v ∈ D1,q
0 (Rn);

(ii) (∇v,∇φ) − (
∂v

∂x1
,φ) = −[f ,φ], for all φ ∈ D(Ω);

(iii) (v,∇ϕ) = −(g, ϕ), for all ϕ ∈ C∞
0 (Rn).

(VII.4.40)

In view of Lemma VII.1.1, we can associate to v a pressure field p ∈ Lq
loc(R)

such that

(∇v,∇ψ) − (
∂v

∂x1
,ψ) − (p,∇ ·ψ) = −[f ,ψ], for all ψ ∈ C∞

0 (Rn).

As before, we begin to take f , g ∈ C∞
0 (Rn). Consequently, (VII.4.8), (VII.4.9),

(VII.4.10) is a C∞-solution to (VII.4.2). We now observe that f and g can be
written in a divergence form; that is,

fj(x) = D`F`j(x)

g(x) = D`G`(x),
(VII.4.41)

where F = F (x) and G = G(x) are second-order tensor and vector fields,
respectively, satisfying

|f|−1,q ≤ ‖F ‖q ≤ c1|f |−1,q

|g|−1,q ≤ ‖G‖q ≤ c1|g|−1,q

|G|1,q ≤ c1‖g‖q.

for all q ∈ (1,∞) (VII.4.42)

Actually, we may choose
F`j = D`(E ∗ fj)

G` = D`(E ∗ g)
with E the Laplace fundamental solution (II.9.1), and then use the result of
Exercise II.11.9. Notice that
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D̂`F`j = iξ`F̂`j

D̂`G` = iξ`Ĝ`.

(VII.4.43)

We begin to give an estimate for the pair u, π. From (VII.4.10), (VII.4.8)1,3,
and (VII.4.43), with the aid of Lemma VII.4.1 and Lemma VII.4.2(d), it
follows that

|u|1,q + ‖π‖q ≤ c2‖F ‖q, 1 < q <∞,

and (VII.4.42)1 implies

|u|1,q + ‖π‖q ≤ c3|f|−1,q, 1 < q <∞. (VII.4.44)

In the case of plane flow (n = 2), we can use Lemma VII.4.2(f) to obtain a
further estimate for the component u2, namely,

‖u2‖q ≤ c4‖F ‖q , 1 < q <∞.

Therefore, in such a case, this last relation, along with (VII.4.42)1 and
(VII.4.44), furnishes

‖u2‖1,q + |u1|1,q + ‖π‖q ≤ c5|f |−1,q , 1 < q <∞. (VII.4.45)

If we restrict the range of values of q, we may obtain another esti-
mate. Specifically, from (VII.4.10), (VII.4.8)1, Lemma VII.4.1, and Lemma
VII.4.2(b) we find

‖u‖s1 ≤ c6‖F ‖q, s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n + 1,

so that (VII.4.42)1 and (VII.4.44) imply

‖u‖s1 +|u|1,q+‖π‖q ≤ c7|f |−1,q, s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n+1. (VII.4.46)

Moreover, if n = 2, inequalities (VII.4.45) and (VII.4.46) deliver

‖u2‖1,q + ‖u‖3q/(3−q) + |u1|1,q + ‖π‖q ≤ c8|f |−1,q, 1 < q < 3. (VII.4.47)

We shall next estimate the pairw, τ defined by (VII.4.10)2,4 and (VII.4.8)2,4,
respectively, with g given by (VII.4.41)2. Actually, recalling that ξkξs/ξ

2,
k, s = 1, . . . , n, satisfies the assumptions of Lemma VII.4.1 with β = 0 we
at once obtain

‖w‖r ≤ c9|g|−1,r

|w|1,r ≤ c9‖g‖r

‖τ‖r ≤ c9 (‖g‖r + |g|−1,r) .

1 < r <∞ (VII.4.48)

On the other hand, from the embedding Theorem II.3.1 we find
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‖G‖s1 ≤ c‖G‖1,q, s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n + 1, (VII.4.49)

and so, from (VII.4.41)2,3, (VII.4.48), and (VII.4.49) it follows that

‖w‖1,q + ‖τ‖q ≤ c10 (‖g‖q + |g|−1,q) , 1 < q <∞,

‖w‖s1 ≤ c11 (‖g‖q + |g|−1,q) , s1 =
(n+ 1)q

n+ 1 − q
, 1 < q < n+ 1.

(VII.4.50)

In view of (VII.4.9), (VII.4.44)–(VII.4.47), (VII.4.50), and using the replace-
ments (VII.4.3) we may conclude that, for given f and g from C∞

0 (Rn) prop-
erties stated previously, there exists a q-weak solution to (VII.4.1) satisfy-
ing together with the corresponding pressure p, the following estimates: if
1 < q <∞

|v|1,q + ‖p‖q ≤ c (R|f |−1,q + R|g|−1,q + ‖g‖q)

R‖v2‖q + |v|1,q + ‖p‖q ≤ c (R|f|−1,q + R|g|−1,q + ‖g‖q) ( if n = 2)
(VII.4.51)

and if 1 < q < n+ 1

R1/(n+1) ‖v‖s1 + |v|1,q + ‖p‖q

≤ c (R|f |−1,q + R|g|−1,q + ‖g‖q) , s1 =
(n+ 1)q

n + 1 − q

R‖v2‖q+ R1/3‖v‖3q/(3−q) + |v|1,q + ‖p‖q

≤ c (R|f |−1,q + R|g|−1,q + ‖g‖q) ( if n = 2)

(VII.4.52)

with c = c(n, q).

Starting from (VII.4.51) and (VII.4.52), we may use a now standard den-
sity argument to extend the above results to the case when f and g merely
satisfy the assumptions

f ∈ D−1,q
0 (Rn), g ∈ Lq(Rn) ∩D−1,q

0 (Rn).

However, to do this we need a result that ensures us that we can approximate
g by functions from C∞

0 (Rn) in the norm of Lq(Rn)∩D−1,q
0 (Rn). This is the

content of the following.

Lemma VII.4.3 Let

g ∈ Lq(Rn) ∩D−1,q
0 (Rn), 1 < q <∞.

Then, for any η > 0 there exists g(η) ∈ C∞
0 (Rn) such that

|g(η) − g|−1,q + ‖g(η) − g‖q < η.



VII.4 Existence, Uniqueness, and Lq-Estimates in the Whole Space 457

Proof. Consider the problem

∆Ψ = g in Rn. (VII.4.53)

In view of the assumption made on g, by Exercise II.11.9 there exist two (a
priori distinct) solutions Ψ1 and Ψ2 to (VII.4.53) such that

|Ψ1|2,q ≤ c‖g‖q

|Ψ2|1,q ≤ c|g|−1,q.
(VII.4.54)

It is not difficult to show that

D2(Ψ1 − Ψ2) ≡ 0. (VII.4.55)

In fact, the difference Ψ = Ψ1 − Ψ2 satisfies

∆Ψ = 0 in Rn. (VII.4.56)

We may now represent Ψ by means of (V.3.14). Taking into account (VII.4.56)
and that H(R) is of bounded support, this latter leads, in particular, to the
following

DiDjΨ(x) = −
∫

Rn

H(R)(x− y)DiDjΨ(y)dy . (VII.4.57)

From (VII.4.57) we infer

DiDjΨ(x) = −
∫

Rn

H(R)(x− y)DiDjΨ1(y)dy

+

∫

Rn

DiH
(R)(x− y)DjΨ2(y)dy,

and so, by the Hölder inequality, we obtain

|DiDjΨ(x)| ≤ ‖H(R)‖q′ |Ψ1|2,q + |H(R)|1,q′ |Ψ2|1,q.

Letting R → ∞ into this relation and using (VII.4.54) and (V.3.13) proves
(VII.4.55). We may then state that problem (VII.4.53) with g verifying the
assumptions of the lemma admits a unique solution Ψ ∈ D1,q

0 (Rn)∩D2,q(Rn)
and that this solution satisfies

|Ψ |2,q ≤ c‖g‖q

|Ψ |1,q ≤ c|g|−1,q.
(VII.4.58)

Given ρ > 0, let us denote by ζρ = ζρ(x) a nonincreasing, smooth function
that equals 1 for |x| ≤ ρ and 0 for |x| ≥ 2ρ and

|∇ζρ| ≤ c/ρ. (VII.4.59)
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Set
u = ∇Ψ, uρ,ε = ζρ∇Ψε, gρ,ε = ∇ · uρ,ε, (VII.4.60)

where Ψε is the regularizer of Ψ . Evidently

gρ,ε ∈ C∞
0 (Rn).

Let us next show that gρ,ε approaches g simultaneously in Lq(Rn) and

D−1,q
0 (Rn) as ρ→ ∞ and ε→ 0. By (VII.4.53), (VII.4.59), and (VII.4.60), by

the Minkowski inequality, property (II.2.9)2 of the regularizer and by Exercise
II.3.2 we find

‖gρ,ε − g‖q = ‖∇ · uρ,ε −∇ · u‖q ≤‖∇ζρ · ∇Ψε‖q + ‖ζρgε − g‖q

≤C
ρ
|g|−1,q + ‖(ζρ − 1)g‖q + ‖gε − g‖q.

This inequality, along with (II.2.9)2, establishes that for all η > 0 we may find
ρ1 = ρ1(η, g) > 0 and ε1 = ε1(η, g) > 0 such that

‖gρ,ε − g‖q < η/2, for all ρ > ρ1, ε > ε1. (VII.4.61)

Furthermore, from (VII.4.53), (VII.4.60) and the Minkowski inequality, we
have

|gρ,ε − g|−1,q ≤ ‖uρ,ε − u‖q ≤ |Ψε − Ψ |1,q + ‖(ζρ − 1)∇Ψ‖q

and so, again by Exercise II.3.2 and (VII.4.58)2, it follows that for all η > 0
we may find ρ2 = ρ2(η, g) > 0 and ε2 = ε2(η, g) > 0 such that

|gρ,ε − g|−1,q < η/2, for all ρ > ρ2, ε > ε2. (VII.4.62)

The lemma then follows from (VII.4.61) and (VII.4.62). ut

We shall finally show that the q-generalized solutions just obtained are in
fact unique among their class of existence.2 Actually, suppose w, τ is another
solution corresponding to the same data, with

w ∈ D1,q
0 (Rn), τ ∈ Lq

loc(R
n).3

The differences

z = w − v ∈ D1,q
0 (Rn), s = τ − p ∈ Lq

loc(R
n)

satisfy the identity

2 We observe that uniqueness is an immediate consequence of Theorem VII.6.2,
which will be proved in Section VII.6. Here, we prefer to give another proof,
which makes all treatment self-contained.

3 This assumption on τ is a consequence of that made on w, see Lemma VII.1.1.
Notice that we need no global summability assumption on τ .
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(∇z,∇ψ) −R(
∂z

∂x1
,ψ) = (s,∇ ·ψ) (VII.4.63)

for all ψ ∈ C∞
0 (Rn). From Theorem VII.1.1 we deduce z, s ∈ C∞(Rn) and

so, in particular, using (VII.4.63), we find

∆z + R ∂z

∂x1
−∇s = 0

∇ · z = 0





in Rn

z ∈ D1,q
0 (Rn).

(VII.4.64)

Using Theorem V.5.3 (with f ≡ −R(∂z/∂x1)) it follows that

z ∈ D2,q(Rn), s ∈ D1,q(Rn).

Operating with ∇· on both sides of (VII.4.64)1 we find that s is harmonic
throughout Rn and, therefore, by Exercise II.11.11 we deduce ∇s ≡ 0 in
Rn. Relation (VII.4.64) then furnishes that each component z of z satisfies
(VII.4.38) and since z ∈ D1,q

0 (Rn) we may use Exercise VII.4.1 to deduce
z = 0 in D1,q

0 (Rn) and uniqueness is proved.

The results just shown are summarized in the following.

Theorem VII.4.2 Given

f ∈ D−1,q
0 (Rn), g ∈ Lq(Rn) ∩D−1,q

0 (Rn), 1 < q <∞,

there exists at least one q-generalized solution v to (VII.4.1). Moreover, the
pressure field p associated to v satisfies

p ∈ Lq(Rn)

and v, p verify the estimate (VII.4.51). Also, if 1 < q < n+ 1, then

v ∈ Ls1(Rn), s1 =
(n+ 1)q

n+ 1 − q
,

with
v2 ∈ Lq(R2), if n = 2,

and estimate (VII.4.52) holds. Finally, ifw is another q-generalized solution to
(VII.4.1) corresponding to the same data f and g, then w ≡ v+c1, τ ≡ p+c2 ,
for some constants ci, i = 1, 2, where τ is the pressure field associated to w
by Lemma VII.1.1. If q < n + 1, we may take c1 = 0.

VII.5 Existence of Generalized Solutions for Plane Flows
in Exterior Domains

In the previous section we proved, among other things, existence of plane flow
in the whole space tending to a prescribed value at infinity. In this section
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we shall establish the same result in the more general case when the relevant
region of flow is an exterior domain. This is in sharp contrast with the Stokes
approximation, where we know that the problem is resolvable if and only if
certain restrictions are imposed on the data, see Section V.7. However, as we
already observed in Remark VII.2.1, to show existence we cannot use sic et
simpliciter the technique of Theorem VII.1.1, for then we would not be able
to control the behavior of the solution at large distances. Consequently, we
have to employ a different approach.

To this end, following Finn & Smith (1967a), we begin to consider the
modified problem

∆v + R ∂v

∂x1
− εv = ∇p+ Rf

∇ · v = 0





in Ω

v = v∗ at ∂Ω

lim
|x|→∞

v(x) = 0

(VII.5.1)

with ε ∈ (0, 1] and prove for it existence of solutions and suitable Lq-estimates
for any value of ε. Successively, using such estimates, we show that in the limit
ε→ 0 these solutions converge in a well-defined sense to a generalized solution
of the original problem (VII.0.2), (VII.0.3).

The above assertions will be proved through several steps. First of all we
consider existence of a solution to the following nonhomogeneous approximat-
ing system in R2:

∆u+ R ∂u

∂x1
− εu = ∇π + RF

∇ · u = g

(VII.5.2)

Specifically, we have

Lemma VII.5.1 Let F ∈ Lq(R2), g ∈ W 1,q(R2), 1 < q < 3/2. Then for all
ε ∈ (0, 1] there exists a solution uε, πεto (VII.5.2) such that

uε ∈W 2,q(R2) ∩D1,3q/(3−q)
0 (R2) ∩ L3q/(3−2q)(R2)

πε ∈ D1,q(R2)

uε
2 ∈ L2q/(2−q)(R2) ∩D1,q

0 (R2)

∂u1

∂x1
∈ Lq(R2)

and satisfying the estimate
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R‖uε
2‖2q/(2−q)+R|uε

2|1,q + R2/3‖uε‖3q/(3−2q) + R1/3|uε|1,3q/(3−q)

+R
∥∥∥∥
∂uε

1

∂x1

∥∥∥∥
q

+ |uε|1,q + |πε|1,q

≤ c (R|f |q + |g|1,q + R‖g‖q) ,

(VII.5.3)

where c = c(q). Moreover, if w, τ are such that

(a)w ∈W 1,2(R2), τ ∈ Lloc(R2);

(b) (∇w,∇ψ) −R(
∂w

∂x1
,ψ) + ε(w,ψ) = (τ,∇ ·ψ) −R[F ,ψ],

(w,∇ · φ) = −(g, φ), for all ψ, φ ∈ C∞
0 (R2),

necessarily w = uεand τ = πε + const a.e. in R2.

Proof. The proof of the existence of uε, πε satisfying (VII.5.3) is entirely anal-
ogous to that of Theorem VII.4.1. The only point that deserves a little care is
to show that the constant c in (VII.5.3) can be taken independent of ε. To see
how this can be done, we shall sketch the proof of (VII.5.3) when F ∈ C∞

0 (R2)
and g ≡ 0, leaving to the reader the simple tasks of giving details and extend-
ing the result to the general case. As in Section VII.4, we first make a change
of variable of the type (VII.4.3), which formally brings (VII.5.2) into a similar
system having R = 1 and εR in place of ε. Let us denote by (VII.5.2′) this
latter system. We next construct a solution to (VII.5.2′) by Fourier transform,
that is,

uε(x) =
1

2π

∫

R2

eix ·ξU ε(ξ)dξ

πε(x) =
1

2π

∫

R2

eix·ξΠε(ξ)dξ,

where

Uε
m(ξ) =

ξmξk − ξ2δmk

ξ2(ξ2 + εR + iξ1)
F̂k(ξ), m = 1, 2

Πε(ξ) = i
F̂k(ξ)ξk

ξ2
,

and F̂ is the Fourier transform of F . Setting

Ψmk(ξ) =
ξmξk − ξ2δmk

ξ2(ξ2 + εR + iξ1)
, (VII.5.4)

using the same reasonings as in the proof of Lemma VII.4.2 one shows with
no difficulty that the functions

Ψmk(ξ), ξ`Ψmk(ξ), ξ`ξsΨmk(ξ), `, s,m, k = 1, 2,

satisfy the assumption of Lemma VII.4.1 with β = 2/3, β = 1/3 and β = 0,
respectively, with a constant M independent of εR. The same is true for
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Ψ2k(ξ), with β = 1/2, and for ξ`Ψ2k(ξ), with β = 0, k = 1, 2. As a consequence,
arguing exactly as in the proof of Theorem VII.4.1, we obtain (VII.5.3) with
a constant c independent of ε. Let us next show

uε ∈W 1,q(R2). (VII.5.5)

By Lemma VII.4.1, it suffices to prove, for some C = C(ε,R) and all `,m, k =
1, 2

|ξκ1

1 | |ξκ2

2 |
∣∣∣∣
∂κΨmk

∂ξκ1
1 ∂ξκ2

2

∣∣∣∣ ≤ C

|ξκ1

1 | |ξκ2

2 |
∣∣∣∣
∂κ(ξ`Ψmk)

∂ξκ1
1 ∂ξκ2

2

∣∣∣∣ ≤ C

with κ1, κ2 = 0, 1 and κ1 + κ2 = κ. We now have, with c = c(κ1, κ2),

|ξκ1
1 | |ξκ2

2 |
∣∣∣∣
∂κΨmk

∂ξκ1

1 ∂ξκ2

2

∣∣∣∣ ≤ c
1

ξ2 + εR + |ξ1|
≤ c

εR

and

|ξκ1
1 | |ξκ2

2 |
∣∣∣∣
∂κ(ξ`Ψmk)

∂ξκ1

1 ∂ξκ2

2

∣∣∣∣ ≤ c
|ξ|

ξ2 + εR + |ξ1|
≤ c

(εR)1/2

and (VII.5.5) follows. Finally, let w, τ satisfy conditions (a) and (b) stated in
the lemma and set v = w−uε, p = τ − πε. We then obtain that v obeys the
identity

(∇v,∇ϕ) −R(v,
∂ϕ

∂x1
) + ε(v,ϕ) = 0, for all ϕ ∈ D(Ω). (VII.5.6)

However, by embedding Theorem II.3.2, it follows that uε ∈ W 1,2(R2) and
since ∇ · v = 0 we conclude v ∈ H1(R2). By continuity, we may then extend
identity (VII.5.6) to all ϕ ∈ H1(R2) and, in particular, we may take ϕ = v

to deduce

(∇v,∇v) + ε(v, v) = R(v,
∂v

∂x1
). (VII.5.7)

Since

(v,
∂v

∂x1
) = 0,

(VII.5.7) yields v = 0 a.e. in R2 and, consequently, from (b) and the analogous
identity written for uε, we have

(p,∇ · ψ) = 0, for all ψ ∈ C∞
0 (R2),

implying τ = πε + const a.e. in R2. The proof of the lemma is therefore
completed. ut
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The second step consists in proving the existence of a generalized solution
to (VII.5.1), that is, of a field v : Ω → R2 satisfying the requirements (i)-(iv)
of Definition VII.1.1 with q = 2, along with the identity

(∇v,∇ϕ) −R(
∂v

∂x1
,ϕ) + ε(v,ϕ) = −R[f ,ϕ], for all ϕ ∈ D(Ω). (VII.5.8)

We have

Lemma VII.5.2 Let Ω be a locally Lipschitz, exterior domain of R2, and let

f ∈ D−1,2
0 (Ω), v∗ ∈W 1/2,2(∂Ω).

Then, for all ε ∈ (0, 1] there exists a generalized solution vε to (VII.5.1). This
solution verifies the estimate

ε‖vε‖2 + ‖vε‖2,ΩR + |vε|1,2 ≤ c1
{
R|f |1,2 + (1 + R)‖v∗‖1/2,2(∂Ω)

}
(VII.5.9)

for all R > δ(Ωc) and with a constant c1 = c1(R,Ω). Moreover, denoting by
pε ∈ L2

loc(Ω) the corresponding pressure field,1 we have

‖pε‖2,ΩR/ R ≤ c2 {R|f|−1,2 + (1 + R)|vε|1,2} (VII.5.10)

for all R > δ(Ωc) and with a constant c2 = c2(R,Ω).

Proof. Again, the proof is completely analogous to that given in Theorem
VII.2.1. Actually, we look for a solution vε of the form

vε = wε + V 1 + σ,

where V 1 is a suitable extension of v∗ constructed exactly as in the proof of
Theorem VII.2.1. In addition,

σ = − 1

4π
∇
(

log
1

|x|

)∫

∂Ω

v∗ · n

(the origin of coordinates having been taken in Ω̇c) and wε ∈ H1(Ω) verifies
the identity

(∇wε,∇ϕ) −R(
∂wε

∂x1
,ϕ) + ε(wε,ϕ)

= −R[f ,ϕ] − (∇V 1,∇ϕ) −R(
∂V 1

∂x1
+
∂σ

∂x1
,ϕ),

for all ϕ ∈ D(Ω). Using the Galerkin method and exploiting the properties
of V 1, σ, and a , we easily show the existence of wε obeying the previous
identity and the following inequality

1 Associated to vε in a way completely analogous to that used in Lemma VII.1.1
for generalized solutions with ε = 0.
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ε‖wε‖2 + |wε|1,2 ≤ c3
{
R|f |−1,2 + (1 + R)‖v∗‖1/2,2(∂Ω)

}

(see the proof of Theorem VII.2.1). From this we deduce the existence of a
generalized solution vε satisfying (VII.5.9). The estimate for pε is obtained
again as in the proof of Theorem VII.2.1. Notice that this time, since ε 6= 0,
we are able to control the behavior of vε at infinity and to show, in particular,
the validity of condition (iv) of Definition VII.1.1. Actually, for ε > 0, we have
vε ∈W 1,2(Ω) and so, putting |x| = r and

I(r) =

∫ 2π

0

|vε(r, θ)|2dθ, r > δ(Ωc),

we recover

I(r) ∈ L1(0,∞),
dI
dr

∈ L1(0,∞),

which implies I(r) = o(1) as r → ∞. ut

The third step is to prove that if, in addition to the assumptions made in
Lemma VII.5.2, f belongs to Lq(Ω) for some q ∈ (1, 3/2), then vε and its
derivatives belong to suitable Lebesgue spaces and satisfy there an estimate
in terms of the data uniformly in ε ∈ (0, 1]. Specifically, we have

Lemma VII.5.3 Let Ω, f , and v∗ satisfy the hypotheses of Lemma VII.5.2.
Suppose, further, f ∈ Lq(Ω), 1 < q < 3/2. Then, the generalized solution vε

determined in Lemma VII.5.2 and the corresponding pressure field pε verify,
in addition, for all R > δ(Ωc)

vε ∈ D2,q(ΩR) ∩D1,3q/(3−q)(ΩR) ∩ L3q/(3−2q)(Ω)

vε
2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω)

∂vε
1

∂x1
∈ Lq(Ω)

pε ∈ D1,q(ΩR)

along with the estimate

R
(
‖vε

2‖2q/(2−q) + |vε
2|1,q +

∥∥∥∥
∂vε

1

∂x1

∥∥∥∥
q

)

+b‖vε‖3q/(3−2q) + R1/3|vε|1,3q/(3−q),ΩR + |vε|2,q,ΩR + |pε|1,q,ΩR

≤ c
{
R (‖f‖q + (1 + R)|f |−1,2) + (1 + R)2‖v∗‖1/2,2(∂Ω)

}
,

(VII.5.11)

where b = min{1,R2/3} and c = c(q, Ω, R).

Proof. Let χ ∈ C∞(R2) be zero in BR/2 and one in Bc
R, for some arbitrarily

fixed R > δ(Ωc). Setting uε = χvε, πε = χpε it is easy to show that uε, πε

satisfy (VII.5.2) 2 with

2 In the generalized sense.
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RF =∆χvε + 2∇χ · ∇vε + Rv ∂χ
∂x1

+ pε∇χ+ Rχf

g =∇χ · vε.

By the properties of χ, we readily deduce the estimates

R‖F ‖q ≤ c1 [R‖f‖q + (1 + R)‖vε‖1,2,ΩR + ‖pε‖2,ΩR]

‖g‖q ≤ c2‖vε‖2,ΩR

|g|1,q ≤ c3‖vε‖1,2,ΩR

(VII.5.12)

with ci = ci(χ), i = 1, 2. Using these inequalities along with Lemma VII.5.2
we deduce that

F ∈ Lq(R2), g ∈W 1,q(R2), 1 < q < 3/2

and that
R‖F ‖q + |g|1,q + R‖g‖q

is increased through the right-hand side of (VII.5.11). From Lemma VII.5.1
we then deduce

uε ∈W 2,q(R2) ∩D1,3q/(3−q)
0 (R2) ∩L3q/(3−2q)(R2)

πε ∈ D1,q(R2)

uε
2 ∈ L2q/(2−q)(R2) ∩D1,q

0 (R2)

∂uε
1

∂x1
∈ Lq(R2)

and that uε, πε satisfy (VII.5.3). The proof then follows from (VII.5.9) and
(VII.5.12), and by recalling that χ = 1 in Bc

R and that

‖vε
2‖2q/(2−q),ΩR

+ |vε
2|1,q,ΩR +

∥∥∥∥
∂vε

1

∂x1

∥∥∥∥
q,ΩR

+ ‖vε‖3q/(3−2q),ΩR
≤ c‖vε‖1,2,ΩR.

ut

We are now in a position to prove the following.

Theorem VII.5.1 Let Ω be a two-dimensional, locally Lipschitz exterior
domain. Then, given

f ∈ D−1,2
0 (Ω) ∩ Lq(Ω), 1 < q < 3/2,

v∗ ∈W 1/2,2(∂Ω) ,

there exists a unique generalized solution v to (VII.0.2) and (VII.0.3). More-
over, for all R > δ(Ωc) this solution verifies
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v ∈ D2,q(ΩR) ∩D1,3q/(3−q)(ΩR) ∩ L3q/(3−2q)(Ω)

v2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω)

∂v1
∂x1

∈ Lq(Ω)

p ∈ D1,q(ΩR),

(VII.5.13)

where p is the pressure field associated to v by Lemma VII.1.1. Finally, the
following estimate holds:

‖v‖2,ΩR + |v|1,2 + R
(
‖v2‖2q/(2−q) + |v2|1,q +

∥∥∥∥
∂v1
∂x1

∥∥∥∥
q

)

+b‖v‖3q/(3−2q) + R1/3|v|1,3q/(3−q),ΩR + |v|2,q,ΩR + |p|1,q,ΩR

≤ c
{
R (‖f‖q + (1 + R)|f |−1,2) + (1 + R)2‖v∗‖1/2,2(∂Ω)

}
,

(VII.5.14)

where b = min{1,R2/3} and c = c(q, Ω, R).

Proof. Uniqueness is already known from Theorem VII.1.2. Concerning exis-
tence, we proceed as follows. We take ε = 1/m, m ∈ N, in (VII.5.1) and denote
by vm, pm the corresponding generalized solution and the associated pressure
field which, by Lemmas 5.2 and 5.3 exist and satisfy inequalities (VII.5.9)–
(VII.5.11) with constants c1, c2 and c independent of m. In particular, such
inequalities for any fixed R > δ(Ωc) lead to the uniform bound

‖vm2‖2q/(2−q) + |vm2|1,q +

∥∥∥∥
∂vm1

∂x1

∥∥∥∥
q

+ |vm|1,3q/(3−q),ΩR

+‖vm‖3q/(3−2q) + |vm|1,2 + |v|2,q,ΩR + |pm|1,q ≤M

(VII.5.15)

with M independent of m. Using the weak compactness of the spaces Lr and
Ḋm,r , 1 < r < ∞ (Theorem II.2.4 and Theorem II.3.1 and Exercise II.6.2),
together with the strong compactness results of Exercise II.5.8, from (VII.5.9),
(VII.5.11) and (VII.5.15) we then deduce the existence of a subsequence, de-
noted again by {vm, pm}, and of fields v, p verifying (VII.5.13) and (VII.5.14)
and, moreover, as m→ ∞,

vm → v, weakly in W 1,2(ΩR) and strongly in L2(ΩR), (VII.5.16)

for any R > δ(Ωc). It is simple to show that v satisfies (VII.1.1) for all
ϕ ∈ D(Ω). To see this, we notice that vm satisfies (VII.5.8) with ε = 1/m,
which in view of (VII.5.16) reduces to (VII.1.1) in the limit m→ ∞. Clearly,
v is weakly divergence-free and, by (VII.5.16) and Theorem II.4.1, v = v∗ at
∂Ω in the trace sense. To prove the theorem completely, it remains to show
condition (i) of Definition VII.1.1. Actually, we shall prove something more;
that is,
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lim
|x|→∞

v(x) = 0. (VII.5.17)

In fact, from the property v ∈ D2,q(ΩR), 1 < q < 3/2, and from Theorem
II.6.1 we obtain v ∈ D1,2q/(2−q)(ΩR). Thus

v ∈ D1,2q/(2−q)(ΩR) ∩L3q/(3−2q)(ΩR)

and (VII.5.17) follows from Theorem II.9.1. ut

VII.6 Representation of Solutions. Behavior at Large
Distances and Related Results

We shall presently investigate the behavior at infinity of solutions to the Oseen
system and, in particular, we shall determine its asymptotic structure. To
reach this goal, we will pattern essentially the same ideas and techniques used
for analogous questions within the Stokes approximation in Section IV.8 and
Section V.3 and therefore, here and there, we may leave details to the reader.

Let us begin to show a representation formula for smooth solutions in a
bounded domain of class C1. Denoting, as usual, by T the stress tensor of a
given flow, for v, p and u, π enough regular fields the following identities hold:

∫

Ω

(
∇ · T (v, p) + R ∂v

∂x1

)
· u = −

∫

Ω

(
T (v, p) : ∇u+ Rv · ∂u

∂x1

)

+

∫

∂Ω

(
u · T (v, p) · n+ Rv · u e1 ·n

)

∫

Ω

(
∇ · T (u, π) + R ∂u

∂x1

)
· v = −

∫

Ω

(
T (u, π) : ∇v + Rv · ∂u

∂x1

)

+

∫

∂Ω

(v · T (u, π) · n) ,

(VII.6.1)
where, as usual, e1 denotes the unit vector along the positive x1-axis. Assum-
ing u and v solenoidal implies

∫

Ω

T (u, π) : ∇v =

∫

Ω

T (v, p) : ∇u

and so, subtracting (VII.6.1)2 from (VII.6.1)1, we obtain

∫

Ω

{(
∇ · T (v, p) + R ∂v

∂x1

)
·u −

(
∇ · T (u, π) + R ∂u

∂x1

)
· v
}

=

∫

∂Ω

(u · T (v, p) − v · T (u, π) + Rv · u e1) ·n.
(VII.6.2)
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Identity (VII.6.2) is the Green’s formula for the Oseen system. Proceeding as
in Section IV.8, it is easy to derive from (VII.6.2) a representation formula
for v and p satisfying the Oseen system. Actually, for fixed j = 1, . . . , n and
x ∈ Ω we choose

u(y) = wj(x− y) ≡ (E1j, E2j, . . . , Enj)

π(y) = ej(x− y),
(VII.6.3)

where E, e is the fundamental solution introduced in Section VII.3. Replacing
(VII.6.3) into (VII.6.2) with Ωε ≡ Ω − {|x− y| ≤ ε} in place of Ω and then
letting ε→ 0, in view of (VII.3.18) and (VII.3.22) we recover

vj(x) =R
∫

Ω

Eij(x− y)fi(y)dy +

∫

∂Ω

[vi(y)Ti`(wj , ej)(x− y)

−Eij(x− y)Ti`(v, p)(y) −Rvi(y)Eij(x− y)δ1`]n`dσy,
(VII.6.4)

where

Rf = ∆v + R ∂v

∂x1
−∇p. (VII.6.5)

We now turn to the representation for the pressure. By means of classical
potential theory one can show that if f is Hölder continuous, the volume
potentials

Wj(x) = R
∫

Ω

Eij(x− y)fi(y)dy

S(x) = −R
∫

Ω

ei(x− y)fi(y)dy

are (at least) of class C2 and C1, respectively, and, moreover,

LWj =
∂S

∂xj
+ Rfj in Ω, (VII.6.6)

where

Lu ≡ ∆u+ R ∂u

∂x1
.

From (VII.6.4) and (VII.6.5) we have

∂p

∂xj
+ Rfj = Lvj = LWj +

∫

∂Ω

[viLTi`(wj , ej)

−(LEij)Ti`(v, p) −RviLEijδ1`]n`

(VII.6.7)

and observing that ej is harmonic (for x 6= y) and that ∂ei/∂xj = ∂ej/∂xi,
from (VII.3.19) and from the definition of T it also follows that
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LTi`(wj, ej) = Lejδi` +
∂

∂x`
(LEij) +

∂

∂xi
(LE`j)

= −R ∂ej

∂x1
δi` − 2

∂2ei

∂xi∂x`
.

(VII.6.8)

Using (VII.6.5) and (VII.6.8) in (VII.6.7) we conclude the validity (up to a
constant) of the following formula for all x ∈ Ω:

p(x) = −R
∫

Ω

ei(x− y)fi(y)dy +

∫

∂Ω

{
ei(x− y)Ti`(v, p)(y)

−2vi(y)
∂

∂x`
ei(x− y) −R[e1(x− y)v`(y)

−vi(y)ei(x− y)δ1`]

}
n`dσy.

(VII.6.9)

Formulas (VII.6.4) and (VII.6.9) can be generalized toward the following
two directions:

(i) To derive analogous formulas for derivatives of v and p of arbitrary order;
(ii)To show their validity with v and p only belonging to suitable Sobolev

spaces.

The first issue is trivially achieved (provided v, p, and f are sufficiently
smooth) by replacing in (VII.6.4) and (VII.6.9) v, p and f with Dαv, Dαp,
and Dαf , respectively. The second one can be proved along the same lines
of Theorem IV.8.1. However, we need the following result, whose validity is
established by means of Theorem IV.4.1 and Theorem IV.5.1.

Lemma VII.6.1 Let Ω be a bounded domain of class Cm+2, m ≥ 0. For any
f ∈Wm,q(Ω), v∗ ∈Wm+2−1/q,q(∂Ω), 1 < q <∞, with

∫

∂Ω

v∗ · n = 0,

there exists one and only one function v ∈ Wm+2,q(Ω), p ∈ Wm+1,q(Ω)
satisfying a.e. the Oseen problem

∆v + R ∂v

∂x1
= ∇p+ Rf

∇ · v = 0





in Ω

v = v∗ at ∂Ω.

(VII.6.10)

Proof. The existence of a generalized solution is at once established with the
Galerkin method used in the proof of Theorem VII.2.1. Employing Theorem
IV.4.1 and Theorem IV.5.1 we then show that such a solution satisfies all
requirements stated in the theorem. Uniqueness is a simple exercise. ut
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Lemma VII.6.1, together with an argument entirely analogous to that of
Theorem IV.8.1, implies the following result.

Lemma VII.6.2 Let Ω satisfy the assumption of Lemma VII.6.1. Let v ∈
Wm+2,q(Ω), p ∈ Wm+1,q(Ω) be a solution to (VII.6.10)1 corresponding to
f ∈ Wm,q(Ω), m ≥ 0, 1 < q < ∞. Then, for all |α| ∈ [0, m] and almost all
x ∈ Ω,

Dαvj(x)= R
∫

Ω

Eij(x− y)Dαfi(y)dy +

∫

∂Ω

[Dαvi(y)Ti`(wj , ej)(x− y)

−Eij(x− y)Ti`(D
αv, Dαp)(y)−RDαvi(y)Eij(x−y)δ1`]n`dσy,

Dαp(x) =−R
∫

Ω

ei(x− y)Dαfi(y)dy +

∫

∂Ω

{
ei(x− y)Ti`(D

αv, Dαp)(y)

−2Dαvi(y)
∂

∂x`
ei(x− y) −R[e1(x− y)Dαv`(y)

−Dαvi(y)ei(x− y)δ1`]

}
n`dσy.

Our next task is to extend the above results to the case when Ω is an ex-
terior domain. As in the case of the Stokes approximation, we shall use a suit-
able “truncation” of the Oseen fundamental tensor, along the lines suggested
by Fujita (1961) in the nonlinear context. Thus, the Oseen-Fujita truncated

fundamental solution E
(R)
ij , e

(R)
j is defined by (VII.3.1), (VII.3.4), (VII.3.8),

and (VII.3.11) with Φ replaced by ψRΦ, where ψR is the “cut-off” function
introduced in Section V.3. Clearly,

E
(R)
ij (x− y) = Eij(x− y), e

(R)
j (x− y) = ej(x− y), if |x− y| ≤ R/2,

while E
(R)
ij (x− y) and e

(R)
j (x− y) vanish identically for |x− y| ≥ R. Further-

more, from (VII.3.1) and (VII.3.2) one immediately obtains
(
∆−R ∂

∂y1

)
E

(R)
ij (x− y) − ∂

∂yi
e
(R)
j (x − y) =H(R)

ij (x− y)

∂

∂y`
E

(R)
`j (x − y) = 0,

for x 6= y

(VII.6.11)

where H(R)
ij (x− y) is defined by H(R)

ij (0) = 0 and

H(R)
ij (x− y) = δij∆

(
∆−R ∂

∂y1

)
(ψRΦ).

Similar to the functionH
(R)
ij (x−y) introduced for the Stokes-Fujita truncated

fundamental solution, H(R)
ij (x− y) is also an infinitely differentiable function
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vanishing unless R/2 < |x − y| < R. However, due to the inhomogeneity of

the Oseen differential operator, the uniform asymptotic properties of H(R)
ij

as R → ∞ are somewhat different from those of H
(R)
ij . In fact, we have the

following estimate, whose proof is left to the reader1 :

|DαH(R)
ij (x− y)| = O(R−(n+1+|α|)/2), |α| ≥ 0. (VII.6.12)

The next result is proved exactly as in Lemma V.3.1.

Lemma VII.6.3 Let Ω be an arbitrary domain of Rn. Let v ∈ W 1,2
loc (Ω)

be weakly divergence-free and satisfy (VII.1.1) for all ϕ ∈ D(Ω). Then, if
f ∈ Wm,q

loc (Ω) it follows that v ∈ Wm+2,q
loc (Ω) and, moreover, for all fixed

d > 0 and all |α| ∈ [0, m], v obeys the identity

Dαvj(x) =

∫

Bd(x)

E
(d)
ij (x− y)Dαfi(y)dy −

∫

β(x)

H(d)
ij (x− y)Dαvi(y)dy

(VII.6.13)
for almost all x ∈ Ω with dist (x, ∂Ω) > d, where β(x) = Bd(x) − Bd/2(x).

Lemma VII.6.3 allows us to argue as in Theorem V.3.1, to show the fol-
lowing.

Theorem VII.6.1 Let v be a q-generalized solution to the Oseen problem
in an exterior domain Ω with v ∈ Ls(ΩR), for some s ∈ (1,∞) and some
R > δ(Ωc). Then, if f ∈Wm,r(Ω), m ≥ 0, n/2 < r <∞,2 it follows that

lim
|x|→∞

Dαv(x) = 0, 0 ≤ |α| ≤ m.

To conclude this section it remains to investigate the structure of the
solution at infinity and the corresponding rate of decay. Again, as in the Stokes
approximation, we shall use the truncated fundamental solution. Starting with
the Green’s identity (VII.6.2) and choosing as u, π this latter solution we may
readily show, by means of the same procedure adopted in Chapter V, the
validity of the identities

vj(x) =R
∫

Ω

Eij(x− y)fi(y)dy +

∫

∂Ω

[vi(y)Ti`(wj, ej)(x− y)

−Eij(x− y)Ti`(v, p)(y) −Rvi(y)Eij(x− y)δ1`]n`dσy

−
∫

Ω

H(R)
ij (x− y)vi(y)dy

(VII.6.14)

1 Bounds more accurate than those given in (VII.6.12) can be obtained according
to whether we are inside or outside the “wake” region. However, (VII.6.12) will
suffice for our purposes.

2 See footnote 1 of Section V.3.
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and

∂

∂xj
p(x) =

∂

∂xj

{
−R

∫

Ω

ei(x− y)fi(y)dy +

∫

∂Ω

{ei(x− y)Ti`(v, p)(y)

−2vi(y)
∂

∂x`
ei(x− y)

−R[e1(x− y)v`(y) − vi(y)ei(x− y)δ1`]}n`dσy

}

−
∫

Ω

(
∆−R ∂

∂x1

)
H(R)

ij (x− y)vi(y)dy.

(VII.6.15)
Relations (VII.6.14) and (VII.6.15), which hold for almost all x ∈ Ω, are valid
for Ω of class C2, v ∈ W 2,q

loc (Ω), q ∈ (1,∞), and f belonging to Lq(Ω) and
with compact support in Ω. Moreover, R is so large that BR(x) contains Ωc

and the support of f .3 Denote by I(x) the last integral on the right-hand side
of (VII.6.14). It is easy to show that if

∫

ΩR/2,R

|v| = O(Rk),

I(x) is a polynomial whose degree depends on k and n. In fact, observing that
I(x) is independent of R, we have

DαI(x) = −
∫

Ω

DαH(R)
ij (x− y)vi(y)dy

and so, by (VII.6.12),

|DαI(x)| ≤ cR−(n+1+|α|)/2

∫

ΩR/2,R

|v| ≤ c1R
−(n+1+|α|−2k)/2.

Thus, choosing |α| = 2k − n (say), we deduce DαI(x) = 0. Evidently, since
as |x| → ∞

I(x) = v(x) + o(1),

I(x) must reduce to a constant whenever v does not “grow” too fast at large
distances. Also, if I(x) is a constant, the last integral on the right-hand side
of (VII.6.15) is identically zero. Bearing this in mind, reasoning in complete
analogy with Theorem V.3.2 and recalling the estimate for the Oseen funda-
mental solution given in Section VII.3, we obtain

Theorem VII.6.2 Let Ω be a C2-smooth, exterior domain and let v ∈
W 2,q

loc (Ω), q ∈ (1,∞), be weakly divergence-free and satisfy (VII.1.1) for all
ϕ ∈ D(Ω) with f ∈ Lq(Ω). Assume further that the support of f is bounded.
Then, if at least one of the following conditions is satisfied as |x| → ∞:

3 Recall that in BR(x) the fundamental solution and the truncated fundamental
solution coincide
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(i)

∫

Sn

|v(x)| = o(|x|)

(ii)

∫

|x|≤r

|v(x)|t
(1 + |x|)n+tdx = o(log r), some t ∈ (1,∞),

there exist vector and scalar constants v0, p0 such that for almost all x ∈ Ω
we have

vj(x) = v0j + R
∫

Ω

Eij(x− y)fi(y)dy +

∫

∂Ω

[vi(y)Ti`(wj , ej)(x− y)

−Eij(x− y)Ti`(v, p)(y) −Rvi(y)Eij(x− y)δ1`]n`dσy

≡ v0j + v
(1)
j (x),

(VII.6.16)
and

p(x) = p0 −R
∫

Ω

ei(x− y)fi(y)dy +

∫

∂Ω

{ei(x− y)Ti`(v, p)(y)

−2vi(y)
∂

∂x`
ei(x− y)

−R[e1(x− y)v`(y) − vi(y)ei(x− y)δ1`]}n`dσy

≡ p0 + p(1)(x).
(VII.6.17)

Moreover, as |x| → ∞, v(1)(x) and p(1)(x) are infinitely differentiable and
there the following asymptotic representations hold:

v
(1)
j (x) = Eij(x)Mi + σj(x)

p(1)(x) = −ei(x)M∗
i + η(x),

(VII.6.18)

where

Mi = −
∫

∂Ω

[Ti`(v, p) + Rδ1`vi]n` + R
∫

Ω

fi

M∗
i = −

∫

∂Ω

{Ti`(v, p) + R[δ1`vi − δ1iv`]}n` + R
∫

Ω

fi

(VII.6.19)

and, for all |α| ≥ 0,
Dασ(x) = O(|x|−(n+|α|)/2)

Dαη(x) = O(|x|−n−|α|).
(VII.6.20)

Remark VII.6.1 Theorem VII.6.2 asserts, among other things, that every q-
weak solution to (VII.0.2) and (VII.0.3) behaves asymptotically as the Oseen
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fundamental solution. In particular, taking into account the properties of this
solution, every q-weak solution exhibits a paraboloidal wake region in the
direction of the positive x1-axis; see Remark VII.3.1. �

Some interesting consequences of Theorem VII.6.2 are left to the reader
in the following exercises.

Exercise VII.6.1 Let v satisfy the assumption of Theorem VII.6.2. Show that, for
all sufficiently large R,

Z

∂BR

`
v2 + ∇v : ∇v

´
≤ c1R

−(n−1)/2

Z

∂BR

|p− p0|2 ≤ c1R
−(n−1).

Hint: Use Theorem VII.6.2 together with Exercise VII.3.1 and Exercise VII.3.4.

Exercise VII.6.2 The following result generalizes uniqueness Theorem VII.1.2.

Let v, p be a q-generalized solution to the Oseen problem (VII.0.3), (VII.0.2) in an

exterior domain Ω of class C2. Show that if f ≡ v∗ ≡ 0 then v ≡ 0, p ≡const.

Under these latter assumptions on the data, show that if v, p is a corresponding

smooth solution with v = o(1) as |x| → ∞, then v ≡ 0, p ≡ const.

Exercise VII.6.3 Show that the remainder σ in (VII.6.18)1 has the following
summability properties:

σ ∈ Lq(ΩR), for all q > n/(n− 1)

σ ∈ Lq(ΩR), for all q > (n+ 1)/n, if Φ ≡
R

∂Ω
v∗ · n = 0

R > δ(Ωc).

Hint: As |x| → ∞, it is σ(x) = O(e(x)) if Φ 6= 0, and O(∇E(x)) if Φ = 0 . Then use

the summability properties of e and ∇E.

Exercise VII.6.4 Let v, p be a smooth solution to the Oseen problem in an exterior

domain Ω ⊆ R
n, n = 2, 3, with v = 0 at ∂Ω. Show that if v 6≡ 0, necessarily

‖v − v∞‖2,Ω = ∞, for any choice of v∞ ∈ R
n.4 Hint: Recall that E 6∈ L2(ΩR).

Exercise VII.6.5 (Olmstead & Gautesen 1968) Show the following “drag paradox”

for the Oseen approximation. Let B be a (smooth) body moving in a viscous liquid

that fills the whole space, with no spin and translational velocity λe1. Set Ω :=

R
3 − B, and denote by D(e1) := e1

R
∂Ω
n · T , the drag exerted by the liquid on B

in the Oseen approximation, where n is the inner unit normal to ∂Ω (≡ ∂B). Prove

that the drag is the same if the direction of the translational velocity is reversed,

namely, D(e1) = −D(−e1). Hint: Use (appropriately!) (VII.6.1) on the domain ΩR,

then let R→ ∞ and employ the asymptotic properties of Theorem VII.6.2.

The representation formula (VII.6.16) allows us to obtain an interesting
asymptotic estimate for the vorticity field ω = ∇× v in three dimensions. To
this end, we observe that, setting

4 If n ≥ 4 this statement no longer holds since E ∈ L2(ΩR).



VII.7 Existence, Uniqueness, and Lq-Estimates in Exterior Domains 475

f(x− y) ≡ e−ρ

4πR|x− y| , ρ =
R
2

(|x− y| − (x1 − y1)), (VII.6.21)

by a direct calculation one shows

∇x × (E(x− y) ·G(y)) = ∇xf(x− y) ×G(y)

and, consequently, (VII.6.16) furnishes, for all sufficiently large |x|

ω(x) = R
∫

Ω

∇xf(x− y) × f(y)dy +

∫

∂Ω

[∇x(∇xf(x− y) · n) × v(y)

+∇xf(x− y) × (−T (v, p)(y) · n−Rv(y) · n)]dσy.
(VII.6.22)

Applying the mean value theorem in the integrands in (VII.6.22), we easily
deduce

ω(x) = ∇f(x) ×M + O(D2
f(x)), as |x| → ∞, (VII.6.23)

where the vector M is defined in (VII.6.19)1. From (VII.6.21) and (VII.6.23) it
is apparent that in the region R situated outside the wake region (VII.3.27) and
sufficiently far from ∂Ω, the vorticity decays exponentially fast. This means,
essentially, that the flow is potential in R, as expected from the physical point
of view. The reader will prove with no difficulty that an analogous conclusion
holds in the case of a plane flow with ω = ∂v2/∂x1−∂v1/∂x2; see Clark (1971,
§§2.2 and 3.2).

VII.7 Existence, Uniqueness, and Lq-Estimates in
Exterior Domains

The aim of this section is to investigate to what extent the theorems proved in
Section VII.4 in the whole space can be extended to the more general situation
when the region of flow is an exterior domain. Of course, the results we shall
prove rely heavily on those of Section VII.4 and, like those, they will be similar
to those derived for the Stokes problem in Chapter V; nevertheless, they will
differ from these in some crucial features that resemble the difference existing
between the fundamental tensors U and E.

Let us begin to consider the Oseen problem (VII.0.2), (VII.0.3) in an (ex-
terior) domain Ω of class Cm+2, m ≥ 0, with data

f ∈ C∞
0 (Ω), v∗ ∈Wm+2−1/q (∂Ω), 1 < q <∞ .

By Theorem VII.2.1 and Theorem VII.5.1 we may then construct a solution
v, p such that

v ∈Wm+2,q
loc (Ω) ∩ C∞(Ω), p ∈ Wm+1,q

loc (Ω) ∩ C∞(Ω)



476 VII Steady Oseen Flow in Exterior Domains

and which at large distances has the asymptotic structure of the type proved
in Theorem VII.6.2. Denote next by ψ a “cut-off” function that equals one in
ΩR/2 and zero in Ωρ, where R/2 > ρ > δ(Ωc). Putting u = ψv, π = ψp, from
(VII.0.3) it follows that u, π satisfies the following Oseen problem in Rn:

∆u+ R ∂u

∂x1
= ∇π + RF

∇ · u = g,

(VII.7.1)

where

RF = Rψf −R ∂ψ

∂x1
v + (2∇ψ · v +∆ψv − p∇ψ)

g = ∇ψ · v.
(VII.7.2)

Employing Theorem VII.4.1 we deduce the existence of a solution w, τ to
(VII.7.1), (VII.7.2) satisfying, in particular, the properties

w ∈
m⋂

`=0

D`+2,q(Rn), τ ∈
m⋂

`=0

D`+1,q(Rn), 1 < q <∞

w ∈
m⋂

`=0

D`+1,s1(Rn), s1 =
(n+ 1)q

n + 1 − q
, 1 < q < n+ 1

w ∈
m⋂

`=0

D`,s2(Rn) s2 =
(n+ 1)q

n+ 1 − 2q
, 1 < q <

n + 1

2

(VII.7.3)

together with inequalities (VII.4.30)–(VII.4.35). We then apply Theorem
VII.6.2 to w in the domain ΩR/2, which does not contain the support of
g. Because of (VII.7.3)3, w satisfies assumption (ii) of that theorem and, con-
sequently, it has the asymptotic structure (VII.6.18)1, from which we conclude
u ≡ w, π ≡ p+const; see Exercise VII.6.2. Recalling (VII.7.2) and that v = u,
p = π in ΩR/2, from (VII.4.34) and (VII.4.35) it follows, in particular, that
for all ` ∈ [0, m] and all q ∈ (1, (n+ 1)/2), the pair v, p obeys the inequality

R2/(n+1)|v|`,s2,ΩR/2 + R1/(n+1)|v|`+1,s1,ΩR/2

+R
∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q,ΩR/2

+ |v|`+2,q,ΩR/2 + |p|`+1,q,ΩR/2

≤ c1 (R|f |`,q + (1 + R)|v|`+1,q,ΩR + |p|`,q,ΩR) ,

(VII.7.4)

where s1 = (n+1)q
n+1−q

, s2 = (n+1)q
n+1−2q

and, for n = 2,
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R|v2|`,2q/(2−q),ΩR/2 + R|v2|`+1,q,ΩR/2 + R2/3|v|`,3q/(3−2q),ΩR/2

+R1/3|v|`+1,3q/(3−q),ΩR/2 + R
∣∣∣∣
∂v

∂x1

∣∣∣∣
`,q,ΩR/2

+|v|`+2,q,ΩR/2 +|p|`+1,q,ΩR/2

≤ c1 (R|f |`,q + (1 + R)|v|`+1,q,ΩR + |p|`,q,ΩR) .
(VII.7.5)

Let us next derive analogous inequalities in ΩR. From (IV.6.3) we have

‖v‖m+2,q,ΩR + ‖p‖m+1,q,ΩR

≤ c2

{
R‖f‖m,q,ΩR + ‖v∗‖m+2−1/q,q(∂Ω) + R

∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q,ΩR

+‖v‖m+2−1/q,q(∂BR) + ‖v‖q,ΩR + ‖p‖q,ΩR

}
,

(VII.7.6)

where, as usual, the origin of coordinates has been taken in the interior of Ωc.
By the trace Theorem II.4.4 we have

‖v‖m+2−1/q,q(∂BR) ≤ c3
(
|v|m+2,q,ΩR/2 + ‖v‖m+1,q,ΩR

)
. (VII.7.7)

Furthermore, by the embedding Theorem II.3.4,

‖v‖m,s,ΩR/2
+

m∑

`=0

|v|`+1,s1,ΩR/2
≤ c4‖v‖m+2,q,ΩR (VII.7.8)

and

‖v‖m,2q/(2−q),ΩR/2
≤ c4‖v‖m+1,q,ΩR , if n = 2, (VII.7.9)

and so, collecting (VII.7.4), (VII.7.5)–(VII.7.9), we derive, in particular, for
some c = c(n, q, Ω,m) and all q ∈ (1, (n+ 1)/2)

a1‖v‖m,s2,Ω + R
∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q,Ω

+

m∑

`=0

{a2|v|`+1,s1,Ω + |v|`+2,q,Ω + |p|`+1,q,Ω}

≤c5
(
R‖f‖m,q,Ω +‖v∗‖m+2−1/q,q(∂Ω)+(1 + R)‖v‖m+1,q,ΩR +‖p‖m,q,ΩR

)

(VII.7.10)
and, if n = 2,
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R
(
‖v2‖m,2q/(2−q),Ω + ‖∇v2‖m+1,q,Ω

)

+a1‖v‖m,3q/(3−2q),Ω + R
∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q,Ω

+
m∑

`=0

{
a2|v|`+1,3q/(3−q),Ω + |v|`+2,q,Ω + |p|`+1,q,Ω

}

≤c5
(
R‖f‖m,q,Ω +‖v∗‖m+2−1/q,q(∂Ω)+(1 + R)‖v‖m+1,q,ΩR +‖p‖m,q,ΩR

)

(VII.7.11)
where

a1 = min{1,R2/(n+1)}, a2 = min{1,R1/(n+1)},

s1 =
(n+ 1)q

n+ 1 − q
, s2 =

(n+ 1)q

n+ 1 − 2q
.

(VII.7.12)

By a repeated use of Ehrling’s inequality (see Exercise II.5.16), for all ε > 0
it follows that

‖p‖m,q,ΩR ≤ ε‖p‖m+1,q,ΩR + c6‖p‖q,ΩR (VII.7.13)

with c6 = c6(ε, n,m, q, ΩR). In addition, possibly modifying p by a suitable
constant (which causes no loss of generality), from Lemma IV.4.1 we derive

‖p‖q,ΩR ≤ c7[(1 + R)‖v‖1,q,ΩR + R‖f‖q,Ω]. (VII.7.14)

Inequalities (VII.7.10), (VII.7.11), (VII.7.13), and (VII.7.14) then yield

a1‖v‖m,s2,Ω + R
∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q,Ω

+

m∑

`=0

{a2|v|`+1,s1,Ω + |v|`+2,q,Ω + |p|`+1,q,Ω}

≤c8
(
R‖f‖m,q,Ω +‖v∗‖m+2−1/q,q(∂Ω)+(1 + R)‖v‖m+1,q,ΩR

)

(VII.7.15)

and, if n = 2,

R
(
‖v2‖m,2q/(2−q),Ω + ‖∇v2‖m+1,q,Ω

)

+a1‖v‖m,3q/(3−2q),Ω + R
∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q,Ω

+

m∑

`=0

{
a2|v|`+1,3q/(3−q),Ω + |v|`+2,q,Ω + |p|`+1,q,Ω

}

≤c8
(
R‖f‖m,q,Ω +‖v∗‖m+2−1/q,q(∂Ω)+(1 + R)‖v‖m+1,q,ΩR

)
.

(VII.7.16)
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We now look for an inequality of the type

‖v‖m+1,q,Ω ≤ c9
(
R‖f‖m,q,Ω + ‖v∗‖m+2−1/q,q(∂Ω)

)
(VII.7.17)

for a suitable constant independent of v, f and v∗. The proof of (VII.7.17)
can be obtained, as in the case of the Stokes problem, by a contradiction
argument. Actually, admitting the invalidity of (VII.7.17) means to assume
the existence of two sequences

{fk} ⊂ C∞
0 (Ω), {v∗k} ⊂Wm+2−1/q,q(∂Ω)

such that, by denoting by {vk, pk} the corresponding solutions,

R‖fk‖m,q,Ω + ‖v∗k‖m+2−1/q,q(∂Ω) ≤ 1/k

‖vk‖m+1,q,ΩR = 1.
(VII.7.18)

However, reasoning as in the proof of Lemma V.4.5, we can show that, as
k → ∞, vk converges to a solution v of the Oseen problem (VII.0.2), (VII.0.3)
with f ≡ v∗ ≡ v∞ ≡ 0. Furthermore, by (VII.7.15), it follows that v ∈ Ls2(Ω)
and therefore by Theorem VII.6.2 and Exercise VII.6.2 we have v ≡ 0. The
point to discuss now is that a priori the constant c depends also on R and,
consequently, we lose the dependence of inequality (VII.7.15) + c8

c7
(VII.7.17)

on the Reynolds number R. We may thus wonder if, at least in some cases,
this undesired feature can be avoided. We shall presently show that if n > 2
and q ∈ (1, n/2) we may take the constant c9 independent of R ∈ (0, B] for
any positive, arbitrarily fixed B. Actually assume (VII.7.17) does not hold,
then there exist sequences

{fk} ⊂ C∞
0 (Ω), {v∗k} ⊂Wm+2−1/q,q(∂Ω) (VII.7.19)

and

{Rk} ⊂ (0, B] (VII.7.20)

such that, denoting by {vk, pk} the solutions to the Oseen problems

∆vk + Rk
∂vk

∂x1
−∇pk = Rkfk

∇ · vk = 0





vk = v∗k at ∂Ω,

(VII.7.21)

the following condition holds

Rk‖fk‖m,q,Ω + ‖v∗k‖m+2−1/q,q(∂Ω) ≤ 1/k

‖vk‖m+1,q,ΩR = 1.
(VII.7.22)



480 VII Steady Oseen Flow in Exterior Domains

In view of (VII.7.20) there is a subsequence, indicated again by {Rk}, and a
number R ≥ 0 to which Rk converges as k → ∞. Furthermore, by (VII.7.6),
(VII.7.14), (VII.7.15), and (VII.7.18), for all k ∈ N we have for all fixed R

‖vk‖1,q,ΩR + ‖D2vk‖m,q + ‖∇pk‖m,q ≤M (VII.7.23)

for some constant M independent of k. The results of Exercise II.6.2 on weak
compactness of Ḋm,q -spaces along with Exercise II.5.8 on strong compactness
(on bounded domains) imply the existence of a subsequence, still denoted by
{vk, pk}, and of two functions v ∈ D2,q(Ω), p ∈ D1,q(Ω) such that as k → ∞

D2vk
w→ D2v, ∇pk

w→ ∇p, in Lq(Ω)

vk → v, in Wm+1,q(ΩR).
(VII.7.24)

From (VII.7.22), (VII.7.21), and (VII.7.24) it immediately follows that v, p is
a solution to the homogeneous Oseen problem

∆v + R ∂v

∂x1
−∇p = 0

∇ · v = 0





v = 0 at ∂Ω,

(VII.7.25)

satisfying
‖v‖m+1,q,ΩR = 1. (VII.7.26)

Let us now distinguish the following two cases: (i) R > 0, (ii) R = 0. In case
(i) from (VII.7.15) (written along the subsequences) and (VII.7.22) we obtain

v ∈ Ls2 (Ω) (VII.7.27)

and, since v solves (VII.7.25), from Theorem VII.6.2 and Exercise VII.6.2 we
deduce v ≡ 0, contradicting (VII.7.26). If the limiting value R is zero, we can
no longer deduce (VII.7.27). Nevertheless, if q ∈ (1, n/2), we can still deduce
that v belongs to some space Lr(Ω). Actually, by a double application of
inequality (II.6.22), and recalling that, for each fixed k, vk(x) and ∇vk(x)
tend to zero uniformly as |x| tends to infinity, from (VII.7.23) we have

‖vk‖nq/(n−2q) ≤ c‖D2vk‖q ≤M

and therefore
v ∈ Lnq/(n−q)(Ω).

Replacing this information into (VII.7.25) with R = 0 and using this time
Theorem V.3.2 and Theorem V.3.4 we conclude v ≡ 0, which contradicts
(VII.7.26).

Once (VII.7.15) and (VII.7.17) have been established, we can prove the
following.
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Theorem VII.7.1 Let Ω be an exterior domain in Rn of class Cm+2 , m ≥ 0.
Given

f ∈ Wm,q(Ω), v∗ ∈ Wm+2−1/q,q(∂Ω), 1 < q < (n + 1)/2 ,

there exists one and only one corresponding solution v, p to the Oseen problem
(VII.0.2), (VII.0.3) such that

v ∈Wm,s2(Ω) ∩
{

m⋂

`=0

[
D`+1,s1 (Ω) ∩D`+2,q(Ω)

]
}

p ∈
m⋂

`=0

D`+1,q(Ω)

with s1 = (n+1)q
n+1−q , s2 = (n+1)q

n+1−2q . If n = 2, we also have

v2 ∈Wm,2q/(2−q)(Ω) ∩
(

m⋂

`=0

D`+1,q(Ω)

)
.

Moreover, v, p verify

a1‖v‖m,s2 + R
∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q

+

m∑

`=0

{a2|v|`+1,s1 + |v|`+2,q + |p|`+1,q}

≤ c
(
R‖f‖m,q + ‖v∗‖m+2−1/q,q(∂Ω)

)
(VII.7.28)

and, if n = 2,

R
(
‖v2‖m,2q/(2−q) + ‖∇v2‖m+1,q

)
+a1‖v‖m,3q/(3−2q) + R

∥∥∥∥
∂v

∂x1

∥∥∥∥
m,q

+

m∑

`=0

{
a2|v|`+1,3q/(3−q) + |v|`+2,q + |p|`+1,q

}

≤ c
(
R‖f‖m,q,+‖v∗‖m+2−1/q,q(∂Ω)

)

(VII.7.29)
with a1 and a2 given in (VII.7.12). The constant c depends on m, q, n, Ω, and
R. However, if q ∈ (1, n/2) and R ∈ (0, B] for some B > 0, c depends solely
on m, q, n, Ω, and B.

Proof. The existence part, together with the validity of (VII.7.28), has been
already established for f ∈ C∞

0 (Ω). However, from (VII.7.28) and from a
now standard density argument we can extend existence to all f ∈Wm,q(Ω).
Finally, uniqueness of solutions is most easily discussed if we take into account
that, indicating by u, π the difference between two solutions corresponding to
the same data, we have u ∈ Ls2(Ω). Therefore, Theorem VII.6.2 and Exercise
VII.6.2 ensure u ≡ 0. The proof is thus completed. ut
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Remark VII.7.1 Theorem VII.7.1 leaves out the question of existence and
uniqueness for q > (n + 1)/2. However, by using a treatment analogous to
that employed in Section V.3 for the Stokes problem, one could show exis-
tence, uniqueness, and validity of corresponding Lq-estimates in suitable quo-
tient spaces. We shall not treat this here. For related results for q-generalized
solutions, we refer the reader to Remark VII.7.3. �

Remark VII.7.2 The validity of inequalities of the type (VII.7.29) with c
independent of R ∈ [0, B] is of fundamental importance for treating nonlin-
ear, plane-steady flow with nonzero velocity at infinity. However, because of
the Stokes paradox, one expects that the constant c in (VII.7.29) may become
unbounded as R approaches zero. On the other hand, if 1 < q < 6/5, in Sec-
tionXII.4, we shall prove the validity of an inequality weaker than (VII.7.29)
for a constant c which, in general, can be rendered independent of R for R
ranging in [0, B]. �

Exercise VII.7.1 Extend the results of Theorem VII.7.1 to the case ∇·v = g 6≡ 0,

with g a prescribed function from Wm+1,q (Ω). Show further that, in this case, in-

equalities (VII.7.28) and (VII.7.29) are modified by adding the term (1+R)‖g‖m+1,q

to its right-hand side.

Our subsequent objective is to extend Theorem VII.4.2 to the case of
an exterior domain Ω of class C2. We start with f ∈ C∞

0 (Ω), and v∗ ∈
W 1−1/q,q(∂Ω). As in Theorem VII.7.1, corresponding to these data there ex-
ists a solution v, p to (VII.0.2), (VII.0.3) with

v ∈W 1,q
loc (Ω) ∩C∞(Ω), p ∈ Lq

loc(Ω) ∩ C∞(Ω)

satisfying the asymptotic behavior of the type described in Theorem VII.7.2.
Furthermore, u ≡ ψv and π ≡ ψp satisfy problem (VII.7.1), (VII.7.2) in Rn,
to which we apply the results stated in Theorem VII.4.2. We thus deduce the
existence of a solution w, τ to (VII.7.1), (VII.7.2) enjoying, in particular, the
properties

w ∈ D1,q(Rn) ∩ Ls1(Rn), τ ∈ Lq(Rn)

s1 =
(n+ 1)q

(n+ 1 − q)
, 1 < q < n+ 1

w2 ∈ Lq(R2), if n = 2,

(VII.7.30)

together with the estimates
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R1/(n+1)‖w‖s1+|w|1,q + ‖τ‖q

≤ c1 (R|F |−1,q + R|g|−1,q + ‖g‖q) ,
(if n > 2)

R‖w2‖q + R1/3‖w‖3q/(3−q) + |w|1,q + ‖τ‖q

≤ c1 (R|F |−1,q + R|g|−1,q + ‖g‖q) .
(if n = 2)

(VII.7.31)
As in Theorem VII.7.1, we prove w ≡ u, τ ≡ p.1 Assuming q > n/(n−1) and
reasoning exactly as we did in Theorem V.5.1, we have

R|F |−1,q+R|g|−1,q + ‖g‖q

≤ c2 (R|f |−1,q + (1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR)
(VII.7.32)

and so, recalling that u = v, π = p in ΩR/2, from (VII.7.30)–(VII.7.32) we
deduce if n > 2:

R1/(n+1)‖v‖s1,ΩR/2+|v|1,q,ΩR/2 + ‖p‖q,ΩR/2

≤ c3 (R|F |−1,q + (1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR) ,
(VII.7.33)

and if n = 2:

R‖v2‖q,ΩR/2 + R1/3‖v‖3q/(3−q),ΩR/2 + |v|1,q,ΩR/2 + ‖p‖q,ΩR/2

≤ c3 (R|F |−1,q + (1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR) .
(VII.7.34)

To obtain an estimate “near” the boundary, we apply inequality (IV.6.7), that
is,

‖v‖1,q,ΩR + ‖p‖q,ΩR ≤ c4
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω)

+(1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR+‖v‖1−1/q,q(∂BR)

)
,

(VII.7.35)
where we used the obvious inequality

‖f‖−1,q,ΩR ≤ |f |−1,q.

Employing the trace Theorem II.4.4 at the boundary term on ∂BR we find

‖v‖1−1/q,q(∂BR) ≤ c‖v‖1,q,ΩR,2R

and so, by (VII.7.33), (VII.7.34), and (VII.7.35) it follows that

‖v‖1,q,ΩR + ‖p‖q,ΩR ≤ c5
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω)

+(1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR) .
(VII.7.36)

1 A priori, τ = p+ const. but we can choose the constant up to which p is defined
in such a way that τ = p.
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Taking into account that, by Theorem II.3.4,

‖v‖s1 ≤ c6‖v‖1,q,ΩR/2
, (VII.7.37)

combining (VII.7.33), (VII.7.36), and (VII.7.37) we conclude, for all q ∈
(n/(n− 1), n+ 1), if n > 2:

a2‖v‖s1,Ω + |v|1,q,Ω + ‖p‖q,Ω

≤ c7
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω) + (1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR

)
,

(VII.7.38)
and if n = 2:

R‖v2‖q,Ω + a2‖v‖3q/(3−q),Ω + |v|1,q,Ω + ‖p‖q,Ω

≤ c7
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω) + (1 + R)‖v‖q,ΩR + ‖p‖−1,q,ΩR

)
,

(VII.7.39)
where a2 is defined in (VII.7.12). By a reasoning totally similar to that devel-
oped in the proof of Theorem VII.7.1 we can prove the existence of a constant
c8 independent of v, p, f, and v∗ such that

‖v‖q,ΩR + ‖p‖−1,q,ΩR ≤ c8{R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω)}. (VII.7.40)

The constant c8 will also depend, in general, on R. However, if q ∈ (n/(n −
1), n), by employing inequality (II.6.22), namely,

‖v‖nq/(n−q) ≤ c|v|1,q,

one shows, as in Theorem VII.7.1, that c8 can be chosen independent of R
ranging in (0, B], with an arbitrarily fixed B.

We are thus in a position to prove the following.

Theorem VII.7.2 Let Ω be an exterior domain in Rnof class C2. Given

f ∈ D−1,q
0 (Ω), v∗ ∈W 1−1/q,q(∂Ω), n/(n− 1) < q < n + 1 .

there exists one and only one q-generalized solution v to (VII.0.2)–(VII.0.3).
Furthermore, it holds that

v ∈ Ls1 (Ω), s1 =
(n+ 1)q

(n+ 1 − q)
,

p ∈ Lq(Ω)

with p pressure field associated to v by Lemma VII.1.1, and if n = 2,

v2 ∈ Lq(Ω).

Finally, v and p obey the estimate
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a2‖v‖s1 + |v|1,q + |p|q ≤ c
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω)

)
(VII.7.41)

and, if n = 2,

R‖v2‖q+a2‖v‖3q/(3−q) + |v|1,q + ‖p‖q

≤ c
(
R|f |−1,q + ‖v∗‖1−1/q,q(∂Ω)

)
,

(VII.7.42)

where c = c(n, q, Ω,R) and a2 is defined in (VII.7.12). If n > 2 and q ∈
(n/(n − 1), n), for R ∈ (0, B], with B arbitrarily fixed number, c depends
solely on n, q, Ω, and B.

Proof. The existence part follows from (VII.7.38) and (VII.7.40) whenever f ∈
C∞

0 (Ω). By a density argument, based on Theorem II.8.1 and on inequality
(VII.7.41), we easily extend the result to all f ∈ D−1,q

0 (Ω). Finally, uniqueness
follows from Exercise VII.6.2.

ut

Exercise VII.7.2 Extend the results of Theorem VII.7.2 to the case where ∇·v =
g 6≡ 0, with g a prescribed function from Lq(Ω) ∩D−1,q

0 (Ω). Show further that, in
this case, inequality (VII.7.41) is modified by adding to its right-hand side the term

‖g‖q + R|g|−1,q.

Remark VII.7.3 For future reference, we would like to point out that, as
far as existence goes, Theorem VII.7.2 admits a suitable extension to the case
q ∈ [n+1,∞), n ≥ 3. More precisely, assuming Ω as in that theorem, for any
given

f ∈ D−1,q
0 (Ω), v∗ ∈W 1−1/q,q(∂Ω), n+ 1 ≤ q <∞ .

there exists at least a solenoidal vector field v ∈ D1,q(Ω), with v = v∗ at
∂Ω (in the sense of trace), and a scalar field p ∈ Lq(Ω) satisfying (VII.1.2).
The proof of this result is similar to that of Theorem V.5.1 (when q ≥ n)
and we shall sketch it here. Let (ṽi, π̃i) be the solutions to the Oseen problem
(VII.0.3) with f ≡ 0 and v∗ = −ei, i = 1, . . . , n. From Theorem VII.1.1,
Theorem VII.2.1 and Theorem VII.6.2, we deduce that these solutions exist,
are of class C∞(Ω) and, moreover, they have the asymptotic behavior given

in (VII.6.16). From this latter and (VII.3.49) we obtain h̃i := (ṽi + ei) ∈
D1,q(Ω), q ∈ ((n+ 1)/n,∞), with h̃i = 0 at ∂Ω, i = 1, . . . , n. Thus, from the

characterization given in Theorem II.7.6(ii), it follows that h̃i ∈ D1,q
0 (Ω), q ∈

[n+1,∞). As in Theorem V.5.1, we easily show that the set {h̃i, π̃i} is linearly

independent and its linear span constitutes an n-dimensional subspace, S̃q , of

D1,q
0 (Ω)×Lq(Ω), q ∈ [n+1,∞). Arguing as in the proof of Theorem VII.7.2,

corresponding to smooth data f and v∗, we can find a solution (v, p) to the
Oseen problem satisfying the following estimate, for any (fixed) q ∈ [n+1,∞):
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|v|1,q,Ω + ‖p‖q,Ω ≤ c
(
|f|−1,q + ‖v∗‖1−1/q,q(∂Ω) + ‖v‖q,ΩR + ‖p‖−1,q,ΩR

)
,

with c = c(R, q, nΩ), which, in turn, implies

inf
(eh,eπ)∈ eSq

{
|v − h̃|1,q,Ω + ‖p− π̃‖q,Ω

}

≤ c

(
|f|−1,q + ‖v∗‖1−1/q,q(∂Ω) + inf

(eh,eπ)∈ eSq

‖v − h̃‖q,ΩR + ‖p− π̃‖−1,q,ΩR

)
.

With this inequality in hand, one can proceed exactly like in the proof of
Theorem V.5.1 and show the desired result. �

We end this section with a result similar to that shown in Theorem V.5.3
that will furnish, in particular, summability properties at large distances of
the pressure field p associated to a q-weak solution, when q ≥ n+ 1. To this
end we observe that if v is a q-weak solution corresponding to f ∈ D−1,r

0 (Ω),
where a priori r 6= q, by Lemma VII.1.1 one can always associate to v a
pressure field p satisfying (VII.1.2) with p ∈ Lµ

loc(Ω), µ = min(r, q).

Theorem VII.7.3 Let Ω be an exterior domain of Rn and let v be a q-
generalized solution to (VII.0.2)–(VII.0.3) in Ω. Then, if f ∈ D−1,r

0 (Ω), r >
n/(n− 1), for all R > δ(Ωc) it holds that

v ∈ D1,r(ΩR), p ∈ Lr(ΩR),

where p is the pressure field associated to v by Lemma VII.1.1.

Proof. By a reasoning analogous to that employed in Theorem V.5.3, one
obtains

v ∈W 1,r
loc (Ω), p ∈ Lr

loc(Ω). (VII.7.43)

(We leave details to the reader.) Afterward, we recall that u = ϕv and π = ϕp
(with ϕ “cut-off” function defined in Theorem V.5.3) obey problem (VII.7.1),
(VII.7.2) in Rn. Using (VII.7.43) and proceeding again as in the proof of
Theorem V.5.2, one shows that if r > n/(n− 1),

F ∈ D−1,r
0 (Rn), g ∈ Lr(Rn). (VII.7.44)

Furthermore, denoting by φ an arbitrary element from C∞
0 (Rn), we deduce

|(g, φ)| ≤ c‖v‖r,ΩR‖φ‖r′,ΩR ≤ c1‖v‖r,ΩR‖φ‖nr′/(n−r′),ΩR
,

and therefore, by the Sobolev inequality,

g ∈ D−1,r
0 (Rn). (VII.7.45)

From (VII.7.44), (VII.7.45), and Theorem VII.4.2 we infer the existence of a
solution w, τ to (VII.7.1), (VII.7.2) with
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w ∈ D1,r(Rn), τ ∈ Lr(Rn).

The theorem will be therefore proved if we show ∇u ≡ ∇w. To this end, if
we set z = w−u and s = τ − π, it follows that z, s is a solution of class C∞

to the homogeneous Oseen system in Rn and, by Lemma VII.6.3, we have, for
all multi-index α, all x ∈ Ω and all d > 0

Dαzj(x) = −
∫

Bd(x)

H(d)
ij (x− y)Dαzi(y)dy.

Choosing |α| = ` + 1, and using the asymptotic properties (VII.6.12) of the

function H(d)
ij , from this identity, with the help of the Hölder inequality, we

derive

|Dαzj(x)| ≤ c
(
d−(n+1+`)/2dn(1−1/q)|u|1,q + d−(n+1+`)/2dn(1−1/r)|w|1,r

)
.

In this relation we take

` > max{−1 + n(q − 2)/q,−1 + n(r − 2)/2}

and then let d→ ∞ to obtain

Dαzj(x) = 0, for all x ∈ Rn, |α| = ` + 1.

As a consequence, ∇zj(x) = ∇(wj − uj)(x) must be a polynomial P(x) of
degree `− 1. However, since

|∇w|r + |∇u|q ∈ L1(Rn),

there exists at least a sequence Rk such that

lim
Rk→∞

∫

Sn

(|∇w(Rk, ω)|+ |∇u(Rk, ω)|) dω = 0,

implying P(x) ≡ 0, which completes the proof of the theorem. ut

VII.8 Limit of Vanishing Reynolds Number. Transition
to the Stokes Problem

In this last section we shall consider the behavior of solutions to the Oseen
problem in the limit R → 0. Although most of the results we find apply
(even in a stronger form) to three-dimensional flow, here we shall be mainly
interested in plane motions. This is because, in such a case, the limiting process
is fairly more interesting, giving rise to a singular perturbation problem, which
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throws additional light on the Stokes paradox. Concerning three-dimensional
flow, we thus refer the reader to Chapter IX, directly in the nonlinear context.

Though differing in the treatment, the basic ideas presented in this section
are due to Finn & Smith (1967a).

Let us consider the following Oseen problem1:

∆v + R ∂v

∂x1
= ∇p

∇ · v = 0





in Ω

v = v∗ at ∂Ω

lim
|x|→∞

v(x) = 0,

(VII.8.1)

where Ω is a smooth exterior domain of R2 and v∗ is a prescribed regular
function on the boundary.2 By virtue of Theorem VII.5.1, we know that there
is one and only one solution v, p to (VII.8.1) which, by Theorem VII.1.1, is of
class C∞(Ω). Moreover, this solution satisfies the uniform bound

|v|1,2 ≤ c1(1 +B)‖v∗‖1/2,2(∂Ω) (VII.8.2)

for all R ∈ (0, B] and with c1 independent of R. Fix R1 > δ(Ωc). From
Theorem IV.4.1 and Theorem IV.5.1 we obtain the following estimates for v:

‖v‖ 2,2,ΩR2
+ ‖p‖1,2,ΩR2

≤ c2

(
R
∥∥∥∥
∂v

∂x1

∥∥∥∥
2,ΩR1

+ ‖v‖1,2,ΩR1
+ ‖p‖2,ΩR1

+ ‖v∗‖3/2,2(∂Ω)

)
,

(VII.8.3)
where δ(Ωc) < R2 < R1. Using (VII.7.14), with q = 2, (VII.8.2), and (VII.8.3)
we thus recover the inequality

‖v‖2,2,ΩR2
+ ‖p‖1,2,ΩR2

≤ c3(B, v∗), (VII.8.4)

where p has been possibly modified by adding a suitable constant depending
on ΩR1 . Again applying Theorem IV.4.1 and Theorem IV.5.1, for δ(Ωc) <
R3 < R2 we deduce

‖v‖ 3,2,ΩR3
+ ‖p‖2,2,ΩR3

≤ c4

(
R
∥∥∥∥
∂v

∂x1

∥∥∥∥
1,2,ΩR2

+ ‖v‖1,2,ΩR2
+ ‖p‖2,ΩR2

+ ‖v∗‖5/2,3(∂Ω)

)

(VII.8.5)

1 For simplicity, we shall restrict ourselves to the case of zero body force. Extension
of the results to nonzero f presents no conceptual difficulty and is therefore left
to the reader as an exercise.

2 It will become clear from the context how smooth Ω and v must be.
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and so, using (VII.8.4), we obtain

‖v‖3,2,ΩR3
+ ‖p‖2,2,ΩR3

≤ c5(B, v∗).

Iterating this procedure we therefore establish the following inequalities for
all m ≥ 0:

‖v‖m+2,2,ΩRm+2
+ ‖p‖m+1,2,ΩRm+2

≤ Cm(B, v∗), (VII.8.6)

with δ(Ωc) < Rm+2 < Rm+1 . We now let R → 0 along a sequence {Rk}, say,
and denote by {vk, pk} the corresponding solutions. In view of (VII.8.2), from
the weak compactness of the space Ḋ1,2 (see Exercise II.6.2) it follows that,
at least along a subsequence,

∇vk
w→ ∇w in L2, (VII.8.7)

for some w ∈ D1,2(Ω). In addition, given arbitrary ρ > δ(Ωc), from the
embedding Theorem II.3.4 and the compactness results of Exercise II.5.8, we
infer that w ∈ C2(Ωρ) and that, for some π ∈ C1(Ωρ), along a subsequence
of the previous one, it holds that

vk → w in C2(Ωρ)

pk → π in C1(Ωρ).
(VII.8.8)

From (VII.8.1) (written for v = vk, p = pk), (VII.8.7), and (VII.8.8) we
conclude that the limit functions w, π obey the following Stokes system:

∆w = ∇π
∇ ·w = 0

}
in Ω

w = v∗ at ∂Ω

|w|1,2 <∞.

(VII.8.9)

Because of Theorem V.2.2, w is uniquely determined since it is the only so-
lution to (VII.8.9)1,2,3 verifying (VII.8.9)4. Therefore, (VII.8.7) and (VII.8.8)
are verified not only along a subsequence but as long as R → 0. We shall
next prove that in the limiting process the continuity of the datum at infinity
(VII.8.1)4 is generally lost. Actually, setting

I(a) ≡
∫

∂Ω

T (a, s) · n

with s the pressure field associated to the velocity field a, by the results of
Theorem V.3.2 and Exercise V.3.2, we know that the solution w verifies the
following conditions:
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I(w) = 0

wj(x) = w0j +

∫

∂Ω

[v∗(y)Ti`(uj , qj)(x− y)

−Uij(x− y)Ti`(w, π)(y)]n`(y)dσy,

(VII.8.10)

for all x ∈ Ω and for some w0 ∈ R2 that is in general not zero. The next step
is to investigate how relations (VII.8.10) come out from the limit process and,
in particular, the meaning of the vector w0. As we shall see, this vector which
within the Stokes approximation has apparently no clear meaning, is due to
the fact that, as R → 0, problem (VII.8.1) becomes singular in the sense that
the value at infinity is in general not preserved. Actually, by Theorem VII.6.2
we have the representation

vj(x) =

∫

∂Ω

[v∗(y)Ti`(wj, ej)(x− y)

−Eij(x− y)Ti`(v, p)(y) −Rv∗iEij(x− y)δ1`]n`(y)dσy.
(VII.8.11)

From (VII.3.36) and (VII.8.11), it follows that

vj(x) =
1

4π
Ii(v) log

1

R +

∫

∂Ω

[v∗i(y)Ti`(uj , qj)(x − y)

−Uij(x− y)Ti`(v, p)(y)]n`(y)dσy + o(1) as R|x− y| → 0.
(VII.8.12)

Since, by (VII.8.8), for any fixed x ∈ Ω all terms in this relation tend to finite
limits as R → 0, this must be the case also for the first term on the right-hand
side of (VII.8.12). Thus, in particular,

Ii(v) → 0, as R → 0,

and we recover (VII.8.10)1. By the same token, from (VII.8.12) we deduce
(VII.8.10)2, where

w0 =
1

4π
lim
R→0

I(v) log
1

R , (VII.8.13)

which furnishes the desired characterization of the field w0. It is interesting
to observe that, according to the results of Section V.7, the vector w0 is in
general not zero and that it is zero if and only if the restriction (V.7.2) on
v∗ is satisfied. Therefore, in such a case and only in such a case the limiting
process preserves the condition at infinity.

In the final part of this section we wish to derive a fundamental estimate
for the integral I(v) that will play an essential role in the existence of solutions
to the nonlinear exterior plane problem. Specifically, we have

Theorem VII.8.1 Let Ω be a two-dimensional exterior domain of class C2.
Assume for some q ∈ (1, 2]
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v∗ ∈W 2−1/q,q(∂Ω)

and denote by v, p the corresponding solution to (VII.8.1). Then, there exist
B > 0 and c = c(Ω, q, B) > 0 such that

∣∣∣∣
∫

∂Ω

T (v, p) ·n
∣∣∣∣ ≤ c| logR|−1‖v∗‖2−1/q,q(∂Ω),

for all R ∈ (0, B].

Proof. Fix R1 > R2 > δ(Ωc). Using Theorem IV.4.1 and Theorem IV.5.1 into
(VII.8.1)1,2 we find

‖v‖2,q,ΩR2
+ ‖p‖2,q,ΩR2

≤ c1(‖v‖1,q,ΩR1
+ ‖p‖q,ΩR1

+ ‖v∗‖2−1/q,q(∂Ω)).
(VII.8.14)

By the trace Theorem II.4.4 it is

‖v∗‖1/2,2(∂Ω) ≤ c2‖v∗‖2−1/q,q(∂Ω)

and, therefore, (VII.8.2) yields

|v|1,2 ≤ c3(1 +B)‖v∗‖2−1/q,q(∂Ω). (VII.8.15)

Moreover, from Theorem II.3.4 and inequality (II.5.18) we have

‖v‖q,ΩR1
≤ c4(|v|1,2 + ‖v∗‖2−1/q,q(∂Ω))

which, in turn, with the help of (VII.8.2), furnishes

‖v‖q,ΩR1
≤ c5‖v∗‖2−1/q,q(∂Ω). (VII.8.16)

Also, using the estimate (VII.7.14) for the pressure field together with
(VII.8.15) and (VII.8.16), it follows that

‖p‖q,ΩR1
≤ c6‖v∗‖2−1/q,q(∂Ω), (VII.8.17)

with c6 = c6(Ω, q, B). Collecting (VII.8.14)–(VII.8.17), we then conclude

‖v‖2,q,ΩR2
+ ‖p‖2,q,ΩR2

≤ c7‖v∗‖2−1/q,q(∂Ω) (VII.8.18)

with c7 = c7(Ω, q, B). With the help of (VII.8.18) we can now show the desired
estimate. Actually, from (VII.3.36) follows the existence of B1 > 0 such that

|E(x− y)| ≤ |U(x− y)| + 1
4π | logR| + c8

|DkE(x− y)| ≤ |DkU(x− y)| + c9

(VII.8.19)

for all x ∈ ΩR1,R2 , all y ∈ ∂Ω, and all R ∈ (0, B1], and with c8 and c9
depending on ΩR1,R2 , ∂Ω, and B1 but otherwise independent of R. Since,
clearly,
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|U(x− y)| + |DkU(x− y)| ≤ c9

|ej(x− y)| ≤ c10

x ∈ ΩR1,R2 , y ∈ ∂Ω, (VII.8.20)

from (VII.8.11), (VII.8.19), and (VII.8.20) we derive for all x ∈ ΩR1,R2 and
all R ∈ (0, B1]

J (R) ≡ | logR|
∣∣∣∣
∫

∂Ω

T (v, p) · n
∣∣∣∣ ≤ |v(x)|+ c11

∫

∂Ω

[|T (v, p) ·n| + |v∗|]
(VII.8.21)

with c11 independent of R. Employing trace Theorem II.4.1 in the integral on
the right-hand side of (VII.8.21) in conjunction with (VII.8.18) we find

J (R) ≤ |v(x)| + c12‖v∗‖2−1/q,q(∂Ω).

Integrating both sides of this relation over ΩR1,R2 and using the Hölder in-
equality, we deduce

J (R) ≤ c13

(
‖v‖q,ΩR1

+ ‖v∗‖2−1/q,q(∂Ω)

)
. (VII.8.22)

The desired estimate is then a consequence of (VII.8.16) and (VII.8.22). ut

VII.9 Notes for the Chapter

Section VII.1. The first complete treatment of existence and uniqueness
of the Oseen problem in exterior domains is due to Faxén (1928/1929), who
generalized the method introduced by Odqvist in his thesis for the Stokes
problem (Odqvist 1930).

The variational formulation (VII.1.1) is taken from Finn (1965a). Theorem
VII.1.2 is due to me.

Section VII.2. Theorem VII.2.1 generalizes an analogous result of Finn
(1965a, Theorem 2.5).

Section VII.4. Theorem VII.4.1 is a detailed and expanded version of an
analogous one given by Galdi (1992). The case where m = 0, n = 3, q ∈ (1, 4),
and g ≡ 0 was first proved by Babenko (1973). Other Lq-estimates for n = 3
can be found in Salvi (1991, Theorem 4).

Lemma VII.4.2 and Theorem VII.4.2 are due to me.

Section VII.5. Theorem VII.5.1 is due to me.

Section VII.6. Lemma VII.6.3 is essentially due to Fujita (1961), while The-
orem VII.6.2 is an extension of a classical result of Chang & Finn (1961).

Section VII.7. Most of the results of this section are an expanded version
of those given by Galdi (1992). Theorem VII.7.3 was, however, proved by me
in the first edition of this book.
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Existence and uniqueness results for three-dimensional flows in weighted
anisotropic Sobolev spaces with weights reflecting the decay properties of the
fundamental solution have been proved by Farwig (1992a, 1992b) and Shi-
bata (1999). Generalization of results obtained by these authors are given by
Kračmar, Novotný & Pokorný (2001). These authors also provide very detailed
estimates for the Oseen fundamental solution in dimensions 2 and 3. Estimates
for the Oseen volume potentials in weighted Hölder spaces have been stud-
ied by Solonnikov (1996), and in weighted anisotropic Lebesgue spaces by
Kračmar, Novotný & Pokorný (2001); see also Kračmar, Novotný & Pokorný
(1999).

A modified Oseen problem that contains an “anisotropic” second derivative
and that is relevant in the study of certain non-Newtonian liquid models has
been investigated by Farwig, Novotný, & Pokorný (2000).

A boundary integral approach to the existence and uniqueness of solution
to the Oseen problem is addressed by Fischer, Hsiao & Wendland (1985).

A detailed analysis of different problems and results related to two-
dimensional flows can be found in the review article of Olmstead & Gautesen
(1976) and in the references included therein.





VIII

Steady Generalized Oseen Flow in Exterior

Domains

. . . e quelle anime liete,
si fero spere sopra fissi poli,
fiammando, volte, a guisa di comete.

DANTE, Paradiso XIV, vv. 10-12

Introduction

The Oseen approximation, which we analyzed to a large extent in the previous
chapter, aims at describing the motion of a Navier–Stokes liquid around a
rigid body, B, that moves with a constant and “sufficiently small” purely
translational velocity. However, assuming this kind of motion for B might be
restrictive in several significant applied problems, occurring on both large and
small scales, where B is allowed to translate and to rotate. Typical examples of
these problems are furnished by the orientation of rigid bodies in the stream
of a viscous liquid, and by the self-propulsion of microorganisms in a viscous
liquid; see Galdi (2002) for a review of these and related questions.

In order to appropriately describe situations in which B moves by a generic,
but “small,” rigid motion, one needs the more general approximation that we
introduced in (VII.0.1), which we will call generalized Oseen approximation.
For the reader’s sake, we reproduce the relevant equations here:

ν∆v+ v0 · ∇v +ω × x · ∇v −ω × v = ∇p+ f

∇ · v = 0

}
in Ω ,

v = v∗ at ∂Ω,

(VIII.0.1)

along with the condition at infinity
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lim
|x|→∞

v(x) = 0 . (VIII.0.2)

We recall that in (VIII.0.1), v0 and ω are given constant vectors representing
the translational and angular velocity, respectively, of the rigid motion of B.

We shall assume that Ω is an exterior domain of R3, and refer the reader to
the Notes for this chapter for some remarks and relevant bibliography related
to the two-dimensional case.

In order to describe problems and results, it is convenient to rewrite
(VIII.0.1) and (VIII.0.2) in a suitable dimensionless form. To this end, we
assume, without loss, that ω is directed along the positive x1-axis, that is,
ω = ω e1, while v0 = v0e, v0 ≥ 0.1 Moreover, we scale the length with
d = δ(Ωc), and the velocity with v0, if v0 6= 0, and with ω d otherwise. There-
fore, introducing the dimensionless numbers

R′ =
v0d

ν
(Reynolds number) T =

ωd2

ν
(Taylor number) , (VIII.0.3)

the system (VIII.0.1) assumes the following form

∆v + R′e · ∇v + T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0

}
in Ω ,

v = v∗ at ∂Ω,

(VIII.0.4)

where now v, v∗, p, and f are nondimensional quantities.2 If Ω ≡ R3 the
above choice of d is no longer possible, but we can still give a meaning to
(VIII.0.4), which is what we shall do hereinafter.

At this point we observe that, in general, ω and v0, that is, e1 and e, have
different directions. However, by shifting the coordinate system by a constant
quantity, we can always reduce the original equations to new ones where e =
e1. This change of coordinates, known as Mozzi–Chasles transformation (see
Mozzi 1763, Chasles 1830), reads as follows:

x∗ = x− λe1 × e , λ :=
R′

T ≡ v0
ω d

. (VIII.0.5)

Thus, defining

Ω∗ =
{
x∗ ∈ R3 : x∗ = x− λe1 × e , for some x ∈ Ω

}
,

v∗(x∗) = v(x∗ + λe1 × e) , p∗(x∗) = p(x∗ + λe1 × e) ,
f∗(x∗) = f (x∗ + λe1 × e) ,
R = R′e · e1 ,

(VIII.0.6)

1 Of course, we suppose ω 6= 0; otherwise, the analysis reduces to that already
performed in Chapter V, when v0 = 0, and in Chapter VII, when v0 6= 0.

2 Notice that, in contrast to the Oseen problem studied in the previous chapter,
here the body force has been scaled in such a way that dimensionless body force
is −f instead of −R′f . This is because we may allow R′ = 0, while keeping a
nonzero force term.
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the system (VIII.0.4) becomes (with stars omitted)

∆v + R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0





in Ω

v = v∗ at ∂Ω,

(VIII.0.7)

Throughout this chapter, we shall therefore focus on the resolution of
problem (VIII.0.7), (VIII.0.2).

We would like to point out the following interesting feature of (VIII.0.7).
In view of what we have found in the previous chapter, we may guess that
the wake-like behavior of the velocity field v at large distances is produced
by the term R ∂v

∂x1
. Now, this term is zero whenever the “effective” Reynolds

number R vanishes. In view of the Mozzi-Chasles transformation, this happens
not only when (as intuitively expected) v0 = 0, but, more generally, when
v0 ·ω = 0, namely, when the translational velocity of the body is perpendicular
to its angular velocity. In fact, as we shall prove later on, the formation of a
“wake” is possible, in a suitable sense, if and only if v0 · ω 6= 0; see Section
VIII.6. For a physical interpretation of this circumstance, we refer to the
Introduction to Chapter XI.

The study of the mathematical properties of the solutions to (VIII.0.7),
(VIII.0.2) is, in principle, much more challenging than the analogous study
performed for the Oseen problem (VII.0.1), (VII.0.2), the main reason being
the presence, in (VIII.0.7)1, of the term e1 × x · ∇v, whose coefficient be-
comes unbounded as |x| → ∞. One important consequence of this fact is that
(VIII.0.7) can by no means be viewed as a perturbation of (VII.0.1), even for
“small” T (“small” angular velocities, that is).

Despite this difficulty, one is able to prove, with relative ease, the existence
of at least one generalized solution to (VIII.0.7), (VIII.0.2) and to show that
such a solution is smooth, provided the data are equally smooth; see Section
VIII.1. As in the case of the Oseen approximation, the generalized solution
is constructed via the Galerkin method, with the help of a suitable basis and
of an appropriate a priori estimate for the Dirichlet norm of v; see Theorem
VIII.1.2. This estimate can be established thanks to the crucial fact that (as
the reader will immediately verify)

∫

Ω

(e1 × x · ∇ϕ · ϕ− e1 ×ϕ · ϕ) = 0 , for all ϕ ∈ D(Ω) .

With a view to applications to the full nonlinear problem, as in the case of
the Oseen approximation, also in the case at hand the next important question
to investigate is the behavior at large distances of generalized solutions. This
problem already arises, naturally, in the study of the uniqueness of generalized
solutions, which is here established by a method different from those used in
Theorem V.2.1 and Theorem VII.1.2 for the Stokes and Oseen approximation,
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respectively. In fact, this method relies chiefly on a sharp result concerning
the asymptotic behavior of the pressure field associated with a generalized
solution corresponding to a body force that is square-summable in ΩR, for
sufficiently large R; see Section VIII.2.

Unlike the analogous problems for the Stokes and Oseen approximations
analyzed in Section V.3 and Section VII.6, the study of the asymptotic be-
havior of generalized solutions to (VIII.0.7), (VIII.0.2) does not appear to be
feasible by means of the classical method based on volume potential represen-
tations along with asymptotic estimates of the fundamental solution. Actually,
based on heuristic considerations, we are expecting that the velocity field de-
cays like |x|−1, uniformly for large |x|. However, as shown by Farwig, Hishida
& Müller (2004, Proposition 2.1), see also Hishida (2006, Proposition 4.1),
the fundamental tensor solution, G = G(x, y), associated with the equations
(VIII.0.1)1 (with Ω ≡ R3) does not satisfy a uniform estimate of the type

|G(x, y)| ≤ C|x− y|−1 , for all x, y ∈ R3 ,

with C independent of x, y, at least in the case R = 0, which is, in fact, the
most complicated.

Therefore, we will argue in a different way.
The approach we shall follow to study the asymptotic behavior of gener-

alized solutions and to show the corresponding estimates is treated in Section
VIII.3 through Section VIII.6. It was first introduced by Galdi (2003) and
then further generalized and improved by Galdi & Silvestre (2007a, 2007b).
It develops according to the following steps. In the first step, by means of a
“cut-off” technique that we have already used in previous chapters, we reduce
the original problem to an analogous one in the whole space. At this stage, the
above-mentioned uniqueness property plays a fundamental role, because we
can then identify the generalized solution in the whole space problem with the
original one, for sufficiently large |x|, x ∈ Ω. In the second step, we consider
the time-dependent version of (VIII.0.7) in the whole-space (Cauchy problem)
corresponding to the same “body force” and to zero initial data; see (VIII.5.8).
We thus show that at each time t ≥ 0, the velocity field, u = u(x, t), of the
corresponding solution decays at least like |x|−1 for large |x|, and that it is
uniformly bounded in time by a function that exhibits the same spatial decay
properties as the Stokes or Oseen fundamental tensor, depending on whether
R is zero or not zero, respectively. Therefore, in this sense, u shows a “wake-
like” feature whenever R 6= 0. Successively, thanks to these pointwise, uniform
(in time) estimates, we may thus pass to the limit t→ ∞ and show, on the one
hand, that u(x, t) converges, uniformly pointwise, to the generalized solution
v = v(x) of the steady-state problem, and that on the other hand, v has the
same asymptotic properties and that it obeys the same estimates as u does.

In the last two sections of the chapter, we will investigate the summability
properties of generalized solutions in homogeneous Sobolev spaces, together
with corresponding estimates, when f belongs to the Lebesgue space Lq , for
suitable values of q, and v∗ is in the appropriate trace space. As we shall see,
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these results are, formally, completely analogous to those shown in Theorem
VII.7.1 for the Oseen problem with m = 0 and n = 3.

Unless otherwise stated, throughout this chapter we shall always assume
T > 0,3 whereas we take R ≥ 0.

VIII.1 Generalized Solutions. Regularity and Existence

We begin with a weak formulation of the generalized Oseen problem through
a, by now, familiar procedure. Thus, multiplying (VIII.0.7)1 by ϕ ∈ D(Ω)
and integrating by parts, we obtain

(∇v,∇ϕ)−R
(
∂v

∂x1
,ϕ

)
−T (e1 ×x · ∇v− e1 × v,ϕ) = −[f ,ϕ]. (VIII.1.1)

Definition VIII.1.1. A vector field v : Ω → Rn is called a q-weak (or q-
generalized) solution to (VIII.0.2), (VIII.0.7) if for some q ∈ (1,∞),

(i) v ∈ D1,q(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v assumes the value v∗ at ∂Ω (in the trace sense) or, if the velocity at

the boundary is zero, v ∈ D1,q
0 (Ω);

(iv) lim
|x|→∞

∫

S2

|v(x)| = 0;

(v) v satisfies (VIII.1.1) for all ϕ ∈ D(Ω).

As usual, if q = 2, v will be called simply a weak (or generalized) solution to
(VIII.0.2), (VIII.0.7).

Remark VIII.1.1 If v is a q-weak solution then by Lemma II.6.1, v ∈
W 1,q

loc (Ω), and if Ω is locally Lipschitz, then v ∈ W 1,q
loc (Ω). Concerning (iii),

see Remark V.1.1. Moreover, if q ∈ (1, 3), then, by (iv) and Theorem II.6.1(i),
it follows that v ∈ L3q/(3−q)(Ω), and that

‖v‖3q/(3−q) ≤ c |v|1,q ,

where c = c(q, Ω). Finally, in regards to (iv), we notice that, if f is in L2(Ωρ),
for a sufficiently large ρ then it can be shown that every generalized solution
tends to zero as |x| → ∞, uniformly pointwise; see Exercise VIII.2.1. �

If the function f has a sufficient degree of regularity, to each q-weak so-
lution we can associate a corresponding pressure field in a way completely
analogous to that used in Lemma IV.1.1. Specifically, we have the following
result, whose proof we leave to the reader as an exercise.

3 See footnote 1.
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Lemma VIII.1.1 Let Ω be an exterior domain in Rn, n ≥ 2. Suppose f ∈
W−1,q

0 (Ω′), 1 < q < ∞, for any bounded subdomain Ω′, with Ω′ ⊂ Ω. Then
to every q-weak solution v we can associate a pressure field p ∈ Lq

loc(Ω) such
that

(∇v,∇ψ) −R
(
∂v

∂x1
,ψ

)
− T (e1 × x · ∇v − e1 × v,ψ) = (p,∇ · ψ) − [f,ψ]

(VIII.1.2)
for all ψ ∈ C∞

0 (Ω). Furthermore, if Ω is locally Lipschitz and f ∈
W−1,q

0 (ΩR), R > δ(Ωc), then p ∈ Lq(ΩR).

Remark VIII.1.2 The result stated in Lemma VIII.1.1 for Ω locally Lips-
chitz is weaker than its counterpart for the Stokes problem, proved in Lemma
V.1.1, for reasons that are analogous to that explained in Remark VII.1.2 for
the Oseen problem. Basically, this is due to the fact that the functional

(∇v,∇ψ) −R
(
∂v

∂x1
,ψ

)
− T (e1 × x · ∇v − e1 × v,ψ) + [f,ψ]

is not continuous in ψ ∈ D1,q′

0 (Ω) if we merely require v ∈ D1,q(Ω). In other
words, under this assumption alone on v we cannot guarantee the existence
of a constant c = c(v,R, T ) such that

∣∣∣∣R
(
∂v

∂x1
,ψ

)
+ T (e1 × x · ∇v − e1 × v,ψ)

∣∣∣∣ ≤ c |ψ|1,q′ , for all ψ ∈ C∞
0 (Ω) ,

and so, we cannot apply Corollary III.5.1, but only its weaker version given
in Corollary III.5.2. �

The following result furnishes regularity of q-weak solutions.

Theorem VIII.1.1 Let f ∈ Wm,q
loc (Ω), m ≥ 0, 1 < q <∞, and let

v ∈W 1,q
loc (Ω), p ∈ Lq

loc(Ω), 1

with v weakly divergence-free, satisfy (VIII.1.2) for all ψ ∈ C∞
0 (Ω). Then

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω).

In particular, if f ∈ C∞(Ω), then v, p ∈ C∞(Ω). Furthermore, if Ω is of class
Cm+2 and

1 Actually, these assumptions are satisfied by any q-weak solution. In fact, they are
implied by the following one:

v ∈ L1
loc(Ω) , ∇v ∈ Lq

loc(Ω), with v satisfying (VIII.1.1) for all ϕ ∈ D(Ω).

For under this hypothesis, by Lemma II.6.1, v ∈ W 1,q
loc (Ω) and then, by Lemma

VIII.1.1, we deduce p ∈ Lq
loc(Ω); see also Remark VIII.1.2.
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f ∈Wm,q
loc (Ω), v∗ ∈Wm+2−1/q,q(∂Ω),

then
v ∈ Wm+2,q

loc (Ω), p ∈Wm+1,q
loc (Ω) ,

provided v ∈ W 1,q
loc (Ω).2 In particular, if Ω is of class C∞, and f ∈ C∞(Ω),

v∗ ∈ C∞(∂Ω), then v, p ∈ C∞(Ω′), for all bounded Ω′ ⊂ Ω.

Proof. The proof follows at once from Theorem IV.4.1 and Theorem IV.5.1 if
one bears in mind that (VIII.1.2) can be viewed as a weak form of the Stokes
equation with f replaced by f −R ∂v

∂x1
− T (e1 × x · ∇v − e1 × v). ut

We shall next establish the existence of generalized solutions. Precisely, we
have the following.

Theorem VIII.1.2 Let Ω be a three-dimensional exterior, locally Lipschitzian
domain. Given

f ∈ D−1,2
0 (Ω), v∗ ∈W 1/2,2(∂Ω) ,

there exists at least one generalized solution to (VIII.0.2), (VIII.0.7). This
solution satisfies the estimates3

‖v‖2,ΩR + |v|1,2 ≤ c1
{
|f |−1,2 + (1 + R + T )‖v∗‖1/2,2(∂Ω)

}
,

∫

S2

|v(x)| = o (1/
√
|x|) as |x| → ∞,

‖p‖2,ΩR/ R ≤ c2 {|f |−1,2 + (1 + R + T )|v|1,2} ,

(VIII.1.3)

for all R > δ(Ωc). In (VIII.1.3) p is the pressure field associated to v by
Lemma VIII.1.1, while ci = ci(R,Ω) (ci → ∞ as R→ ∞).

Proof. The method of proof is very close to that of Theorem VII.2.1. We look
for a solution of the form

v = w + V 1 + σ, (VIII.1.4)

where V 1 and σ are solenoidal fields introduced in the proof of Theorem
VII.2.1, which we will recall here for the reader’s sake. Specifically, V 1 ∈
W 1,2(Ω) is the solenoidal extension of v∗ − σ|∂Ω of bounded support in Ω
constructed in the proof of Theorem V.1.1, while with the origin of coordinates

in
◦
Ωc,

σ =
Φ

4π
∇
(

1

|x|

)
,

Φ =

∫

∂Ω

v∗ ·n .
(VIII.1.5)

2 Notice that any q-generalized solution enjoys this requirement, as a consequence
of the stated assumptions on Ω and Remark VIII.1.2.

3 See (IV.6.1) for the definition of the norm involving p.
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Thus,

|V 1|1,2 ≤ c ‖v∗‖1/2,2(∂Ω)

Dασ = O(1/|x|2+|α|) , |α| = 0, 1, as |x| → ∞.
(VIII.1.6)

As a consequence, w is required to be a member of D1,2
0 (Ω) and to satisfy,

for all ϕ ∈ D(Ω), the equation

(∇w,∇ϕ) −R
(
∂w

∂x1
,ϕ

)
− T (e1 × x · ∇w− e1 ×w,ϕ)

= −[f ,ϕ] − (∇V 1,∇ϕ) + R
(
∂V σ

∂x1
,ϕ

)
+ T (e1 × x · ∇V σ − e1 × V σ,ϕ),

(VIII.1.7)
where we set

V σ ≡ V 1 + σ.

However, we have the identity

e1 × x · ∇σ − e1 × σ = 0 . (VIII.1.8)

In fact, denoting by εijk the alternating symbol 4 and by L the left-hand side
of (VIII.1.8) times 4π/Φ, we obtain (with r ≡ |x| and i = 1, 2, 3)

Li = εk1` x` (3
xixk

r5
− δik

r3
) + εi1m

xm

r3
= 3 ε213

xix2x3

r5
+ 3 ε312

xix3x2

r5
= 0 .

Using (VIII.1.8) in (VIII.1.7), we deduce

(∇w,∇ϕ) −R
(
∂w

∂x1
,ϕ

)
− T (e1 × x · ∇w− e1 ×w,ϕ)

= −[f ,ϕ]− (∇V 1,∇ϕ) + R
(
∂V 1

∂x1
,ϕ

)
+ T (e1 × x · ∇V 1 − e1 × V 1,ϕ) .

(VIII.1.9)
It is clear that, provided we show the existence of a function w ∈ D1,2

0 (Ω)
satisfying (VIII.1.9) for all ϕ ∈ D(Ω), the field (VIII.1.4) satisfies all require-
ments of a generalized solution to (VIII.0.2), (VIII.0.7) as given in Defini-
tion VIII.1.1. In fact, (VIII.1.6)2, and the properties of V 1 and w, imply
v ∈ D1,2(Ω). In addition, v is solenoidal and assumes the value v∗ at the
boundary. Finally, in view of (VIII.1.6)2, we obtain

∫

S2

|v(x)| ≤
∫

S2

|w(x)|+ O(1/|x|2) , (VIII.1.10)

4 We recall that the alternating symbol is defined as follows: εijk = 1 if (i, j, k)
is an even permutation of (1,2,3); εijk = −1 if (i, j, k) is an odd permutation of
(1,2,3), and εijk = 0 if any two of i, j, k are equal.
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which, by Lemma II.6.2, delivers (VIII.1.3)2. Thus, to establish the theorem
it remains to prove the existence of the field w and the validity of estimates
(VIII.1.3)1,3. To this end, let {ϕk} be the base of D1,2

0 (Ω) given in Lemma
VII.2.1. We shall construct an “approximate solution” wm to (VIII.1.9) in
the following way:

wm =

m∑

`=1

ξ`mϕ` ,

(∇wm,∇ϕk) −R
(
∂wm

∂x1
,ϕk

)
− T (e1 × x · ∇wm − e1 ×wm,ϕk)

= −[f ,ϕk]−(∇V 1,∇ϕk)+R
(
∂V σ

∂x1
,ϕk

)
+T (e1 × x · ∇V 1 − e1 × V 1,ϕk)

≡ Fk , k = 1, 2, . . . , m.
(VIII.1.11)

Using (ii) of Lemma VII.2.1 we obtain

m∑

`=1

(ξ`mδ`k − ξ`mA`k) = Fk, k = 1, 2, . . . , m (VIII.1.12)

where

A`k ≡ R
(
∂ϕ`

∂x1
,ϕk

)
+ T (e1 × x · ∇ϕ` − e1 ×ϕ`,ϕk).

System (VIII.1.12) is linear in the unknowns ξ`m, ` = 1, . . . , m, and since
A`k = −Ak`, we deduce that the determinant of the coefficients is nonzero.
As a consequence, for each m ∈ N, system (VIII.1.12) admits a uniquely
determined solution. Let us multiply (VIII.1.12) by ξkm and sum over k from
1 to m. We obtain

|wm|21,2 = −[f ,wm]

−(∇V 1,∇wm)+R
(
∂V σ

∂x1
,wm

)
+T (e1 × x · ∇V 1 − e1 × V 1,wm).

(VIII.1.13)
By (VIII.1.6)1, and the fact that f ∈ D−1,2

0 (Ω), we readily show that

−[f ,wm] ≤ |f|−1,2|wm|1,2 ,

−(∇V 1,∇wm) ≤ c1‖v∗‖1/2,2(∂Ω)|wm|1,2 ,

−
(
V 1 + σ,

∂wm

∂x1

)
≤ c2‖v∗‖1/2,2(∂Ω)|wm|1,2 ,

(e1 × x · ∇V 1 − e1 × V 1,wm) ≤ c3‖v∗‖1/2,2(∂Ω)|wm|1,2 .

(VIII.1.14)

Recalling (VIII.1.14) and using (VIII.1.13) we obtain

|wm|1,2 ≤ c
{
|f |−1,2 + (1 + R + T )‖v∗‖1/2,2(∂Ω)

}
. (VIII.1.15)
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Therefore, the sequence {wm} remains uniformly bounded in D1,2
0 (Ω), and

by Exercise II.6.2, there exist a subsequence, denoted again by {wm}, and a
function w ∈ D1,2

0 (Ω) such that in the limit m→ ∞,

(∇wm,∇ϕ) → (∇w,∇ϕ), for all ϕ ∈ D1,2
0 (Ω). (VIII.1.16)

Also, by (VIII.1.15) and Theorem II.2.4 we infer

|w|1,2 ≤ c
{
|f|−1,2 + (1 + R + T )‖v∗‖1/2,2(∂Ω)

}
(VIII.1.17)

with c = c(Ω). Furthermore, from Exercise II.5.8 and by a simple diagonaliza-
tion procedure, we can select another subsequence, again denoted by {wm}
such that

wm → w in L2(ΩR), for all R > δ(Ωc). (VIII.1.18)

For fixed k, we then pass to the limit m → ∞ into (VIII.1.11)2 to deduce
with the help of (VIII.1.16), (VIII.1.18) that v satisfies (VIII.1.1) for all ϕk.
Since, by Lemma VII.2.1, every ϕ ∈ D(Ω) can be approximated by a linear
combination of ϕk in the W 1,2-norm and in the norm ‖ρ · ‖2 , ρ = (1 +
|x|), we easily establish the validity of (VIII.1.1) for all ϕ ∈ D(Ω). Let us
next prove estimates (VIII.1.3)1,3. From (VIII.1.3)2, Theorem II.6.1, and the
Hölder inequality, we deduce

‖v‖2,ΩR ≤ |ΩR|1/3‖v‖6,ΩR ≤ c |ΩR|1/3|v|1,2 , (VIII.1.19)

where c = c(Ω), and so, since

|v|1,2 ≤ |w|1,2 + |V 1|1,2 + |σ|1,2 ,

inequality (VIII.1.3)1 follows from (VIII.1.17), (VIII.1.19), and (VIII.1.6). Let
us finally prove (VIII.1.3)3. For fixed R > δ(Ωc), we add to the pressure p
(defined through Lemma VIII.1.1) the constant

C(R) = − 1

|ΩR|

∫

ΩR

p ,

so that ∫

ΩR

(p+ C) = 0.

Successively, we take ψ into (VII.1.2) as a solution to the problem

∇ ·ψ = p+ C in ΩR ,

ψ ∈W 1,2
0 (ΩR) ,

‖ψ‖1,2 ≤ c1‖p+ C‖2,ΩR ,

for some c1 = c1(ΩR). This problem is resolvable by virtue of Theorem II.4.1
and so from (VIII.1.2) and the Schwarz inequality we have
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‖p+ C‖2,ΩR ≤ c1 (|v|1,2 + (R + T )‖v‖2,ΩR + |f|−1,2) (VIII.1.20)

which, by (VIII.1.3)1, in turn implies (VIII.1.3)3. The theorem is thus com-
pletely proved. ut

VIII.2 Generalized Solutions. Uniqueness

The objective of this section is to prove that the generalized solution deter-
mined in Theorem VIII.1.2 is unique in the class of all generalized solutions
corresponding to the same data. In view of the linearity of the problem, this
amounts to showing that the only generalized solution to (VIII.0.2), (VIII.0.7)
corresponding to v∗ ≡ f ≡ 0 is identically zero. As in the case of the Oseen
problem, in the case at hand, a fortiori, we are not allowed to replace v for ϕ
in (VIII.1.1) if v merely belongs to D1,2(Ω); see Remark VIII.1.2. Moreover,
even if we could, it would not be obvious to conclude that the contribution
from the second and third term on the left-hand side of (VIII.1.1) with ϕ ≡ v
is zero. We will, therefore, argue differently. To this end, we need to prove a
number of preparatory results.

Lemma VIII.2.1 Let v be a generalized solution to (VIII.0.2), (VIII.0.7)
corresponding to f ∈ L2(Ωρ), for some ρ > δ(Ωc). Then v ∈ D2,2(Ωr), for all
r > ρ. Moreover, there is c = c(r, B) (with c(r) → ∞ as r → ρ+) such that
for all R, T ∈ [0, B],

‖D2v‖2,Ωr ≤ c (‖f‖2,Ωρ + |v|1,2) . (VIII.2.1)

Finally, if Ω = R3 and f ∈ L2(R3), then v ∈ D2,2(R3) and the following
estimate holds:

‖D2v‖2,R3 ≤ c1
(
‖f‖2,R3 + |v|1,2

)
, (VIII.2.2)

with c1 = c1(B).

Proof. In view of the assumption on f and Theorem VIII.1.1, we know that
v ∈W 2,2

loc (Ωρ), p ∈W 1,2
loc (Ωρ) and that they satisfy the following equations:

∆v + R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0





a.e. in Ωρ .

(VIII.2.3)
Let R > r > ρ, and denote by ψR = ψR(|x|) a smooth, non-negative “cut-
off” function that is 0 for |x| ≤ ρ and |x| ≥ 2R, while it is 1 for |x| ∈
[r, R]. Moreover, we may take |DαψR|, |Dα(

√
ψR)| ≤ M R−|α|, all |α| ≥ 0,

with M independent of R. We next dot-multiply both sides of (VIII.2.3)1 by
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−∇× (ψR∇× v), and integrate over Ω. Since1

−∇× (ψR∇× v) = −ψR∇×∇× v + (∇× v) ×∇ψR

= ψR∆v + (∇× v) ×∇ψR ,
(VIII.2.4)

we obtain2

‖√ψR∆v‖2
2 = −

(
R ∂v

∂x1
+ f , ψR∆v + (∇× v) ×∇ψR

)

−1
2 ((∇× v) ×∇(

√
ψR),

√
ψR∆v)

+T (e1 × v,∇× (ψR∇× v) − (e1 × x · ∇v,∇× (ψR∇× v)) .
(VIII.2.5)

By the Schwarz inequality, the Cauchy inequality (II.2.5), and the properties
of ψR, we obtain

− ((∇× v) ×∇(
√
ψR),

√
ψR∆v) ≤ 1

4‖
√
ψR∆v‖2

2 +M2 |v|21,2 (VIII.2.6)

and

−
(
R ∂v

∂x1
+f , ψR∆v+(∇× v) ×∇ψR

)
≤ 1

4
‖
√
ψR∆v‖2

2 + c (|v|21,2 + ‖f‖2
2) ,

(VIII.2.7)
where c = c(B, ρ, r). We need now to estimate the last two terms on the
right-hand side of (VIII.2.5). Employing the well-known identities

∇ · (A ×B) = B · ∇ ×A−A · ∇ ×B ,

∇× (a ×B) = a∇ ·B − a · ∇B ,
(VIII.2.8)

where A, B are vector fields and a is a constant vector, along with the prop-
erties of ψR, we obtain

(e1 × v,∇× (ψR∇× v)) = −
∫

Ω

∇ · [ψR(e1 × v) × (∇× v)]

+ (ψR∇× v,∇× (e1 × v))
= −(ψRe1 · ∇v,∇× v) ≤ 2|v|21,2 .

(VIII.2.9)

Furthermore, again with the help of (VIII.2.8)1, and by the properties of ψR,
we deduce

1 This vector identity as well as the others used throughout the proof is known for
“smooth” vector fields. However, by a simple approximating procedure based on
Theorem II.3.1, we can show that they continue to hold a.e. in Ωρ also if the
fields merely belong to W 2,2

loc (Ωρ).
2 Throughout the proof, for simplicity, we set ‖ · ‖2,Ωρ ≡ ‖ · ‖2, and (·, ·)Ωρ ≡ (·, ·).
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−(e1 × x · ∇v,∇× (ψR∇× v)) =

∫

Ω

∇ · [ψR(e1 × x · ∇v) × (∇× v)]

− (ψR∇× v,∇× (e1 × x · ∇v))
= − (ψR∇× v,∇× (e1 × x · ∇v)) .

(VIII.2.10)
In order to estimate the term on the right-hand side of (VIII.2.10), we recall
the following classical form of ∇ ×A, and that of the cross product of two
vectors, a, b in terms of their components:

∇×A = εijkDjAkei , a × b = εijkajbkei ,

where εijk is the alternating symbol.3 We thus have, for i = 1, 2, 3,

[∇× (e1 × x · ∇v)]i = εijkDj(e1 × x · ∇vk)

= [e1 × x · ∇(∇× v)]i + εijkεlmjemDlvk ,

and so, employing the well-known identities (see, e.g., Evett (1966))

εijkεlmj = δimδkl − δilδkm ,

and recalling (VIII.2.3)2, we deduce

∇× (e1 × x · ∇v) = e1 × x · ∇(∇× v) −∇v · e1 .

Taking into account that e1×x ·∇ψR(|x|) = 0, for all x ∈ R3, from this latter
relation and again from the properties of ψR, we obtain

− (ψR∇× v,∇× (e1 × x · ∇v)) = −1
2

∫

Ω

∇ · [ψR (∇× v)2e1 × x]

+ (ψR∇× v,∇v · e1)

= (ψR∇× v,∇v · e1) ≤ 2|v|21,2 .
(VIII.2.11)

Collecting (VIII.2.5)–(VIII.2.7), (VIII.2.9), and (VIII.2.11), we thus obtain

‖
√
ψR∆v‖2

2 ≤ c (|v|21,2 + ‖f‖2
2) , (VIII.2.12)

and so, recalling that ψR(|x|) = 1, for x ∈ Ωr,R, we conclude, in particular,
that

‖∆v‖2
2,Ωr,R

≤ c (|v|21,2 + ‖f‖2
2)

where c is independent of R. Letting R → ∞ in this relation gives ∆v ∈
L2(Ωr), for all r > ρ, and moreover,

‖∆v‖2,Ωr ≤ c (|v|1,2 + ‖f‖2,Ωρ) . (VIII.2.13)

3 See footnote 4 in Section VIII.1.
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From (VIII.2.13) and from its proof, it immediately follows that in the par-
ticular case Ω = R3 and f ∈ L2(R3), we have ∆v ∈ L2(R3) and

‖∆v‖2,R3 ≤ c1 (|v|1,2 + ‖f‖2,R3) , (VIII.2.14)

with c1 = c1(B). We now observe that as a consequence of this property and
the Helmholtz–Weyl decomposition theorem, Theorem III.1.1, v satisfies the
following Stokes system:

∆v = F + ∇ζ
∇ · v = 0

}
in Ωr ,

where F ∈ H(Ωr) ⊂ L2(Ωr) and ζ ∈ D1,2(Ωr). Moreover, v ∈ D1,2(Ωr) by
assumption, and so from Theorem V.5.3, we readily obtain v ∈ D2,2(Ωr), and
the property stated in the lemma follows. Clearly, if Ω = R3 and f ∈ L2(R3),
this argument furnishes D2v ∈ L2(R3). Therefore, since

v ∈ D2,2(R3) ∩D1,2
0 (R3) ,

by Theorem II.7.6 it easily follows that v ∈ D2,2
0 (R3). Thus, by Exercise II.7.4,

we have
‖D2v‖2 = ‖∆v‖2 ,

and from (VIII.2.14) we also prove (VIII.2.2). The case Ω 6= R3 can be treated
by similar considerations. In fact, let ζ = ζ(x) a smooth function that is 1
for |x| ≥ r and is 0 for |x| ≤ ρ, and set w = ζ v. Then, by the property
of generalized solutions and with the help of Theorem II.7.6 we prove that
w ∈ D2,2

0 (R3), and so, as before, we find that ‖D2w‖2 = ‖∆w‖2. However,
by a simple calculation, we show that

‖D2v‖2,Ωr ≤ ‖∆w‖2 ≤ c1(r) (‖∆v‖2,Ωr + ‖v‖1,2,Ωρ,r)

≤ c2(r) (‖∆v‖2,Ωr + |v|1,2) ,
(VIII.2.15)

where in the last step, we have used the Hölder inequality together with
inequality ‖v‖6 ≤ c|v|1,2. The relation (VIII.2.1) is then a consequence of
(VIII.2.13) and (VIII.2.15).

ut

The next result furnishes a representation of the pressure field under very
general assumptions on f .

Lemma VIII.2.2 Let v be a generalized solution to (VIII.0.2), (VIII.0.7)

corresponding to f = f̃ + ∇ · F , where

f̃ ∈ L2(Ωρ) ∩ Lq(Ωρ), for some ρ > δ(Ωc) and q ∈ (1,∞) ,

and F is a second-order tensor field such that
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∇ · F ∈ L2(Ωρ) , F ∈ Lt(Ωρ) ∩ L2(Ωr) ∩ Lq(Ωr) , for some t ∈ (1,∞).

Then, there exists p∞ ∈ R such that the pressure p associated to v by Lemma
VIII.1.1 admits the following decomposition:

p = p∞ + p1 + p2 , (VIII.2.16)

where
p1 ∈ L6(Ωr) ∩D1,2(Ωr) ∩D1,q(Ωr) ,

p2 ∈ L6(Ωr) ∩Lt(Ωr) ∩D1,2(Ωr) .
(VIII.2.17)

Moreover, if q ∈ (1, 3), we have also

p1 ∈ ∩L3q/(3−q)(Ωr) . (VIII.2.18)

Finally, if
(f ,∇ψ) = 0 for all ψ ∈ C∞

0 (Ωρ) , (VIII.2.19)

namely, ∇ · f = 0 in the generalized sense, and q ∈ (1, 3/2], t ∈ (1, 3], then

Dα(p(x) − p∞) = χα(x) , for all |α| ≥ 0, |x| > r , (VIII.2.20)

where
χα(x) = O(|x|−2−|α|) .

Proof. By the Helmholtz–Weyl decomposition theorem, Theorem III.1.2, we
may write

f̃ = f∗ + ∇p∗,
where f∗,∇p∗ ∈ L2(Ωρ)∩Lq(Ωρ). By Theorem II.6.1, we can add a constant
to p∗ in such a way that the modified function, which we continue to denote
by p∗, belongs to L6(Ωρ)∩L3q/(3−q)(Ωρ). We set p̃ = p+p∗, so that (VIII.2.3)
becomes

∆v + R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p̃+ f∗ + ∇ · F

∇ · v = 0





a.e. in Ωρ .

(VIII.2.21)
We begin by proving the properties (VIII.2.16)–(VIII.2.18). Fix r > ρ, and
let ψ be a smooth “cut-off” function that is 1 if |x| ≥ r, and 0 if |x| ≤ ρ.
Moreover, let

σ(x) := −
(∫

∂Br

v · n
)
∇E , (VIII.2.22)

where E is the (three-dimensional) fundamental Laplace solution (II.9.1), and
consider the following problem:
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∇ ·H = ∇ · [ψ(v + σ)] in Br ,

H ∈W 3,2(R3) , supp (H) ⊂ Br .
(VIII.2.23)

Since ∫

Br

∇ · [ψ(v + σ)] =

∫

∂Br

ψ(v + σ) · n = 0 ,

we know, by the properties of v and Theorem III.3.1, that (VIII.2.23) has at
least one solution. Put

w = ψv + ψσ −H , π = ψ p̃.

Taking into account (VIII.1.8), from (VIII.2.21) by a direct calculation we
obtain4

∆w+
∂w

∂x1
+ (e1 × x · ∇w− e1 ×w) = ∇π + ψf∗ + ψ∇ ·F +G

∇ ·w = 0





a.e. in R3 ,

(VIII.2.24)
where G ∈ L2(R3), with supp (G) ⊂ Br . Now, for all ψ ∈ C∞

0 (Ωρ),

(∆w,∇ψ) = −(∇ ·w, ∆ψ) = 0 ,

(
∂w

∂x1
,∇ψ

)
=

(
∇ ·w, ∂ψ

∂x1

)
= 0 .

(VIII.2.25)
Also, since

∇ · (e1 × x · ∇Φ− e1 × Φ) = e1 × x · ∇(∇ ·Φ) = 0 ,

for all Φ ∈W 2,2
loc (Ω) with ∇ ·Φ = 0 ,

(VIII.2.26)
we obtain, in particular,

(e1×x ·∇w−e1×w,∇ψ) = −(∇·(e1×x·∇w−e1×w), ψ) = 0 . (VIII.2.27)

Using (VIII.2.25) and (VIII.2.27) from (VIII.2.24)1, we deduce that π is a
generalized solution to the following problem:

−∆π = ∇ · (ψf ∗) + ∇ · (ψ∇ · F ) + ∇ ·G in R3 . (VIII.2.28)

A solution to (VIII.2.28) is given by

π = −∇E ∗ (ψf∗) −∇E ∗G+ ∇E ∗ (∇ψ · F ) −∇E ∗ [∇ · (ψF )]

≡
4∑

i=1

πi ,

(VIII.2.29)

4 Since their values are irrelevant to the proof, we set throughout R = T = 1.
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where E is the fundamental solution of Laplace’s equation (II.9.1). We recall
that |∇E(ξ)| ≤ c|ξ|−2, and that DijE is a singular kernel, for all i, j = 1, 2, 3
(see Exercise II.11.7). Therefore, taking into account that ψf ∗,G,∇ψ · F ∈
Lq(R3) ∩ L2(R3), q ∈ (1, 3), from Theorem II.11.3 and Theorem II.11.4 we
obtain

πi ∈ L6(R3) ∩D1,q(R3) ∩D1,2(R3), q ∈ (1,∞)

πi ∈ L3q/(3−q)(R3) ∩ L6(R3) ∩D1,q(R3) ∩D1,2(R3), q ∈ (1, 3)

}
i = 1, 2, 3,

(VIII.2.30)
and by the same token,

π4 ∈ Lt(R3) ∩ L6(R3) ∩D1,2(R3) ; (VIII.2.31)

see Exercise VIII.2.2. Let us show that (up to an additive constant) π = π in
Ωr. To this end, we observe that clearly, Ψ := π − π is harmonic in R3, for
which the following local representation holds (see (VII.4.57)):

Ψ(x) = −
∫

R3

H(R)(x− y)Ψ(y)dy x ∈ R3 ,

with H(R) satisfying (V.3.11)–(V.3.13). Therefore, by differentiating both
sides of this relation and using the Schwarz and Hölder inequalities, we deduce

|∇Ψ(x)| ≤
(∫

R3

|y|2 |H(R)(x− y)|2dy
)1/2 ∥∥∥∥

∇π
y

∥∥∥∥
2

+‖∇H(R)‖3q/(4q−3)‖π‖3q/(3q−3) .

(VIII.2.32)

Also, recalling the properties (V.3.11), (V.3.13) of the function H(R) and
noticing that |y|2 ≤ 2(|x− y|2 + |x|2), from (VIII.2.32) we obtain

|∇Ψ(x)| ≤ c1
1 + |x|√

R

∥∥∥∥
∇π
y

∥∥∥∥
2

+ c2R
−5+4q/3‖π‖3q/(3q−3) , (VIII.2.33)

for all fixed x ∈ R3 and all R > 0 . On the other hand, dividing both sides of
(VIII.2.21)1 by |x|, squaring the resulting equation and integrating over Ωr ,
r > ρ, we deduce

∥∥∥∥
∇p̃
|x|

∥∥∥∥
2,Ωr

≤ c

[
‖∆v‖2,Ωr + |v|1,2,Ωr + ‖f‖2,Ωr +

∥∥∥∥
v

|x|

∥∥∥∥
2,Ωr

]
, (VIII.2.34)

where c = c(r). From Lemma VIII.2.1 and the assumption on f , we infer that
∆v ∈ L2(Ωr). Therefore, taking into account that v ∈ D1,2(Ω), we deduce
that the first three terms on the right-hand side of (VIII.2.34) are finite.
Moreover, by Theorem II.6.1(i) and property (iv) in Definition VIII.1.1, we
have also that the last term on the right-hand side of (VIII.2.34) is finite, so
that we conclude, in particular, that
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∫

Ωr

∣∣∣∣
∇p̃
x

∣∣∣∣
2

<∞ ,

namely, since π = ψp̃ and p̃ ∈ L2
loc(Ω

ρ),

∫

R3

∣∣∣∣
∇π
x

∣∣∣∣
2

<∞ .

If we take into account this condition along with (VIII.2.30), and pass to the
limit R → ∞ in (VIII.2.33), we conclude that ∇Ψ(x) = 0, for all x ∈ R3,
that is, π = π + const. Therefore, since π(x) = p̃(x) ≡ p(x) + p∗(x), x ∈
Ωr, the desired summability property (VIII.2.16)–(VIII.2.17) for p follows
from this latter, the analogous property of p∗, and (VIII.2.29)–(VIII.2.31). We
shall now complete the proof of the theorem. Using (VIII.2.25), (VIII.2.27)
(with w ≡ v), and bearing in mind (VIII.2.19), from (VIII.2.21) we obtain
(∇p,∇ψ) = 0, for all ψ ∈ C∞

0 (Ωρ), which, in turn, by well-known results
of Caccioppoli (1937), Cimmino (1938a, 1938b), and Weyl (1940), implies
that p is harmonic in Ωρ and belongs to C∞(Ωρ). Recalling that p satisfies
(VIII.2.16)–(VIII.2.17), we may use the results of Exercise V.3.6(i) to obtain
the following representation for p̃(x), for all x ∈ Ωr :

Dαp(x) = −
(∫

∂Br

∂p̃

∂n`
n`

)
DαE(x) + χα(x) , for all |α| ≥ 0. (VIII.2.35)

Take α = 0 in this relation. Then, if q ∈ (1, 3/2], t ∈ (1, 3], by (VIII.2.16),
(VIII.2.17) both p and χ0 are summable in Ωr with some exponent s ∈
(3/2, 3], and since E 6∈ Ls(Ωr), this implies that the surface integral in
(VIII.2.35) must vanish, which concludes the proof of the lemma. ut

Remark VIII.2.1 As the reader may have noticed, the proof of the previous
lemma remains unaltered if we take T = 0. �

We are now in a position to prove the following.

Lemma VIII.2.3 Let Ω be locally Lipschitz and let u be a generalized so-
lution to (VIII.0.2), (VIII.0.7) corresponding to f ≡ v∗ ≡ 0. Moreover, de-
note by p the associated pressure field from Lemma VIII.1.1. Then u ≡ 0,
p ≡ p1 + const.

Proof. By assumption, we have

(∇u,∇ψ)−R
(
∂u

∂x1
,ψ

)
−T (e1×x·∇u−e1×u,ψ) = (π,∇·ψ) , (VIII.2.36)

for all ψ ∈ C∞
0 (Ω). By Theorem III.5.1, we obtain that u ∈ D1,2

0 (Ω), while
by Theorem VIII.1.1, it also follows that u, p ∈ C∞(Ω). Employing this latter
property and (VIII.2.36), we deduce that
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∆u + R ∂u

∂x1
+ T (e1 × x · ∇u− e1 × u) = ∇π

∇ · u = 0





in Ω . (VIII.2.37)

Now by Lemma VIII.2.2, we have

π(x) − π∞ = O(|x|−2) , as |x| → ∞, (VIII.2.38)

for some π∞ ∈ R. Since (VIII.2.36) remains unchanged if we replace π with
π−π∞, we will take, without loss, π∞ = 0. Our next objective is, basically, to
replace ψ in (VIII.2.36) with u. In order to reach this goal, we begin to notice
that since D1,2

0 (Ω) ⊂W 1,2(ΩR), for all R > δ(Ωc), one can show, by a simple
density argument, that (VIII.2.36) continues to hold for ψ ∈ W 1,2

0 (ΩR), for
all R > δ(Ωc). We next choose ψ = ψ4,Ru, where ψα,R is the “cut-off”
function determined in Lemma II.6.4. We recall that by that lemma, we have,
in particular,

supp (ψ4,R) ⊂ Ω
R√
2 ,

lim
R→∞

ψ4,R(x) = 1 uniformly pointwise ,

∥∥∥∥
∂ψ4,R

∂x1

∥∥∥∥
3/2

≤ C1 , ‖u |∇ψ4,R| ‖2 ≤ C2|u|
1,2,Ω

R√
2
,

(e1 × x) · ∇ψ4,R(x) = 0 for all x ∈ R3 .

(VIII.2.39)

Thus, replacing ψ4,Ru for ψ in (VIII.2.36), we obtain after a few integrations
by parts (for notational simplicity, we drop the subscript “4”),

0 = (ψR∇u,∇u) + (∇ψR · ∇u,u) +
R
2

(
u2,

∂ψR

∂x1

)

+
T
2

(e1 × x · ∇ψR,u
2) − (π,∇ψR · u)

= (ψR∇u,∇u) + (∇ψR · ∇u,u) +
R
2

(
u2,

∂ψR

∂x1

)
− (π,∇ψR · u) .

From this relation, with the help of (VIII.2.39) and the Schwarz and Hölder
inequalities, we derive

‖
√
ψR∇u‖2

2 ≤ c

(
|u|2

1,2,Ω
R√
2

+ R‖u‖2

6,Ω
R√
2

+ ‖π‖2|u|
1,2,Ω

R√
2

)
, (VIII.2.40)

with c independent of R. From (VIII.2.38) we know that π ∈ L2(Ω), whereas
by Theorem II.7.5, we have u ∈ L6(Ω). Therefore, in view of these properties,
we may let R→ ∞ in (VIII.2.40) to deduce

lim
R→∞

‖
√
ψR∇u‖2 = 0 ,



514 VIII Steady Generalized Oseen Flow in Exterior Domains

which, in turn, by (VIII.2.39)2 and by the Lebesgue dominated convergence
theorem of Lemma II.2.1, shows that ‖∇u‖2 = 0, that is, u ≡ 0 in Ω. The
proof of the theorem is thus completed. ut

From the previous lemma, we at once deduce the following uniqueness
theorem, which constitutes the main accomplishment of this section.

Theorem VIII.2.1 Let Ω be locally Lipschitz and let v be a generalized
solution to (VIII.0.2), (VIII.0.7) corresponding to f ∈ W−1,2

0 (Ω′), Ω′ any
bounded subdomain with Ω′ ⊂ Ω, and to v∗ ∈W 1/2,2(∂Ω). Moreover, denote
by p the associated pressure field from Lemma VIII.1.1. Then, if w is another
generalized solution corresponding to the same data, with associated pressure
field p1, we have v ≡ w, p ≡ p1 + const.

Exercise VIII.2.1 Let v be a generalized solution to (VIII.0.2), (VIII.0.7), and
suppose that f satisfies the assumption of Lemma VIII.2.1. Show that

lim
|x|→∞

v(x) = 0 ,

uniformly pointwise. Hint: Couple the results of Lemma VIII.2.1 with those of The-

orem II.9.1.

Exercise VIII.2.2 Prove properties (VIII.2.30), (VIII.2.31).

VIII.3 The Fundamental Solution to the
Time-Dependent Oseen Problem and Related Properties

As we observed in the Introduction to this chapter, the asymptotic proper-
ties of generalized solutions to (VIII.0.7), (VIII.0.2) will be established by
first proving similar properties for the solutions to an associated initial-value
problem, and then by showing that in the limit as t → ∞, the latter converge
to the former, uniformly in suitable norms.

Actually, as we shall show later on, in order to achieve this goal, it suffices
to investigate the above properties for solutions to the following Oseen initial-
value problem:

∂u

∂t
= ∆u+ R ∂u

∂x1
−∇φ+ f

∇ ·u = 0





in R3 × (0,∞)

u(x, 0) = u0 ,

(VIII.3.1)

where f = f(x, t) and u0 = u0(x) are given vector fields, with u0 solenoidal,
satisfying appropriate assumptions. In turn, the study of the asymptotic prop-
erties (in space and time) of solutions to problem (VIII.3.1) is more conve-
niently done by means of the integral representation of the solutions through
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the fundamental tensor solution of the Oseen system (VIII.3.1)1,2. Such a
solution is well known, and was originally introduced by Oseen (1927, §5).

The objective of this section will thus be to recall some of the relevant
properties of the Oseen fundamental solution, and to establish certain uniform
properties concerning its asymptotic behavior in space and time.

Since the study of all principal properties of this solution will be performed
in great depth in Volume II,1 we shall restrict ourselves to state those we need
here, without detailed proofs, referring the reader to the existing literature for
all the missing details.

Following Oseen (1927, §5), for all R ≥ 0 we introduce tensor and vector
fields, Γ and γ, respectively, defined by 2

Γij(x − y, t − τ ;R) = −δij∆Ψ(|x+ R(t− τ )e1 − y|, t− τ )

+
∂2

∂yi∂yj
Ψ(|x+ R(t − τ )e1 − y|, t− τ )

γj(x− y, t − τ ) =
∂

∂yj
(∆+

∂

∂τ
)Ψ(|x+ R(t− τ )e1 − y|, t− τ ) ,

(VIII.3.2)
where Ψ = Ψ(r, s) is any real function that is defined and smooth for all
r ≥ 0 and all s > 0. By a straightforward calculation, we show that the fields
(VIII.3.2) satisfy the following equations:

∂Γij

∂τ
−R∂Γij

∂y1
+∆Γij −

∂γj

∂yi
= −δij

(
∂

∂τ
+∆

)
∆Ψ ,

∂Γij

∂yi
= 0 ,

(VIII.3.3)

where “∆” operates on the y-variables. The idea is now to choose Ψ in such
a way that

∆Ψ(r, s) = −W (r, s) , (VIII.3.4)

where W = W (r, s) is the three-dimensional Weierstrass kernel, namely, the
fundamental solution to the three-dimensional heat equation:

W =

{
(4π s)−3/2e−

r2

4s , s > 0 ,

0 , s ≤ 0 .
(VIII.3.5)

This choice will then ensure that the right-hand side of (VIII.3.3)1 vanishes
for x, y ∈ R3 and t > τ , and moreover, that when τ → t−, it becomes
“appropriately singular,” in a way that will be clarified later on, in Lemma
VIII.3.1. The requirement (VIII.3.4) means that

1 Actually, in any space dimensions n ≥ 2.
2 The properties that we will state in this section continue to hold also for R < 0.

However, for the application we have in mind, we suppose that R is nonnegative.
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∆Ψ ≡ 1

r

∂2(rΨ)

∂r2
= −(4π s)−3/2e−

r2

4s ,

which gives, after a simple calculation and by fixing the integration constants
suitably,

Ψ(r, s) =
1

4π3/2r s1/2

∫ r

0

e−
ρ2

4s dρ . (VIII.3.6)

Moreover, from (VIII.3.6) it also follows that (Oseen 1927, pp. 40–41)

(
∂

∂s
+∆ξ

)
Ψ(|ξ|, s) = 0 , s > 0 ,

so that from (VIII.3.2) we deduce γj(x− y, t− τ ) = 0 for t > τ .
Collecting all the above information, we then conclude that the fundamen-

tal tensor Γ has the following form, for t > τ :

Γij(x− y, t − τ ;R) = −δij∆Ψ(|x+ R(t− τ )e1 − y|, t− τ )

+
∂2

∂yi∂yj
Ψ(|x+ R(t − τ )e1 − y|, t− τ ) ,

Ψ(r, t− τ ) =
1

4π3/2r

∫ r

0

e−
ρ2

4(t−τ)

(t− τ )1/2
dρ ,

(VIII.3.7)

while γ = 0.
When R = 0, we set, for simplicity, Γ (ξ, s; 0) = Γ (ξ, s), ξ ∈ R3, s > 0.
Clearly, for t > τ , we have

∂Γij

∂τ
−R∂Γij

∂y1
+∆Γij = 0 ,

∂Γij

∂yi
= 0 ,

(VIII.3.8)

with “∆” operating on the y-variables, whereas, taking into account that

∂Γij

∂τ
= −∂Γij

∂t
,
∂Γij

∂yk
= −∂Γij

∂xk
,

∂2Γij

∂yk∂y`
=

∂2Γij

∂xk∂x`
, i, j, k, ` = 1, 2, 3 ,

we have
∂Γij

∂t
−R∂Γij

∂x1
−∆Γij = 0 ,

∂Γij

∂xi
= 0 ,

(VIII.3.9)

where now “∆” operates on the x-variables .

The next result shows the way in which the tensor Γ = Γ (x− y, t− τ ;R)
becomes singular at (x, t) = (y, τ ). For its proof we refer the reader to Oseen
(1927, §53).
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Lemma VIII.3.1 Let A be a bounded, locally Lipschitz domain and let u =
u(x, t) be a solenoidal vector field in C(A × [t − δ, t]), for some δ > 0. Then,
for all R ≥ 0,

lim
τ→t−

∫

A

ui(y, τ )Γij(x−y, t−τ ;R)dy = uj(x, t)−
1

4π

∫

∂A

(xj − yj)

|x− y|3 ui(y, t)Nidσy ,

where N is the unit outer normal at ∂A.

An issue that is of basic importance to our aims is the study of suitable
asymptotic properties in space of the fundamental solution Γ and its spatial
derivatives. In order to reach this goal, we begin to recall the following result,
for whose proof we refer to Oseen (1927, §55, §73) and Solonnikov (1964,
Corollary in §5).

Lemma VIII.3.2 There exists a constant C > 0 such that the following
estimates hold, for all (τ, ξ) ∈ [0,∞)× R3 − {(0, 0)}:

|D2
ξΨ(ξ, τ)| ≤ C

(τ + |ξ|2)3/2
,

|Γ (ξ, τ ;R)| ≤ C

(τ + |ξ + R τ e1|2)3/2
,

|DξΓ (ξ, τ ;R)| ≤ C

(τ + |ξ + R τ e1|2)2
,

|D2
ξΓ (ξ, τ ;R)| ≤ C

(τ + |ξ + R τ e1|2)5/2
.

With this result in hand, we can then prove the next one.

Lemma VIII.3.3 Let

Γ`(ξ;R) =

∫ ∞

0

|D`Γ (ξ, τ ;R)| dτ , ` = 0, 1, 2 ,

and set Γ`(ξ) := Γ`(ξ, 0), ` = 0, 1, 2. The following properties hold:

(i) If R = 0, we have, for all ξ ∈ R3 − {0},

Γ`(ξ) ≤
C

|ξ|`+1
, ` = 0, 1, 2 , (VIII.3.10)

with C = C(`) > 0 .

(ii) If R > 0, let
s(ξ) = |ξ| + ξ1, ξ ∈ R3 , (VIII.3.11)

and 0 < β < 1
2
. Then, for all ξ ∈ R3 − {0},
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Γ0(ξ;R) ≤ 2

|ξ|(1 + 2R s(ξ))
,

Γ1(ξ;R) ≤ C

{
R1/2|ξ|−3/2(1 + 2R s(ξ))−3/2, if |ξ| ≥ β/R,
|ξ|−2, if |ξ| ∈ (0, β/R) ,

Γ2(ξ;R) ≤ C

{
R|ξ|−2(1 + 2R s(ξ))−2, if |ξ| ≥ β/R,
|ξ|−3, if |ξ| ∈ (0, β/R) ,

(VIII.3.12)

where C = C(β).

Proof. We begin by recalling the following noteworthy formulas (see, e.g.,
Gradshteyn & Ryzhik 1980, §§3.241, 3.249, 3.252):

∫ ∞

0

dx

(ax2 + bx+ c)3/2
=

2

(b+ 2
√
ac)

√
c
, if a ≥ 0, b, c > 0 ,

∫ ∞

0

dx

(a x2 + b x+ c)2
=





π

4c
√
ac
, if b = 0, a, c > 0 ,

1

b c
, if a = 0, b, c > 0 ,

∫ ∞

0

dx

(ax2 + bx+ c)5/2
=

4

3

4
√
ac + b

c3/2(
√
ac+ b)2

, if a ≥ 0, b, c > 0 .

(VIII.3.13)

The inequalities in part (i) are an immediate consequence of the estimates
given in Lemma VIII.3.2 and of (VIII.3.13) evaluated for a = 0, b = 1 and
c = |ξ|2. In order to prove part (ii), we notice that in view of the estimates
given in Lemma VIII.3.2, it is enough to show that the integral

I(ξ, θ) ≡
∫ ∞

0

1

(τ + |ξ + τR e1|2)θ
dτ =

∫ ∞

0

1

(R2τ2 + (1 + 2R ξ1)τ + |ξ|2)θ
dτ ,

for θ = 3/2, 2, 5/2, can be increased by the right-hand side of (VIII.3.12)1 if
θ = 3/2, and by that of (VIII.3.12)2 if θ = 2, for the specified values of |ξ|.
To this end, we observe that I(ξ, θ) is convergent for the values of θ we are
considering, provided ξ 6= 0. Now, for θ = 3/2, by a direct calculation that
uses (VIII.3.13)1 with a = R2, b = 1 + 2R ξ1, and c = |ξ|2, we get

I(ξ, 3/2) =
2

|ξ|(1 + 2R s(ξ))
,

for all ξ 6= 0, which proves the first inequality in (VIII.3.12). Consider next
the cases θ = 2, 5/2. For all |ξ| < β/R, we have

τ + |ξ + τR e1|2 ≥ (1 − 2β)τ + |ξ|2 (VIII.3.14)

and therefore by (VIII.3.13)2,3 with a = 0, b = (1 − 2β), and c = |ξ|2,
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I(ξ, θ) ≤
∫ ∞

0

1

((1 − 2β)τ + |ξ|2)θ
dτ =

cθ,β

|ξ|2(θ−1)
for all ξ 6= 0 ,

which proves the second part of the second and third inequalities in (VIII.3.12).
It remains to discuss the case |ξ| ≥ β/R. We consider separately the cases (a)
1 + 2R ξ1 ≥ 0 and (b) 1 + 2R ξ1 < 0. In case (a), we have τ + |ξ + τR e1|2 ≥
R2τ2 + |ξ|2 for all τ ≥ 0, and consequently from (VIII.3.13)2,3 with b = 0,
a = R2, and c = |ξ|2, we have

I(ξ, θ) ≤
∫ ∞

0

1

(R2τ2 + |ξ|2)θ
dτ =

Cθ

R|ξ|2θ−1
for all ξ 6= 0.

We next observe that |ξ| ≥ β/R implies

1 + 2R s(ξ) ≤ 1 + 4R|ξ| ≤ (1 + 4β)R
β

|ξ| ,

from which it follows that

I(ξ, θ) ≤ Cθ,β
Rθ−3/2

(1 + 2R s(ξ))θ−1/2|ξ|θ−1/2
.

In case (b), since

4R2|ξ|2 − (1 + 2R ξ1)
2 = (2R|ξ| − 2R ξ1 − 1)(2R|ξ|+ 2R ξ1 + 1)

= (2R s(ξ) + 1)(2R|ξ| − (2R ξ1 + 1)) > 0,

we obtain

I(ξ, θ) =

∫ ∞

0

dξ

(|ξ|2 + (1 + 2Rx1)τ + R2τ2)θ

=

∫ ∞

0

dξ
[
(Rτ + (1 + 2Rx1)/2R)

2
+
(
4R2|ξ|2 − (1 + 2Rξ1)2

)
/(2R)2

]θ

≤ 1

R

∫ ∞

0

dr
[
r2 + (2R s(ξ) + 1)(2R|ξ| − (2R ξ1 + 1))/(2R)2

]θ

≤ 1

R

∫ ∞

0

dr
[
r2 + (Rs(ξ) + 1)|ξ|/(2R)

]θ

≤ cθ
Rθ−3/2

(1 + 2R s(ξ))θ−1/2|ξ|θ−1/2
.

The proof of the lemma is complete. ut

Remark VIII.3.1 The reader might have recognized that the estimates
proved in Lemma VIII.3.3 are of the same type as those furnished for the
Stokes fundamental solution U(ξ) in (IV.2.3), in the case R = 0, and for



520 VIII Steady Generalized Oseen Flow in Exterior Domains

the (steady-state) Oseen fundamental solution, E(ξ;R/2), in (VII.3.23) and
(VII.3.31), in the case R > 0. These properties–which are at the foundation
of our approach to the study of the asymptotic behavior of weak solutions to
(VIII.0.7), (VIII.0.2)–are not surprising, in that they can be expected from
the fact that for all ξ ∈ R3 − {0},

lim
t→∞

∫ t

0

Γ (ξ, τ)dτ = U(ξ) ,

lim
t→∞

∫ t

0

Γ (ξ, τ ;R)dτ = E(ξ;R/2) ;

see Thomann & Guenther (2006), Deuring, Kračmar, & Nečasová (2009) . �

Exercise VIII.3.1 (Generalization of Lemma VIII.3.3(i)) Let α be a multi-index,
and set

Γα(ξ) =

Z ∞

0

|Dα
Γ (ξ, t; 0)| dt .

Employing the pointwise inequality (Solonnikov 1964; Corollary in §5)

|Dα
ξ Γ (ξ, t; 0)| ≤ C

(t+ |ξ|2)(|α|+3)/2
, |α| = 0, 1, 2, . . . ,

show that

Γα(ξ) ≤ Cα

|ξ||α|+1
, for all ξ ∈ R

3 − {0} .

Exercise VIII.3.2 (Mizumachi, 1984, Lemma 3) Prove the following inequalities.
Let 1 ≤ q1 <

3
2

and 3
2
< q2. Then

Z ∞

0

 Z

R3∩{x2
2+x2

3<1}

(t+ |x+ te1|2)−2q1 dx

! 1
q1

dt <∞,

Z ∞

0

 Z

R3∩{x2
2+x2

3≥1}

(t+ |x+ te1|2)−2q2 dx

! 1
q2

dt <∞ .

Hint: Use polar coordinates with respect to (x2, x3) .

Our next task is to give pointwise estimates for the following convolution
integrals:

K(x) =

∫

R3

Γ1(x− y)

(1 + |y|)2 dy ,

J (x;R) =

∫

R3

Γ1(x− y;R)

(1 + |y|)2(1 + 2R s(y))2
dy , R > 0 .

(VIII.3.15)

For K, we have the following result, of simple proof.
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Lemma VIII.3.4 There exists a constant C1 > 0 such that

K(x) ≤ C1

1 + |x| . (VIII.3.16)

Proof. By Lemma VIII.3.3(i), we have

K(x) ≤ c

∫

R3

1

|x− y|2(1 + |y|)2 dy ,

and so, by Lemma II.9.2, it follows that

K(x) ≤ c|x|−1 , for all x ∈ R3 − {0}. (VIII.3.17)

Furthermore, by the Hölder inequality with exponent q ∈ (3/2, 3), we obtain

K(x) ≤ c1

∫

|x−y|≤1

|x− y|−2dy

+c2

(∫

R3

(1 + |x− y|)−2q′
dy

)1/q′ (∫

R3

(1 + |y|)−2qdy

)1/q

≤ c3 .
(VIII.3.18)

The proof of (VIII.3.16) then follows from (VIII.3.17) and (VIII.3.18). The
lemma is completely proved.

ut

In order to evaluate the other convolution in (VIII.3.15), we need the
following lemma, which is a particular case of a more general result due to
Farwig (1992b, Lemma 3.1), and to which we refer the reader for the proof
(see also Kračmar, Novotný, & Pokorný 2001, Theorem 3.2).

Lemma VIII.3.5 Let

G(x) =

∫

R3

η1(y)η2(x− y) dy ,

where η1 satisfies at least one of the conditions

η1(y) ≤
{
c1(1 + |y|)−3/2(1 + 2s(y))−3/2 if |y| ≥ c0 ,

c2|y|−2 if |y| ≤ c0 ,
(A)

η1(y) ≤ c3(1 + |y|)−3/2(1 + 2s(y))−3/2 , for all y ∈ R3 , (B)

whereas η2 satisfies

η2(y) ≤ c4(1 + |y|)−2(1 + 2s(y))−2 , for all y ∈ R3 ,
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for some (positive) constants ci, i = 0, . . . , 4. In case (B), this assumption may
be weakened to the following one:

η2(y) ≤
{
c5(1 + |y|)−2(1 + 2s(y))−2 if |y| ≥ c6 ,

c7|y|−2 if |y| ≤ c6 ,

for some c5, c6, c7 > 0. Then, there is C > 0 such that 3

G(x) ≤ C

(1 + |x|)(1 + 2s(x))
.

The previous lemma allows us to prove the following one.

Lemma VIII.3.6 Let K = max{1,R}. There exists a constant C > 0, de-
pending only on β, such that

J (x;R) ≤ K C

(1 + |x|)(1 + 2Rs(x)) . (VIII.3.19)

Proof. The only difficulty of the proof consists in a careful evaluation of the
dependence on the Reynolds number R of the constant entering the numerator
of the fraction in the inequality (VIII.3.19). For a given x ∈ R3, we consider
the following partition of R3:

R3 = {y ∈ R3 : |x− y| ≤ β/R} ∪ {y ∈ R3 : |x− y| > β/R} .

From (VIII.3.12) and (VIII.3.15)2, we thus have, accordingly,

J (x;R) ≤ C(β)
(∫

R|x−y|≤β

|x− y|−2(1 + |y|)−2(1 + 2R s(y))−2dy

+R 1
2

∫

R|x−y|>β

[|x− y|(1 + 2R s(x− y))]−
3
2 (1 + |y|)−2(1 + 2R s(y))−2dy

)

≡ C(β) (J1(x) + J2(x)) .
(VIII.3.20)

We begin by estimating the function J2(x). With the substitution ξ = Ry,
we obtain

J2(x) =
1

R

∫

|Rx−ξ|>β

[|Rx−ξ|(1+2s(Rx−ξ))]−3
2 (1+|ξ|/R)−2(1+2s(ξ))−2dξ ,

(VIII.3.21)

3 Actually, as shown by Farwig (1992b), under the given assumption, the function
G possesses a better decay rate than that stated here. However, this improvement
will not be necessary to our purposes. For related inequalities, see also Lemma
XI.6.2
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and so

J2(x) =
1

R

∫

{|Rx−ξ|>β}∩{|ξ|<1}
j(x, y)dy +

1

R

∫

{|Rx−ξ|>β}∩{|ξ|≥1}
j(x, y)dy

≡ J (1)
2 (x) + J (2)

2 (x) ,
(VIII.3.22)

where j(x, y) denotes the integrand function in (VIII.3.21). Observing that

ξ ∈ {ζ ∈ R3 : |Rx− ζ| ≥ β} =⇒ 1

|Rx− ξ| ≥
4

1 + |Rx− ξ| , (VIII.3.23)

we obtain

J (1)
2 (x) ≤ R

∫

|ξ|<1

[(1 + |Rx− ξ|)(1 + 2s(Rx− ξ))]−
3
2 |ξ|−2(1 + 2s(ξ))−2dξ

= R
∫

R3

[(1 + |Rx− ξ|)(1 + 2s(Rx− ξ))]−
3
2 η(ξ)dξ ,

where

η(z) =

{
|z|−2 if |z| < 1 ,

0 if |z| ≥ 1 .
(VIII.3.24)

From Lemma VIII.3.5 we thus obtain

J (1)
2 (x) ≤ c

R
(1 + R|x|)(1 + 2R s(x))

≤ cK

(1 + |x|)(1 + 2R s(x))
, (VIII.3.25)

where we have used the elementary inequality

t

1 + t a
≤ max{1, t}

1 + a
, t, a ≥ 0 . (VIII.3.26)

In a similar fashion, again by (VIII.3.23) and by Lemma VIII.3.5,

J (2)
2 (x) ≤ R

∫

|ξ|≥1

[(1+|Rx− ξ|)(1+ 2s(Rx − ξ))]−
3
2 [(1 + |ξ|)(1 + 2s(ξ))]−2dξ

≤ R
∫

R3

[(1 + |Rx− ξ|)(1 + 2s(Rx− ξ))]−
3
2 [(1 + |ξ|)(1 + 2s(ξ))]−2dξ

≤ cK

(1 + |x|)(1 + 2R s(x))
.

From this latter relation and from (VIII.3.21)–(VIII.3.25), we conclude that

J2(x) ≤
cK

(1 + |x|)(1 + 2R s(x))
. (VIII.3.27)

In order to estimate J1(x) we distinguish the following cases: (a) |x| ≤ β/R,
and (b) |x| > β/R. In case (a), from the obvious inequality
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1

1 + 4β
≤ 1

1 + 2R s(x)
≤ 1 for all x ∈ Bβ/R ,

and from Lemma II.9.2 and (VIII.3.18), we obtain

J1(x) ≤
∫

R3

|x− y|−2(1 + |y|)−2dy ≤ c1
1 + |x|

≤ c2(β)

(1 + |x|)(1 + 2R s(x))
, for |x| ≤ β/R .

(VIII.3.28)

We next assume |x| > β/R. From (VIII.3.20), we have

J1(x) ≤ C(β)
( ∫

R|x−y|≤ β
2

|x− y|−2(1 + |y|)−2(1 + 2R s(y))−2dy

+

∫

β
2 <R|x−y|≤β

|x− y|−2(1 + |y|)−2(1 + 2R s(y))−2dy
)

≡ C(β) (J3(x) + J4(x)) .
(VIII.3.29)

With the change of variable ξ = Ry, we obtain

J3(x) =
1

R

∫

|Rx−ξ|≤ β
2

|Rx− ξ|−2(1 + |ξ|/R)−2(1 + 2 s(ξ))−2dξ

≤ R
∫

|Rx−ξ|≤ β
2

|Rx− ξ|−2|ξ|−2(1 + 2 s(ξ))−2dξ .

Since R|x| > β, we have, by the triangle inequality,

|ξ| ≥ R |x| − |Rx− ξ| > β − β/2 = β/2 ,

for all ξ such that |Rx− ξ| ≤ β/2. Therefore,

J3(x) ≤ c(β)R
∫

|Rx−ξ|≤ β
2

|Rx− ξ|−2(1 + |ξ|)−2(1 + 2 s(ξ))−2dξ

= c(β)R
∫

R3

η(ξ)(1 + |Rx− ξ|)−2(1 + 2 s(Rx− ξ))−2dξ ,

where the function η is defined in (VIII.3.24). As a consequence, from Lemma
VIII.3.5 and (VIII.3.26) we deduce

J3(x) ≤
cK

(1 + |x|)(1 + 2R s(x))
. (VIII.3.30)

Concerning J4(x), we obtain

J4(x) =
1

R

∫

β
2 <|Rx−ξ|≤β

|Rx− ξ|−2(1 + |ξ|/R)−2(1 + 2 s(ξ))−2dξ

≤ R
∫

β
2 <|Rx−ξ|≤β

|Rx− ξ|−2|ξ|−2(1 + 2 s(ξ))−2dξ ,

(VIII.3.31)
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which implies

J4(x) ≤ R
∫

{ β
2 <|Rx−ξ|≤β}∩{|ξ|<1}

j̃(x, ξ)dξ

+R
∫

{ β
2 <|Rx−ξ|≤β}∩{|ξ|≥1}

j̃(x, ξ)dξ

≡ J (1)
4 (x) + J (2)

4 (x) ,

(VIII.3.32)

where j̃ = j̃(x, ξ) is the integrand function in the last integral in (VIII.3.31).
We observe that obviously,

1

|Rx− ξ|2 ≤ c(β)

(1 + |Rx− ξ|)3/2(1 + 2s(Rx − ξ))3/2
,

for all ξ such that β
2
< |Rx− ξ| ≤ β .

(VIII.3.33)

Consequently,

J (1)
4 (x) ≤ R

∫

R3

[(1 + |Rx− ξ|)(1 + 2s(Rx− ξ))]−3/2η(ξ)dξ ,

where η is defined in (VIII.3.24). So, from Lemma VIII.3.5 and (VIII.3.26) we
obtain

J (1)
4 (x) ≤ cK

(1 + |x|)(1 + 2R s(x))
. (VIII.3.34)

Likewise, using (VIII.3.33), we obtain

J (2)
4 (x) ≤ R

∫

R3

[(1+ |Rx− ξ|)(1+2s(Rx− ξ))]−3/2[(1+ |ξ|)(1+2 s(ξ))]−2dξ ,

and again by Lemma VIII.3.5 and (VIII.3.26), we obtain

J (2)
4 (x) ≤ cK

(1 + |x|)(1 + 2R s(x))
. (VIII.3.35)

By collecting (VIII.3.29)–(VIII.3.32), and (VIII.3.34), (VIII.3.35), we deduce

J1(x) ≤
cK

(1 + |x|)(1 + 2R s(x))
, |x| > β/R . (VIII.3.36)

Inequality (VIII.3.19) follows from (VIII.3.20), (VIII.3.27), (VIII.3.29), and
(VIII.3.36), and the proof of the lemma is complete.

ut
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VIII.4 On the Unique Solvability of the Oseen
Initial-Value Problem

The objective of this section is to study existence and uniqueness of solutions
to the Cauchy problem (VIII.3.1), under suitable assumptions on the data
f and u0. Since the problem is linear, we can split it into the following two
separate problems:

∂w

∂t
= ∆w+ R ∂w

∂x1
−∇φ+ f

∇ ·w = 0





in R3 × (0, T )

w(x, 0) = 0 ,

(VIII.4.1)

and
∂v

∂t
= ∆v + R ∂v

∂x1

∇ · v = 0





in R3 × (0, T )

v(x, 0) = u0 ,

(VIII.4.2)

where T is an arbitrary positive number.

It is useful to introduce some notation. If A is a domain in R3, and t ∈
(0,∞], we define

At = A × (0, t) .

Moreover, for q ∈ (1,∞), we set

Lq(At) =
{
w : At → R3, and φ : At → R :

w ,
∂w

∂t
, ∇w , D2w ∈ Lq(At) , φ ∈ Lq

loc(At) , ∇φ ∈ Lq(At)
}
.

We also set

‖u‖(q,r),A,t ≡





(∫ t

0

‖u(t)‖r
q,Adt

)1/r

if r ∈ [1,∞), q ∈ [1,∞] ,

ess sup
t∈[0,t]

‖u(t)‖q,A if r = ∞, q ∈ [1,∞] ,

and define

Lr,q(At) = {u : At → R ,with ‖u‖(q,r),A,t <∞} .

As is customary, whenever confusion does not arise, we shall omit the subscript
A. Clearly, Lq,q(At) = Lq(At).
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Exercise VIII.4.1 Show that if w ∈ Lq(At), then, possibly redefined on a set of
zero measure in (0, t), w is continuous at all t ∈ (0, t) in the norm ‖·‖q. Hint: Mollify
w in t, and then use the inequality

‖w(t1) −w(t2)‖q ≤ q

Z t2

t1

‖w(s) −w(t1)‖q−1
q

‚‚‚‚
∂w

∂s

‚‚‚‚
q

ds .

We now investigate the solvability of problem (VIII.4.1).

Theorem VIII.4.1 Let f ∈ Lq(R3
T ), 1 < q < ∞. Then there exists a pair

(w, φ) ∈ Lq(R3
T ) satisfying (VIII.4.1)1,2 a.e. in R3

T . If q ∈ (1, 3), then φ is also
in Lq,3q/(3−q)(R3

T ). Furthermore, w obeys (VIII.4.1)3 in the following sense:

lim
t→0+

‖w(t)‖q = 0 . (VIII.4.3)

In addition, there is C1 = C1(q) > 0 such that

∫

R3
T

(
|w(t)|q2,q + ‖∇φ(t)‖q

q

)
dt ≤ C1

∫

R3
T

‖f(t)‖q
qdt , (VIII.4.4)

so that if R = 0, we also obtain

∫

R3
T

∥∥∥∥
∂w

∂t

∥∥∥∥
q

q

≤ 3q−1C1

∫

R3
T

‖f(t)‖q
qdt . (VIII.4.5)

In addition, if q ∈ (1, 3), we have

∫

R3
T

‖φ(t)‖q
3q/(3−q)dt ≤ C2

∫

R3
T

‖f(t)‖q
qdt , (VIII.4.6)

for some C2 = C2(q) > 0. Finally, let (w1, φ1) ∈ Lr(R3
T ), for some r ∈ (1,∞),

be another solution corresponding to the same f . Then w = w1 and φ =
φ1 + h(t), a.e. in R3

T , where h is a function of time only.1

Proof. It suffices to prove the result when R = 0, in that the case R 6= 0
follows by the change of variable x → x + R te1. To show existence, we
observe that we need to consider only the case f ∈ C∞

0 (R3
T ), since, as the

reader may wish to show, the general case will then be a consequence of an
elementary density argument. With all the above in mind, we set w and φ
identically zero for t < 0, and define for a fixed λ > 0,

u(x, t) = w(x, t) e−λt , Φ(x, t) = φ(x, t) e−λt , F (x, t) = f(x, t) e−λt ,
(VIII.4.7)

so that u, Φ, and F satisfy the following problem

1 A more general uniqueness theorem will be given in Lemma VIII.4.2.
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∂u

∂t
= ∆u− λu −∇Φ+ F

∇ · u = 0



 in R3 × (0, T )

u(x, 0) = 0 .

(VIII.4.8)

A solution to (VIII.4.8) will be found by the Fourier transform method. Thus,
letting

u(x, t) =
1

(2π)2

∫

R4

eix ·ξ+it ξ0U(ξ, ξ0)dξdξ0 ,

Φ(x, t) =
1

(2π)2

∫

R4

eix ·ξ+it ξ0Ψ(ξ, ξ0)dξdξ0 ,

F (x, t) =
1

(2π)2

∫

R4

eix ·ξ+it ξ0G(ξ, ξ0)dξdξ0 ,

(VIII.4.9)

and replacing these expressions back in (VIII.4.8)1,2, we obtain

(i ξ0 + ξ2 + λ)Uj = −i ξjΨ +Gj , j = 1, 2, 3 ,

ξkUk = 0 .

Solving these equations for U and Ψ furnishes

Uj =
δijξ

2 − ξjξk

(i ξ0 + ξ2 + λ)ξ2
Gj ≡ MjkGk , j = 1, 2, 3 ,

Ψ = −i ξk
ξ2
Gk .

(VIII.4.10)

It is easy to check that for any fixed j, k, l, m = 1, 2, 3, the functions
Mjk, ξ0Mjk, ξlMjk, satisfy the assumptions of Lizorkin’s theorem, Theo-
rem VII.4.1 with β = 0 and M = M(q, λ), while i ξj/ξ

2and ξlξmMjk satisfy
the same assumption, but with a constant M independent of λ. Consequently,
on the one hand, (u, Φ) is in the class Lq(At), for all q ∈ (1,∞), and on the
other hand, we can find a constant C1 = C1(q) > 0 such that u and Φ satisfy
inequality (VIII.4.4) with f ≡ F , which in turn, recalling (VIII.4.7), implies

∫

R3
T

(
|w(t)|q2,q + ‖∇φ(t)‖q

q

)
dt ≤ C1 e

qλT

∫

R3
T

‖f(t)‖q
qdt . (VIII.4.11)

Also, if q ∈ (1, 3), then it is easy to check that the multiplier i ξj/ξ
2 satisfies

Theorem VII.4.1 with β = 1/3 and M independent of λ. Therefore, by that
theorem, Φ(t) ∈ L3q/(3−q)(R3), for a.a. t ∈ [0, T ], and

‖Φ‖3q/(3−q) ≤ C2‖F ‖q ,

with C2 = C2(q) > 0, namely, again by (VIII.4.7),

‖φ‖3q/(3−q) ≤ C2e
λT ‖f‖q . (VIII.4.12)
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Since λ is an arbitrary positive number and C1, C2 do not depend on it, from
(VIII.4.11) and (VIII.4.12) we recover (VIII.4.4) and (VIII.4.6). Moreover,
recalling that G ∈ S(R4) (see Section VII.4), we prove immediately that u, Φ
are smooth functions that satisfy (VIII.4.8)1,2. Summarizing all the above, we
thus obtain the existence of a smooth solution (w, φ) to (VIII.4.1)1,2 in the
class Lq(AT ), with φ ∈ Lq,3q/(3−q)(R3

T ) if q ∈ (1, 3), and satisfying (VIII.4.4),
and (VIII.4.6) as well, if q ∈ (1, 3). We shall next analyze the way in which
u (and hence w) tends to zero as t → 0+. To this end, we observe that from
(VIII.4.9) and (VIII.4.10), we have

uj(x, t) =
1

(2π)2

∫

R4

eix·ξ+it ξ0 δijξ
2 − ξjξk

(i ξ0 + ξ2 + λ)ξ2
Gj(ξ, ξ0)dξdξ0 . (VIII.4.13)

Now, in view of the assumptions on F , it follows that G is analytic in ξ0.
Therefore, by a simple application of the Cauchy integral theorem (MacRobert
1966, §27), we can show that the value of the integral

∫ ∞

−∞
eit ξ0 Gj(ξ, ξ0)

(i ξ0 + ξ2 + λ)
dξ0 , t ∈ R3 ,

does not change (and therefore the value of the integral in (VIII.4.13) does
not change) if we perform the integration on a line {α0} in the complex plane
parallel to {ξ0}, provided i ξ0 + ξ2 + λ does not vanish along points of {α0}.
We thus choose α0 = ξ0 + i δ, δ > 0, so that (VIII.4.13) furnishes

uj(x, t) =
eδ t

(2π)2

∫

R4

eix·ξ+it α0
(δijξ

2 − ξjξk)Gj(ξ, α0 − i δ)

(i α0 + δ + ξ2 + λ)ξ2
dξdα0 .

(VIII.4.14)
Moreover, we obtain

G(ξ, α0 − i δ) =
1

(2π)2

∫

R4

F (x, t)e−δ t e−ix·ξ−it α0dx dt ,

which, by Parseval’s theorem, furnishes

∫

R4

|G(ξ, α0 − i δ)|2dξ dα0 =

∫ T

0

dt

∫

R3

|F (x, t)|2e−δtdx ,

where we have also employed the fact that F is of compact support in (0, T ).
Using this information in (VIII.4.14) along with the Schwarz inequality, we
deduce

|u(x, t)| ≤ c1 e
δ t

(∫

R4

dζ dξ

ζ2 + ξ4 + δ2 + λ2

)1
2

(∫ T

0

∫

R3

|F (x, t)|2e−δt

)1
2

≤ c2 e
δ t,

with c2 independent of δ. If we take t < 0 in this latter relation and let δ → ∞,
we conclude that u(x, t) = 0 for all t < 0 and x ∈ R3, and so, by the continuity
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of u, u(x, 0) = w(x, 0) = 0, for all x ∈ R3. Once this property is established,
we notice that for all t ∈ (0, T ],

‖w(t)‖q
q =

∫ t

0

d

ds
‖w(s)‖q

qds ≤ q

(∫ t

0

‖w(s)‖q
qds

) 1
q′
(∫ t

0

∥∥∥∥
∂w

∂s

∥∥∥∥
q

q

ds

) 1
q

,

which, in turn, together with (VIII.4.4), proves (VIII.4.3). It remains to show
uniqueness. This amounts to proving that the problem

∂w

∂t
= ∆w −∇φ

∇ ·w = 0



 in R3 × (0, T )

w(x, 0) = 0 ,

(VIII.4.15)

with (w, φ) ≡ (w1 +w2, φ1 + φ2), (wi, φi) ∈ Lqi(R3
T ), for some qi ∈ (1,∞),

i = 1, 2, has only the solution w ≡ ∇φ ≡ 0. In order to prove the above, we
begin by observing the following two obvious facts: (a) The method of proof
just described leads to the existence of a solution (v, ζ) ∈ Lq(R3

T ) to problem
(VIII.4.1) with R replaced by −R; (b) if f ∈ C∞

0 (R3
T ), then (v, ζ) is in the

class Lq(R3
T ) for all q ∈ (1,∞). With these two remarks in hand, we set

V (x, t) = v(x, T − t) , Z(x, t) = ζ(x, T − t) , H = f(x, T − t) ,

with arbitrary f ∈ C∞
0 (R3

T ). Then the fields V , Z, andH satisfy the following
problem:

∂V

∂t
+∆V = ∇Z −H

∇ · V = 0



 in R3 × (0, T )

V (x, T ) = 0 ,

(VIII.4.16)

and moreover,

V ,
∂V

∂t
, ∇V , D2V ∈ Lq(R3

T ) , Z ∈ Lq
loc(R

3 × [0, T ]) , ∇Z ∈ Lq(R3
T )

for all q ∈ (1,∞) .
(VIII.4.17)

We next multiply (VIII.4.15)1 by V and integrate by parts over BR × [0, T ].
Taking into account the properties (VIII.4.16), (VIII.4.17) of V , the assump-
tion on w, φ, and Exercise II.4.3, we deduce
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∫ T

0

∫

BR

w(x, t) ·H(x, t)dx dt

=
2∑

i=1

∫ T

0

∫

∂BR

(∂wi

∂n
· V −wi ·

∂V

∂n
+ φiV · n− Zwi · n

)
dσ dt

=

2∑

i=1

∫

∂BR

∫ T

0

(∂wi

∂n
· V −wi ·

∂V

∂n
+ φiV · n− Zwi · n

)
dt dσ

≡ I1(R) + I2(R) ,
(VIII.4.18)

where n is the unit outer normal to ∂BR. By choosing q = qi/(qi − 1) in Ii,
i = 1, 2, it is now readily seen that

I1 + I2 ∈ L1(1,∞) ,

and consequently, that there exists at least a sequence {Rm}, with Rm → ∞
as m→ ∞, such that

lim
m→∞

I1(Rm) + I2(Rm) = 0 .

Plugging this information back into (VIII.4.18), and recalling the definition
of H, we deduce

∫ T

0

∫

BR

w(x, t) · f(x, T − t)dx dt = 0 , for all f ∈ C∞
0 (R3

T ) ,

which shows that w(x, t) = 0 a.e. in R3
T . This, in turn, with the help of

(VIII.4.15), implies ∇φ(x, t) = 0 a.e. in R3
T , and the proof of uniqueness is

complete.
ut

The velocity field corresponding to the solution determined in the previous
theorem admits a simple representation in terms of the Oseen fundamental so-
lution, under suitable conditions on f . To this end, we introduce the following
lemma.

Lemma VIII.4.1 Let A be a bounded, locally Lipschitz domain of R3, and
let ui, pi, i = 1, 2, be vector and scalar fields, respectively, with ui, i = 1, 2,
solenoidal, and belonging to the class Lqi(At), q1 = q, q2 = q′. Then the
following Green’s identity holds, for all 0 < t1 ≤ t2 < t:
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∫ t2

t1

∫

A

[
u1 · (

∂u2

∂τ
+∆u2 −R∂u2

∂x1
−∇p2)

−u2 · (−
∂u1

∂τ
+∆u1 + R∂u1

∂x1
−∇p1)

]
dx dτ

=

∫ t2

t1

∫

∂A

[
(u1 · T (u2, p2) − u2 · T (u1, p1) + R(u1 ·u2)e1

]
·N dσdτ

+

∫

A

u1 · u2

∣∣∣∣
τ=t2

τ=t1

,

where N is the unit outer normal to ∂A, and, we recall, T is the Cauchy
stress tensor defined in (IV.8.6), (IV.8.7).

Proof. The proof is at once achieved by integration by parts, once we take
into account Lemma II.4.1, Exercise II.4.3, (IV.8.9), Exercise VIII.4.1, and
the identity ∇ · T (u, p) = ∆u−∇p, valid for solenoidal fields u. ut

We can now prove the following result.

Theorem VIII.4.2 Suppose that

f ∈ Lq(R3
T ) , 1 < q <∞ ,

and let w, φ be the solution to (VIII.4.1) in the class Lq(R3
T ), corresponding

to f and satisfying (VIII.4.3). Then, for a.a. (x, t) ∈ R3
T , we have the following

volume potential representation for w

w(x, t) =

∫ t

0

∫

R3

Γ (x− y, t − τ ;R) · f(y, τ ) dy dτ . (VIII.4.19)

Proof. Let {fk} be a sequence of functions from C∞
0 (R3

T ) such that

lim
k→∞

‖fk − f‖(r,q),T = 0 .2 (VIII.4.20)

We denote by {(wk, φk)} the sequence of solutions corresponding to f k con-
structed in Theorem VIII.4.1. By the uniqueness properties, the following
facts are at once established:

(a) (wk, φk) ∈ Lq(R3
T ) for all q ∈ (1,∞) , all k ∈ N ;

(b) lim
k→∞

∫

R3
T

‖wk(t) −w(t)‖q
qdt = 0 .

2 The functions fk can be easily constructed by multiplying f by a “cut-off” func-
tion that is 1 in BRk and 0 in B2Rk , and then mollifying the obtained function
with parameter ε = 1/Rk.
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Moreover, since wk is in Lq1 (R3) ∩D1,q2(R3) for some q1 > 1 and q2 > 3 for
a.a. t ∈ [0, T ], from Theorem II.9.1 we obtain, for all k ∈ N,

(c) wk(x, t),→ 0 uniformly, as |x| → ∞, for a.a. t ∈ [0, T ].

Finally, property (a), together with the embedding Theorem II.3.2, ensures
that

(d) wk(x, t) ∈ C(R3
T ) , all k ∈ N .

Set
Γ i = (Γi1, Γi2, Γi3) ,

for fixed i ∈ {1, 2, 3}. We then use Green’s identity in Lemma VIII.4.1 with
A = BR(x), t1 = η, t2 = t− ε < T , ε, η > 0, u1 = wk, and u2 = Γ i. Taking
into account that Γ satisfies (VIII.3.8) for all t > τ , and that wk satisfies
(VIII.4.1) with f ≡ fk, we deduce3

∫ t−ε

η

∫

BR(x)

Γ i(x− y, t − τ ) · fk(y, τ ) dy dτ

=

∫ t−ε

η

∫

∂BR(x)

[
wk(y, τ ) · T (Γ i, 0)(x− y, t− τ )

−Γ i(x− y, t − τ ) · T (wk, φk)(y, τ )

+R(wk(y, τ ) · Γ i(x− y, t − τ ))e1

]
·N dσydτ

+

∫

BR(x)

wk(y, τ ) · Γ i(x− y, t − τ )

∣∣∣∣∣

τ=t−ε

τ=η

.

We now let η, ε → 0 in this relation. In view of property (d) above, Lemma
VIII.3.1, and (VIII.4.3), we obtain for i = 1, 2, 3,

wki(x, t) =

∫ t

0

∫

BR(x)

Γ i(x− y, t − τ ) · fk(y, τ ) dy dτ

+
1

4π

∫

∂BR(x)

xi − yi

|x− y|3wk(y, t) ·N(y)dσy

+

∫ t

0

∫

∂BR(x)

[
wk(y, t− τ ) · T (Γ i, 0)(x− y, τ )

−Γ i(x− y, τ ) · T (wk, φk)(y, t − τ )

+R(wk(y, τ ) · Γ i(x− y, t − τ ))e1

]
·N dσydτ .

(VIII.4.21)

3 In order to simplify the notation, in the rest of the proof we omit the dependence
of Γ on R.
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We next pass to the limit as R → ∞ in this latter relation. Clearly, since fk

is of compact support,

lim
R→∞

∫ t

0

∫

BR(x)

Γ i(x−y, t− τ ) ·fk(y, τ ) dy =

∫ t

0

∫

R3

Γ i(x−y, t− τ ) ·fk(y, τ ) dy .

(VIII.4.22)
Moreover, in view of the property for wk mentioned in (c) above,

lim
R→∞

1

4π

∫

∂BR(x)

x− y
|x− y|3wk(y, t) ·N(y)dσy = 0 , for a.a. t ∈ [0, T ].

(VIII.4.23)
Also, from Lemma VIII.3.2 we obtain, for r = |x − y| sufficiently large and
τ ∈ [0, T ]

|Γ (r, τ )| = O(r−3) , |∇Γ (r, τ )| = O(r−4) .

Thus, denoting by IR(t) the last integral on the right-hand side of (VIII.4.21),
we infer

IR(t) ≤ c

∫ t

0

[
R−1

∫

S2

|wk(y, t − τ )|dσy

+R−1

∫

S2

(|∇wk(y, t− τ )|+ |φk(y, t− τ )|
)
dσy

]
dτ

≤ c1
R

∫ t

0

[
‖wk(t − τ )‖q,S2 + ‖∇wk(t− τ )‖q,S2 + ‖φk(t− τ )‖q,S2

]
dτ .

(VIII.4.24)
We take q < 3 in (VIII.4.24) (this is allowed by property (a) mentioned
previously) and use Lemma II.6.3. Consequently, by possibly modifying φk by
the addition of a function of time only, from (VIII.4.24) it follows that for all
sufficiently large R,

IR(t) ≤ c2R
−3/q

∫ t

0

(‖∇wk(s)‖1,q + ‖∇φk(s)‖q) ds

≤ c3R
−3/q

(∫ T

0

(
‖∇wk(s)‖q

1,q + ‖∇φk(s)‖q
q

)
ds

) 1
q

,

where c3 = c3(T ). From this inequality and from (VIII.4.24) we obtain

lim
R→∞

IR(t) = 0 , for all t ∈ [0, T ] , (VIII.4.25)

and so, collecting (VIII.4.21)–(VIII.4.25), we may conclude that

wki(x, t) =

∫ t

0

∫

R3

Γ i(y, τ ) · fk(x− y, t − τ ) dy dτ . (VIII.4.26)

We next observe that, by property (b) and Lemma II.2.2, we have
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lim
k→∞

wk(x, t) = w(x, t) for a.a. (x, t) ∈ R3
T . (VIII.4.27)

Furthermore, from Lemma VIII.3.2, we have, for all r ∈ (1,∞),

‖Γ (t)‖σ ≤ c4

∫

R3

dy

(t+ |y|2)3r/2
= c5t

3
2 (1− 1

r ) . (VIII.4.28)

We also set

V [g](x, t) :=

∫ t

0

∫

R3

Γ i(y, τ ) · g(x − y, t − τ ) dy dτ .

Let B ⊂ R3 be an arbitrary ball and s ∈ (1, q). Taking into account
(VIII.4.26), with the help of the Minkowski inequality we obtain

‖w − V [f]‖s,BT ≤ ‖w−wk‖s,BT + ‖V [fk − f ]‖s,BT . (VIII.4.29)

In view of (VIII.4.27), we have (along a subsequence, at least)

lim
k→∞

‖wk −w‖s,BT . (VIII.4.30)

We shall next prove the inequality

‖V [fk − f ]‖s,BT ≤ c ‖fk − f‖q,R3
T
, (VIII.4.31)

so that from (VIII.4.20) and (VIII.4.29)–(VIII.4.31), by the arbitrariness of B
we deduce w = V [f ] a.e. in RT , which proves the theorem. In order to prove
(VIII.4.31), we notice that by the Young inequality (II.11.2) and (VIII.4.28),
it follows that

‖V [fk − f ](t)‖s,B ≤ c6

∫ T

0

(t− τ )
3
2 ( 1

q− 1
s )‖fk − f‖q,R3dτ .

Since for any given q ∈ (1,∞) we can find s ∈ (1, q) such that (3/2)(1/s −
1/q) ≤ (1 − 1/q), from Theorem II.11.2 we deduce that the map

t ∈ (0, T ) →
∫ T

0

(t− τ )
3
2 (

1
q− 1

s )‖fk − f‖q,R3dτ

is bounded from Ls(0, T ) into itself, and, consequently, since s < q, from
Ls(0, T ) into Lq(0, T ). This shows the validity of (VIII.4.31), and the theorem
is thus proved.

ut

We now turn to the unique solvability of problem (VIII.4.2). In this respect,
we begin by proving the following general uniqueness result.
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Lemma VIII.4.2 Suppose u, φ are such that

∂u

∂t
, D2u , φ , ∇φ ∈ Ls

loc((0, T ] × R3) , for some s ∈ (1,∞) ,

and satisfy a.e. the system

∂u

∂t
= ∆u+ R ∂u

∂x1
+ ∇φ

∇ · u = 0





in R3 × (0, T ) (VIII.4.32)

along with the initial condition

lim
t→0+

‖u(t)‖r,Bρ = 0 , for all ρ > 0 and some r ∈ (1,∞) . (VIII.4.33)

Then, if

u =

N∑

i=1

ui , ui ∈ Lqi (RT ) , for some qi ∈ (1,∞) , i = 1, . . . , N ,

it follows that u = 0 and ∇φ = 0 a.e. in R3
T .

Proof. For simplicity, we consider the case N = 2, the general case being
treated in an entirely similar way. Let ψR = ψR(x) be a “cut-off” function
that is 1 for |x| < R, is 0 for |x| > 2R, and satisfies |DαψR| ≤ M R−|α|,
|α| = 1, 2, for some M independent of R. Moreover, let V , Z be the solution
to (VIII.4.16), (VIII.4.17), and denote by w = w(x, t) a vector field satisfying
the following properties for a.a. t ∈ [0, T ]:

∇ ·w = −∇ψR · V (x, t) in BR,2R ,

w(t) ∈W 3,q
0 (BR,2R) ,

∂w

∂t
∈W 1,q

0 (BR,2R) ,

‖∇w(t)‖q,BR,2R ≤ C1 (‖∇ψR · V (t)‖q,BR,2R ,

‖D2w(t)‖q,BR,2R ≤ C2 (‖∇ψR · V (t)‖q,BR,2R + ‖∇(∇ψR · V (t))‖q,BR,2R) ,
∥∥∥∥∇
(
∂w

∂t

)∥∥∥∥
q

≤ C3

∥∥∥∥∇ψR · ∂V (t)

∂t

∥∥∥∥
q,BR,2R

.

(VIII.4.34)
Obviously, f ≡ −∇ψR ·V (x, t) belongs to W 2,q

0 (BR,2R), while ∂f
∂t

∈ Lq(BR,2r),
for a.a. t ∈ [0, T ]. Furthermore, taking into account that ψR(x) = 0 for |x| =
2R, and that ∇ · V = 0 in R3, we have

∫

BR,2R

f = −
∫

BR,2R

∇ · (ψRV ) =
1

R

∫

∂BR

V · x = 0 .

Thus, from Exercise III.3.7 and from the fact that V is in the class (VIII.4.17),
we deduce the existence of a field w satisfying all the properties listed in
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(VIII.4.34), for all q ∈ (1,∞). Furthermore, again by Exercise III.3.7 and by
the properties of V , we find that w(t) is continuous, in the Lq-norm, for all
t ≥ 0, and in particular, w(·, T ) = 0. We next observe that since BR,2R is
homothetic to B1,2 via the transformation Φi(x) = xi/R, i = 1, 2, 3, from
Lemma III.3.3 we obtain that C1 and C3 are independent of R. By a similar
argument, we can show that C2 ≤ k(1 + 1/R), with k independent of R. We
then conclude that for R large enough, all constants Ci, i = 1, 2, 3, can be
taken independent of R. Consequently, bearing in mind the properties of ψR,
from (VIII.4.34)3,4, we deduce in particular

‖∇w(t)‖q + ‖D2w(t)‖q ≤ k1 ‖V (t)‖1,q,BR,2R , (VIII.4.35)

with k1 independent of R. Next, from Exercise II.5.4 we obtain
∥∥∥∥
∂w

∂t

∥∥∥∥
q,BR,2R

≤ C4R

∥∥∥∥∇
(
∂w

∂t

)∥∥∥∥
q,BR,2R

with C4 independent of R. Consequently, again from the properties of ψR and
(VIII.4.34)5 we obtain

∥∥∥∥
∂w

∂t

∥∥∥∥
q,BR,2R

≤ k2

∥∥∥∥
∂V

∂t

∥∥∥∥
q,BR,2R

, (VIII.4.36)

with k2 independent of R. Let us extend w to zero outside BR,2R and con-
tinue to denote by w the extension. Thus, if we dot-multiply (VIII.4.32)1 by
VR(x, t) ≡ ψRV (x, t) + w(x, t), then integrate over [η, T ] × R3, η > 0, and
recall that V , Z satisfy (VIII.4.16), we obtain

(u(η) , V R(η))

=

∫ T

η

∫

R3

u·
[
− 2∇ψR · ∇V − V ∆ψR + RV ∂ψR

∂x1
− ψR∇Z

+ψRH − ∂w

∂t
−∆w+ R ∂w

∂x1

]
dx dt .

(VIII.4.37)

We now pass to the limit η → 0 and use (VIII.4.33) along with the continuity
of V R at t = 0 in the Lq-norm and the hypothesis on u to deduce

0 =

∫ T

0

∫

R3

(u1 + u2) ·
[
− 2∇ψR · ∇V − V ∆ψR + RV ∂ψR

∂x1
− ψR∇Z

+ψRH − ∂w

∂t
−∆w + R ∂w

∂x1

]
dx dt .

(VIII.4.38)
Next, we choose q = q′i, i = 1, 2, and recall the properties of V given in
(VIII.4.17) and those of w given in (VIII.4.35), (VIII.4.36). As a consequence,
by means of the Hölder inequality, the properties of ψR, and the Lebesgue
dominated converge theorem (Lemma II.2.1), it is easy to show that
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lim
R→∞

∫ T

0

∫

R3

ui ·
[
−2∇ψR · ∇V − V ∆ψR + RV ∂ψR

∂x1

−∂w
∂t

−∆w+ R ∂w

∂x1

]
dx dt = 0 , i = 1, 2.

(VIII.4.39)

Furthermore, we observe that, for i = 1, 2,
∣∣∣∣∣

∫ T

0

∫

R3

ui · ∇Z −
∫ T

0

∫

R3

ψRui · ∇Z
∣∣∣∣∣ ≤

∫ T

0

∫

R3

|1 − ψR||ui||∇Z| ,

and since |ui| |∇Z| ∈ L1(R3
T ), we may use again the Lebesgue dominated

convergence theorem along with the property of ψR to show that

lim
R→∞

∫ T

0

∫

R3

ψRui · ∇Z =

∫ T

0

∫

R3

ui · ∇Z .

However, from the assumption and (VIII.4.32)2, we have that ui(t) ∈ Hq(R3),

i = 1, 2, for a.a. t ∈ [0, T ] (see Theorem III.2.3), and since ∇Z(t) ∈ Lq′
(R3),

for a.a. t ∈ [0, T ], by Lemma III.2.1 we conclude that

lim
R→∞

∫ T

0

∫

R3

ψRu · ∇Z = 0 . (VIII.4.40)

Passing to the limitR → ∞ in (VIII.4.39), utilizing (VIII.4.39) and (VIII.4.40),
and recalling that H(x, t) = f(x, T − t), we finally deduce

∫ T

0

∫

R3

u(x, t) · f(x, T − t)dx dt , for all f ∈ C∞
0 (R3

T ) ,

which entails u = 0 a.e. in R3
T . The proof of the lemma is complete.

ut
We now turn to the well-posedness of problem (VIII.4.2). Specifically, we

have the following.

Theorem VIII.4.3 Let u0 ∈ Hq(R
3), 1 ≤ q ≤ ∞. Then there exists v such

that

ess sup
t∈[0,T ]

‖v(t)‖q <∞ ,

v ,
∂v

∂t
, D2v ∈ Lr([ε, T ]× R3) , for all ε > 0 and all r ≥ q ,

(VIII.4.41)

and satisfying (VIII.4.2)1,2 a.e. in R3
T , for any T > 0. Moreover, for arbitrary

t > 0, we have

‖Dj
tD

α
xv(t)‖r ≤ c t−(µ+(j+|α|)/2)‖u0‖q , j = 0, 1 ; 0 ≤ |α| ≤ 2 ,

lim
t→0+

‖v(t) − u0‖q = 0 ,

(VIII.4.42)
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where µ = 3(1/q − 1/r)/2 and c = c(r, q, j, α,R). The function v has the
following representation

v(x, t) =

(
1

4π t

)3/2 ∫

R3

e−|x+R te1−y|2/4tu0(y)dy .

Finally, let v1 be such that

v1 ∈ Lq(R3
T ) ,

∂v1

∂t
, D2v1 ∈ Ls

loc((0, T ]× R3) , some s ∈ (1,∞) ,

lim
t→0+

‖v1(t) − u0‖q = 0 ,

and satisfying (VIII.4.2)1,2 a.e. in R3
T . Then v = v1, a.e. in R3

T .

Proof. The uniqueness part is a direct consequence of Lemma VIII.4.2. We
shall now prove the existence part. Using the properties of the fundamental
solution Γ (see, in particular, (VIII.3.9)), it is immediately verified that a
solution to (VIII.4.2)1,2 is given by the following volume potential:

vi(x, t) =

∫

R3

Γij(x− y, t;R)u0j(y)dy , i = 1, 2, 3 , t > 0 . (VIII.4.43)

However, from (VIII.3.7), Lemma VIII.3.2, and the fact that u0 ∈ Hq(R3), it
follows that for i = 1, 2, 3 and all t > 0,

∫

R3

∂2

∂xi∂xj
Ψ(|x+ R te1 − y|, t)u0j(y)dy

=

∫

R3

∇
(
∂

∂xi
Ψ(|x+ R te1 − y|, t)

)
· u0(y)dy = 0 .

As a consequence, taking into account (VIII.3.7) and (VIII.3.4), (VIII.3.5),
the volume potential (VIII.4.43) reduces to

v(x, t) =

(
1

4π t

)3/2 ∫

R3

e−|x+R te1−y|2/4tu0(y)dy .

From this relation we easily deduce, for any multi-index β with |β| ≥ 0,

Dβ
xv(x, t) =

(
1

π

)3/2(
1

2
√
t

)|β| ∫

R3

(
Dβ

z e
−|z|2

)
u0(x−R te1 − 2z

√
t)dz ,

(VIII.4.44)
which, in turn, with the help of Young’s inequality (II.11.2), furnishes, in
particular, (VIII.4.42)1 with j = 0. The case j = 1 follows from (VIII.4.44)
and (VIII.4.2)1. To complete the existence proof, it remains to check the
validity of (VIII.4.42)2. To this end, we observe that
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∫

R3

e−|y|2dy = π3/2 ,

and thus from (VIII.4.44) with β = 0, we obtain

v(x, t) − u0(x) = π−3/2

∫

R3

e−|z|2
[
u0(x−R t e1 − 2z

√
t) − u(x)

]
dz .

Therefore, using the generalized Minkowski inequality (II.2.8), we infer

‖v(t) − u0‖q ≤ π−3/2

∫

R3

(
e−|z|2‖u0(· − R t e1 − 2

√
tz) − u0‖q

)
dz .

(VIII.4.45)
In view of Exercise II.2.8, we have, for each fixed z ∈ R3,

lim
t→0+

‖u0(· − R t e1 − 2
√
tz) − u0‖q = 0 ,

and consequently, passing to the limit t → 0+ on both sides of (VIII.4.45)
and using the Lebesgue dominated convergence theorem (see Lemma II.2.1),
we establish (VIII.4.42)2. The proof of the theorem is complete. ut

The last part of this section is devoted to the solvability of (VIII.4.1) in
a space of functions that possess a suitable asymptotic behavior in space,
uniformly in time. To this end, we introduce the following notation.

If U is a vector or a second-order tensor field, α a nonnegative integer, A
a domain in R3, and R ≥ 0, we set

[]U []α,R,A = sup
x∈A

[(1 + |x|)α(1 + 2R s(x))α|U(x)|] , (VIII.4.46)

where, we recall, s(x) is defined in (VIII.3.11).
If R = 0, we shall simply write []U []α,A instead of []U []α,0,A. Furthermore,

whenever confusion does not arise, we shall omit the subscript A.

We have the following.

Theorem VIII.4.4 Let G be a second-order tensor field in R3 × (0,∞) such
that

ess sup
t≥0

[](G(t)[]2,R + ess sup
t≥0

‖∇ · G(t)‖2 <∞ ,

and let h ∈ L∞,q(R3 × (0,∞)), q ∈ (3,∞), with spatial support contained in
Bρ, for some ρ > 0. Then, the problem (VIII.4.1) with f ≡ ∇ ·G +h has one
and only one solution such that for all T > 0,

(w, φ) ∈ L2(R3
T ) , φ ∈ L2,6(RT ). (VIII.4.47)

Moreover,
ess sup

t≥0
[]w(t)[]1,R + ess sup

t≥0
‖φ(t)‖r <∞ ,
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for arbitrary r > 3
2 , and the following inequality holds:

ess sup
t≥0

[]w(t)[]1,R + ess sup
t≥0

‖φ(t)‖r ≤ C ess sup
t≥0

([]G(t)[]2,R + ‖h(t)‖q)

(VIII.4.48)
with C = C(r, q, ρ, B), whenever R ∈ [0, B], for some B > 0.

Finally, assume G = 0 and that h satisfies the further assumption

H := ‖h‖∞,R3
∞ + ‖∇h‖∞,R3

∞ <∞ . (VIII.4.49)

Then,

ess sup
t≥0

(
[]∇w(t)[]2 + []D2w(t)[]3

)
<∞ , if R = 0 ,

ess sup
t≥0

(
[]∇w(t)[]3/2,R + []D2w(t)[]2,R

)
<∞ , if R 6= 0

(VIII.4.50)

and there exist constants C1 = C1(ρ) and C2 = C2(ρ, B), whenever R ∈
(0, B], such that

ess sup
t≥0

(
[]∇w(t)[]2 + []D2w(t)[]3

)
≤ C H , if R = 0 ,

ess sup
t≥0

(
[]∇w(t)[]3/2,R + []D2w(t)[]2,R

)
≤ C H , if R 6= 0

(VIII.4.51)

Proof. The existence of a unique solution satisfying (VIII.4.47) is an imme-
diate consequence of Theorem VIII.4.1, and the assumption on G and h. In
order to prove the remaining properties, we observe that, by Theorem VIII.4.2
the vector field w admits the following representation:4

w(x, t) =

∫ t

0

∫

R3

Γ (x− y, t− τ ) · [(∇ · G)(y, τ ) + h(y, τ )] dy dτ

≡ w1(x, t) +w2(x, t) .

By an integration by parts we find that

w1(x, t) = −
∫ t

0

∫

R3

∂Γij

∂xk
(x− y, τ )Gkj(y, t − τ )eidy dτ,

and so by Fubini’s theorem and by Lemma VIII.3.4, Lemma VIII.3.5, we
deduce that

4 To alleviate the notation, and unless otherwise specified, we temporarily suppress
the dependence of Γ on R.
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|w1(x, t)| ≤
∫ t

0

∫

R3

|∇Γ (x− y, τ )||G(y, t− τ )|dyds

=

∫

R3

∫ t

0

|∇Γ (x− y, τ )||G(y, t− τ )|dτdy

≤ ess sup
t≥0

[]G(t)[]2,R

∫

R3

∫ ∞

0

|∇Γ (χ − y, τ )|
[(1 + |y|)(1 + R s(y))]2

dτdy

≤ C max{1,R}
ess sup

t≥0
[]G(t)[]2,R

(1 + |x|)(1 + 2R s(x))

for all x ∈ R3 and all t ≥ 0. We now prove an analogous estimate for w2.
We begin by observing that from Exercise III.3.9 and the hypothesis on h, it
follows that there is a second-order tensor field H ∈ L∞(R3

∞) with ∇H ∈
Lq(R3

T ), for all T > 0, such that

∇ ·H(t) = h(t) , a.a. t ∈ [0,∞) ,

ess sup
t≥0

‖H(t)‖∞ ≤ c ess sup
t≥0

‖h(t)‖q ≡ h0 .
(VIII.4.52)

Replacing ∇ · H for h in the expression of w2, integrating by parts, and
recalling that supp (h(t)) ⊂ Bρ, for all t ≥ 0, we obtain

w2i =

∫ t

0

∫

Bρ

Γij(x− y, τ )D`H`j(y, t − τ )dy dτ

= −
∫ t

0

∫

Bρ

D`Γij(x− y, τ )H`j(y, t − τ )dy dτ

+

∫ t

0

∫

∂Bρ

Γij(x− y, τ )H`j(y, t− τ )n`(y)dσy dτ

≡ I1 + I2 .

(VIII.4.53)

From (VIII.4.52), Lemma VIII.3.6, and Fubini’s theorem, we have

|I1| ≤ c h0

(∫

Bρ

|x− y|−2dy+ R1/2

∫

Bρ

[|x− y|(1 + 2R s(x− y))]
−3/2

dy
)

≡ c h0

(
I
(1)
1 + I

(2)
1

)
.

(VIII.4.54)
If |x| ≤ 2ρ, we obtain, obviously,

I
(1)
1 ≤

∫ 3ρ

0

dr ≤ c1(ρ)K

(1 + |x|)(1 + 2R s(x))
,

whereas since
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|x| ≥ 2ρ =⇒ |x− y| ≥ |x|/2 for any y ∈ Bρ , (VIII.4.55)

we deduce

I
(1)
1 ≤ c2(ρ)

(1 + |x|)2 ≤ c3(ρ)K

(1 + |x|)(1 + 2R s(x))
.

Thus, we obtain

I
(1)
1 ≤ c4(ρ)K

(1 + |x|)(1 + 2R s(x))
, x ∈ R3. (VIII.4.56)

We next observe that for |x| ≤ 2ρ,

I
(2)
1 ≤

∫ 3ρ

0

r−1/2dr ≤ c5(ρ)K

(1 + |x|)(1 + 2R s(x))
, (VIII.4.57)

whereas if |x| ≥ 2ρ, from (VIII.4.55) and the fact that for any y ∈ Bρ,

1 + 2R s(x) ≤ 1 + 2R s(x− y) + 2R s(y)

≤ (1 + 4R ρ)(1 + 2R s(x − y))

≤ c6K (1 + 2R s(x− y)) ,

(VIII.4.58)

we infer

I
(2)
1 ≤ c7(ρ)K

(1 + |x|)(1 + 2R s(x))
. (VIII.4.59)

By (VIII.4.54)–(VIII.4.59) we conclude that

I1 ≤ c8(ρ)K

(1 + |x|)(1 + 2R s(x))
, x ∈ R3. (VIII.4.60)

Furthermore, by (VIII.4.52), Lemma VIII.3.6, and Fubini’s theorem, we have

I2 ≤ c9 h0

∫ ∞

0

∫

∂Bρ

|Γ (x− y, s)| ds

≤ c10 h0

∫

∂Bρ

dy

(1 + |x− y|)(1 + 2R s(x− y))
.

If we integrate both sides of this inequality over ρ between ρ1 and 2ρ1, we
deduce

I2 ≤ c10 h0

ρ1

∫

B2ρ1

dy

(1 + |x− y|)(1 + 2R s(x− y))
.

Therefore, proceeding exactly as in the proof of the estimates (VIII.4.57) and
(VIII.4.59), we conclude that

I2 ≤ c11(ρ)K

(1 + |x|)(1 + 2R s(x))
, x ∈ R3. (VIII.4.61)



544 VIII Steady Generalized Oseen Flow in Exterior Domains

The desired estimate for w2 is then a consequence of (VIII.4.53), (VIII.4.60),
and (VIII.4.61). Concerning the stated properties of the pressure, we notice
that from (VIII.4.47), (VIII.4.1) and from the Helmholtz–Weyl decomposition
theorem, Theorem III.1.2, it follows that

(∇φ(t),∇χ) = (∇ · G(t),∇χ) + (h(t),∇χ) ,

for a.a. t ∈ (0,∞), and all χ ∈ D1,2(R3).
(VIII.4.62)

We then choose in (VIII.4.62) the function χ as a solution to the Poisson
problem ∆χ = ψ, where ψ is arbitrary from C∞

0 (R3). Recalling that from the
representation χ = E ∗ ψ, we have Dβχ = O(|x|1−|β|), |β| ≥ 0, and using the
properties of φ and G, by (VIII.4.62) we easily obtain

(φ, ψ) = (G,∇∇χ)− (h,∇χ) . (VIII.4.63)

By Exercise II.11.9, we have ‖D2χ‖r′ ≤ c‖ψ‖r′ , for all r′ ∈ (1,∞), and
‖∇χ‖3r′/(3−r′) ≤ c‖D2χ‖r′ , for all r′ ∈ (1, 3). Thus, with the help of the
Hölder inequality, we obtain, on the one hand,

(G(t),∇∇χ) ≤ c []G(t)[]2,R‖ψ‖r′ , for a.a. t ∈ (0,∞), all r′ ∈ (1,∞) .
(VIII.4.64)

On the other hand, since q > 3, we have q′ < 3r′/(3 − r′) for all r′ ∈ (1, 3),
and consequently,

−(h(t),∇χ) ≤ ‖h(t)‖q‖∇χ‖q,Bρ ≤ c1(ρ)‖h(t)‖q‖∇χ‖3r′/(3−r′)

≤ c2(ρ)‖h(t)‖q‖D2χ‖r′ ≤ c3(ρ)‖h(t)‖q‖ψ‖r′ ,

for a.a. t ∈ (0,∞), and all r′ ∈ (1, 3) .

(VIII.4.65)

Collecting (VIII.4.63)–(VIII.4.65) we conclude that

|(φ(t), ψ)| ≤ C1 ([]G(t)[]2,R + ‖h(t)‖q) ‖ψ‖r′ , for a.a. t ∈ (0,∞), all r′ ∈ (1, 3) ,

with C1 depending on r, q, and ρ. However, by Exercise II.2.12, this latter
inequality implies

ess sup
t≥0

‖φ(t)‖r ≤ C2 ess sup
t≥0

([]G(t)[]2,R + ‖h(t)‖q) ,

with C = C(r, q, ρ), and the proof of the first part of the theorem is complete.
Assume next that G = 0 and h satisfies the further assumptions (VIII.4.49).
We then have w(x, t) ≡ w2(x, t), where w2 satisfies (VIII.4.53), namely, re-
calling (VIII.4.52)1, we deduce

wi(x, t) =

∫ t

0

∫

Bρ

Γij(x − y, τ ;R)hj(y, t − τ )dy dτ . (VIII.4.66)

We first consider the case R = 0. Differentiating both sides with respect to x,
and taking into account estimate (VIII.3.10) of Lemma VIII.3.3, we obtain
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|Dkw(x, t)| ≤ ‖h‖∞,R3
∞

∫

Bρ

∫ ∞

0

|DkΓ (x− y, τ )|dτ dy

≤ c1‖h‖∞,R3
∞

∫

Bρ

dy

|x− y|2 ,

from which, by distinguishing the two cases |x| ≤ 2ρ and |x| > 2ρ, we easily
prove the desired estimate for ∇w. We now differentiate (VIII.4.66) two times.
Taking into account that

wi(x, t) =

∫ t

0

∫

R3

Γij(y, τ )hj(x− y, t − τ )dy dτ

and the assumptions on h, we readily prove that

DkDlwi(x, t) =

∫ t

0

∫

Bρ

DkΓij(x− y, τ )Dlhj(y, t − τ )dy dτ , (VIII.4.67)

so that again by Lemma VIII.3.3, we obtain

|DkDlwi(x, t)| ≤ c1‖∇h‖∞,R3
∞

∫

Bρ

dy

|x− y|2 .

From this relation, it easily follows that

|D2w(x, t)| ≤ c2‖∇h‖∞,R3∞ , for all (x, t) ∈ B2ρ × R+ . (VIII.4.68)

Take now x outsideB2ρ, and observe that, for such x and for y ∈ Bρ, Γ (x−y, t)
is a smooth function of x. Therefore, we may differentiate (VIII.4.66) twice
with respect to x, and use the estimates given in part (i) of Lemma VIII.3.3
to obtain

|D2wi(x, t)| ≤ c3‖h‖∞,R3∞

∫

Bρ

∫ ∞

0

|D2Γ (x− y, τ )|dt dy

≤ c4‖h‖∞,R3∞

∫

Bρ

dy

|x− y|3

≤ c5
‖h‖∞,R3∞

|x|3 for all (x, t) ∈ B2ρ × R+ .

(VIII.4.69)

The claimed estimates on the second derivatives of w follow from (VIII.4.68),
(VIII.4.69). The proof of (VIII.4.50) and (VIII.4.51) in the case R 6= 0 is very
similar, once we use the estimates (VIII.3.12), and will be only sketched here.
We take first |x| ≥ 2ρ, and in (VIII.3.12)2 we choose β = ρR. Consequently,
since |x− y| ≥ ρ = β/R, differentiating (VIII.4.66) once in x and then using
(VIII.3.12)2, we obtain

|Dkw(x, t)| ≤ c6 ‖h‖∞,R3
∞

∫

Bρ

dy

|x− y|3/2(1 + 2R s(x − y))3/2
, |x| ≥ 2ρ ,
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with c6 = c6(ρ, B), which, in turn, by virtue of (VIII.4.58), produces

ess sup
t≥0

[]∇w(t)[]3/2,R,B2ρ ≤ c7 ‖h‖∞,R3∞ , (VIII.4.70)

with c7 = c7(ρ, B). If x ∈ B2ρ, we have x−y| ≤ 3ρ, and so, choosing this time
β = 3ρR in (VIII.3.12)2, we deduce

|Dkw(x, t)| ≤ c8 ‖h‖∞,R3
∞

∫

Bρ

dy

|x− y|2 ≤ c9 , |x| ≤ 2ρ .

Combining this latter with (VIII.4.70) we obtain the desired result for ∇w.
In order to estimate D2w, we start with the representation (VIII.4.67) and
|x| ≤ 2ρ. Choosing β = 3ρR in (VIII.3.12)2, we obtain, as before,

|D2w(x, t)| ≤ c10 ‖∇h‖∞,R3∞

∫

Bρ

dy

|x− y|2 ≤ c11 , |x| ≤ 2ρ . (VIII.4.71)

If |x| ≥ 2ρ, we can differentiate the fundamental tensor solution twice with
respect to x and use (VIII.3.12)3 with β = ρR. We thus obtain

|D2w(x, t)| ≤ c12 ‖h‖∞,R3∞

∫

Bρ

dy

|x− y|2(1 + 2R s(x − y))2
, |x| ≥ 2ρ ,

with c12 = c12(ρ, B), which, in turn, by (VIII.4.58), implies

ess sup
t≥0

[]D2w(t)[]2,R,B2ρ ≤ c7 ‖h‖∞,R3
∞ .

The statement about D2w then follows from this inequality and (VIII.4.71).
The theorem is completely proved. ut

VIII.5 Existence, Uniqueness, and Pointwise Estimates
of Solutions in the Whole Space

The objective of this section is to prove existence, uniqueness, and corre-
sponding estimates of solutions v, p to the inhomogeneous generalized Oseen
problem

∆v + R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0





in R3

lim
|x|→∞

v(x) = 0 ,

(VIII.5.1)

under suitable assumptions on the datum f .
We will keep the notation used in the previous section given, in particular,

in (VIII.4.46).

Our main result is the following.
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Theorem VIII.5.1 Let F be a second-order tensor field such that ∇ · F ∈
L2(R3), with []F[]2,R < ∞, and let g ∈ Lq(R3), q ∈ (3,∞), with support
contained in Ωρ, for some ρ > 0. Then, the problem (VIII.5.1) with f ≡
∇ · F + g has at least one solution such that1

v ∈ W 2,2
loc (R3) ∩D2,2(R3) ∩D1,2(R3), |]v|]1,R <∞,

p ∈W 1,2
loc (R3) ∩D1,2(R3) ∩ Lr(R3), r > 3/2.

(VIII.5.2)

This solution satisfies the estimates

|v|2,2 + |v|1,2 + |p|1,2 ≤ C1 (‖∇ · F‖2 + []F[]2,R + ‖g‖q)

[|v|]1,R + ‖p‖r ≤ C2 ([]F []2,R + ‖g‖q)
(VIII.5.3)

where C1 = C1(ρ, q, B), C2 = C2(ρ, r, q, B) whenever R, T ∈ [0, B], for some
B > 0.

Moreover, assume, in particular, that F = 0 and g satisfies the further
assumption g ∈W 1,∞(Ωρ). Then, v satisfies also

[]∇v[]2 + []D2v[]3 <∞ if R = 0 , (VIII.5.4)

[]∇v[]3/2,R + []D2v[]2,R <∞ if R 6= 0 , (VIII.5.5)

and there are constants C3 = C3(ρ), C4(ρ, B) if R ∈ (0, B] such that

[]∇v[]2 + []D2v[]3 ≤ C3 ‖g‖1,∞ , if R = 0 , (VIII.5.6)

[]∇v[]3/2,R + []D2v[]2,R ≤ C4 ‖g‖1,∞ , if R 6= 0 . (VIII.5.7)

Finally, if (v1, p1) is a generalized solution to (VIII.5.1) corresponding to the
same f , then v = v1 and p = p1 + const.

Proof. The uniqueness part is an immediate consequence of Theorem VIII.2.1.
Moreover, from Theorem VIII.1.1, Theorem VIII.1.2, and Lemma VIII.3.2 it
follows that the only property for v that remains to be proved is the asymp-
totic properties of v, along with the corresponding estimates.2 In order to
prove these latter, we consider the following unsteady Cauchy problem asso-
ciated with (VIII.5.1):

∂u

∂t
= ∆u+ R ∂u

∂x1
− T (e1 × u− e1 × x · ∇u)

−∇q −∇ ·F − g
∇ · u = 0





in R3 × (0,∞)

u(x, 0) = 0, x ∈ R3 .
(VIII.5.8)

1 Recall the notation given in (VIII.4.46).
2 Notice that ∇ · F ∈ D−1,2

0 (R3) and that |∇ · F |−1,2 ≤ c []F []2,R. Likewise, since

|(g,ϕ)| ≤ ‖g‖6/5‖ϕ‖6 ≤ c ‖g‖q |ϕ|1,2 ,

for all ϕ ∈ D1,2
0 (Ω), we deduce |g|−1,2 ≤ c ‖g‖q .
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We begin by proving the properties stated in (VIII.5.2) and (VIII.5.3). To this
end we shall prove that (i) []u(t)[]1,R is uniformly bounded in time, and that (ii)
u(·, t) converges as t → ∞ to the solution v of (VIII.5.1) in appropriate norms.
As a consequence, the asymptotic (spatial) behavior of v will be shown to be
the same as that of u. To reach this goal, we make a change of variables that
brings (VIII.5.8) into an appropriate (unsteady) Oseen problem. Specifically,
we define

χ =Q(t) · x,
w(χ, t) = Q(t) ·u(Q>(t) · χ, t), π(χ, t) = q(Q>(t) · χ, t) ,
G(χ, t) = −Q(t) · F(Q>(t) · χ) ·Q>(t) , h(χ, t) = −Q(t) · g(Q>(t) · χ) ,

(VIII.5.9)
where > denotes transpose, and Q = Q(t), t ≥ 0, is a one-parameter family
of second-order tensors satisfying the following initial-value problem:





dQ

dt
= T Q ·W (e1) ,

Q(0) = I ,

(VIII.5.10)

with

W (e1) =




0 0 0
0 0 −1
0 1 0


 . (VIII.5.11)

Since the matrix W is skew-symmetric, it follows that for each t ≥ 0, Q(t)
defines a proper orthogonal transformation, i.e.,

Q(t) ·Q(t)> =Q>(t) ·Q(t) = I (I = identity tensor) .

More precisely, by integrating (VIII.5.10))–(VIII.5.11), we obtain

Q(t) =




1 0 0
0 cos(T t) − sin(T t)
0 sin(T t) cos(T t)


 . (VIII.5.12)

We also notice that

W (e1) · a = e1 × a , for all a ∈ R3 , (VIII.5.13)

and moreover, that
Q(t) · e1 = e1 , for all t ≥ 0. (VIII.5.14)

Now, using (VIII.5.9), (VIII.5.10), and (VIII.5.13) together with the identity

dQT

dt
·Q(t) = −QT(t) · dQ

dt
,

we obtain

(
•≡ d

dt

)
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∂w

∂t
= Q(t) ·

(
∂u

∂t
+
( •
Q T(t) ·Q(t) · x

)
· ∇u+QT(t)·

•
Q (t) ·u

)

= Q(t) ·
(
∂u

∂t
− T (e1 × x · ∇u− e1 × u)

)

(VIII.5.15)
and

∆χw = Q(t) ·∆u. (VIII.5.16)

Moreover, from (VIII.5.9) and (VIII.5.14) we also obtain

∂w

∂χ1
(χ, t) = Q(t) ·

(
(Q>(t) · e1) · ∇u(x, t)

)
= Q(t) · ∂u

∂x1
(x, t) . (VIII.5.17)

Therefore, collecting (VIII.5.15)–(VIII.5.17), we deduce that the Cauchy prob-
lem (VIII.5.8) can be equivalently rewritten as follows:

∂w

∂t
= ∆w + R ∂w

∂χ1
−∇π + ∇ · G + h

∇ ·w = 0





in R3 × (0,∞) ,

w(χ, 0) = 0, χ ∈ R3 .

(VIII.5.18)

At this point we observe that in view of the assumptions on F and the or-
thogonality properties of the family Q(t), t ≥ 0,

ess sup
t≥0

[]G(t)[]2,R = []F[]2,R ,

ess sup
t≥0

‖∇ · G(t)‖2 = ‖∇ · F‖2 ,

ess sup
t≥0

‖h(t)‖q = ‖g‖q .

As a consequence, from Theorem VIII.4.4 it follows that problem (VIII.5.18)
has one and only one solution (w, φ) such that

(w,∇φ) ∈ L2(R3
T ) , φ ∈ L2,6(R3

T ) , (VIII.5.19)

which, in addition, satisfies the following estimate, for all r ∈ (3/2,∞):

ess sup
t≥0

[]w(t)[]1,R + ess sup
t≥0

‖φ(t)‖r ≤ C ([]F[]2,R + ‖g‖q) , (VIII.5.20)

with C depending on (r, q and) an upper bound for R and T . We now go back
to the original fields u, q. Since Q =Q(t) is orthogonal, we have the identities

|x| = |χ| , |u(x, t)| = |w(χ, t)| , |q(x, t)| = |φ(χ, t)| , (VIII.5.21)

and so from (VIII.5.20), we obtain
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ess sup
t≥0

[]u(t)[]1,R + ess sup
t≥0

‖q(t)‖r ≤ C ([]F[]2,R + ‖g‖q) . (VIII.5.22)

It remains to prove the convergence of u to v when t→ ∞. Setting

V (χ, t) = Q(t) · v(Q>(t) · χ), P (χ, t) = p(Q>(t) ·χ) ,

U(χ, t) = w(χ, t) − V (χ, t), π(χ, t) = φ(χ, t) − P (χ, t) ,

and observing that (see (VIII.5.15))

∂V

∂t
= −T Q(t) · (e1 × x · ∇xv − e1 × v) , (VIII.5.23)

we find that the pair (U , π) satisfies

∂U

∂t
= ∆U + R ∂U

∂χ1
−∇π

∇ ·U = 0





in R3 × (0,∞) ,

U(χ, 0) = v(χ), χ ∈ R3 .

(VIII.5.24)

Multiplying both sides of the first equation by ∇ψ, with ψ ∈ C∞
0 (R3), we

easily show, for a.a. t ∈ [0, T ], that

(∇π(t),∇ψ)R3 = 0 , for all ψ ∈ C∞
0 (R3) ,

which implies that π(t) is harmonic in the whole of R3, for a.a. t ∈ [0, T ].
Furthermore, the result of Lemma VIII.2.2 and (VIII.5.20) implies π(t) ∈
L6(R3), for a.a. t ∈ [0, T ]. Therefore, by Exercise II.11.11, we obtain π(x, t) =
0 for all x ∈ R3 and a.a. t ∈ [0, T ], and (VIII.5.24) becomes

∂U

∂t
= ∆U + R ∂U

∂χ1

∇ ·U = 0





in R3 × (0,∞) ,

U(χ, 0) = v(χ), χ ∈ R3 .

(VIII.5.25)

We now observe that the initial datum v is in L6(R3) and that moreover, by
the properties of w and v (see (VIII.5.20), (VIII.5.19), and (VIII.5.23)), we
have

V ∈ L6(R3
T ) ,

∂V

∂t
∈ L2

loc((0, T ] × R3) , D2V ∈ L2(R3
T ) ,

w ∈ L6(R3
T ) ,

∂w

∂t
, D2w ∈ L2(R3

T ) .

From these conditions we infer, in particular,

U ∈ L6(R3
T ) ,

∂U

∂t
, D2U ∈ L2

loc((0, T ] × R3) . (VIII.5.26)
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Thus, from Theorem VIII.4.3 we deduce

‖U‖σ ≤ Ct−1/4+3/(2σ)‖v‖6, σ > 6 ,

‖∇U‖6 ≤ Ct−1/2‖v‖6 ,

for all t > 0. From these two latter relations with σ = 12, and with the help
of inequality (II.9.7), we obtain

|U(x, t)| ≤ Ct−1/8‖v‖6 , for all t ≥ 1 ,

namely

|u(x, t)− v(x, t)| ≤ Ct−1/8‖v‖6 , for all t ≥ 1 , (VIII.5.27)

since |U | = |u−v|. We are now in a position to obtain the desired asymptotic
behavior and the corresponding estimate for v. In fact, by (VIII.5.22) and
(VIII.5.27), we obtain, for all t ≥ 1,

|v(x)|(1 + |x|)(1 + 2R s(x)) ≤ |u(x, t)− v(x)|(1 + |x|)(1 + 2R s(x))

+|u(x, t)|(1 + |x|)(1 + 2R s(x))

≤ c1(1 + |x|)(1 + 2R s(x))t−1/8‖v‖6 + c2 []F[]2,R .

Passing to the limit t→ ∞, we finally deduce

|v(x)|(1 + |x|)(1 + 2R s(x)) ≤ c2 []F []2,R ,

which furnishes the desired result for v. In order to complete the proof of
the first part of the theorem, it remains to prove the stated properties for
the pressure along with the estimate (VIII.5.3) . From Theorem VIII.1.1 and
the assumptions on F we recover p ∈W 1,2

loc (R3). This property together with
(VIII.2.5) implies, possibly by modifying p by the addition of a constant,
p ∈ D1,2(R3) ∩ L6(R3). Then, from (VIII.5.1), (VIII.5.2)1, we deduce that

(e1 × x · ∇v − e1 × v) ∈ L2(R3) ,

which, coupled with (VIII.2.26), furnishes

(e1 × x · ∇v − e1 × v) ∈ H(R3) .

We next operate with the Helmholtz–Weyl projection operator P (see Remark
III.1.1) on both sides of (VIII.5.1)1. Observing that

P ∆v = ∆v , P

(
∂v

∂x1

)
=

∂v

∂x1
,

P (e1 × x · ∇v − e1 × v) = e1 × x · ∇v − e1 × v ,

it follows that
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T (e1 × x · ∇v − e1 × v) = −R ∂v

∂x1
−∆v + P (∇ · F + g) .

Therefore, recalling that v satisfies (VIII.5.3), we obtain

T ‖e1 × x · ∇v − e1 × v‖2 ≤ c ([]F []2,R + ‖∇ · F‖2 + ‖g‖q) , (VIII.5.28)

where c depends on B. Employing (VIII.5.28), (VIII.5.1)1, and the estimate
(VIII.5.3) for v, we thus conclude that

|p|1,2 ≤ c1 ([]F[]2,R + ‖∇ · F‖2 + ‖g‖q) .

Next, we have to show that p ∈ Lr(R3), r ∈ (3/2,∞), and prove the corre-
sponding estimate given in (VIII.5.3). In fact, these properties can be shown
in an entirely similar way to that employed at the end of the proof of The-
orem VIII.4.4 to prove analogous properties for the pressure φ, and so the
proof will be only sketched here. We multiply both sides of (VIII.5.1)1 by ∇χ,
χ ∈ D1,2(Ω), to obtain

(∇p,∇χ) = −(∇ · F + g,∇χ) .

Choosing χ as the solution to the Poisson equation ∆χ = ψ, ψ ∈ C∞
0 (R3)

and using the facts that p ∈ L6(Ω) and q > 3, one shows that

|(p, ψ)| ≤ c ([]F []2,R + ‖g‖q) ‖ψ‖r′ , for all ψ ∈ C∞
0 (R3), and all r′ ∈ (1, 3) .

From this relation it then follows that p ∈ Lr(R3), for all r ∈ (3/2,∞) and
that ‖p‖r ≤ c ([]F []2,R + ‖g‖q). This concludes the proof of the first part of
the theorem. Now assume F = 0 and that g satisfies the further assumption
g ∈W 1,∞(Ωρ). By the orthogonality properties of the family Q(t), t ≥ 0, we
thus have

ess sup
t≥0

(
‖h(t)‖∞,R3∞ + ‖∇h(t)‖∞,R3∞

)
= ‖g‖1,∞ . (VIII.5.29)

Moreover, from the results of Theorem VIII.4.4 applied to the Cauchy problem
(VIII.5.18) with R = 0 and G = 0, we obtain

ess sup
t≥0

(
[]∇w(t)[]2 + []D2w(t)[]3

)
≤ c2 ess sup

t≥0

(
‖h(t)‖∞,R3

∞ + ‖∇h(t)‖∞,R3
∞

)
,

that is, by (VIII.5.29),

ess sup
t≥0

(
[]∇w(t)[]2 + []D2w(t)[]3

)
≤ c2‖g‖1,∞ .

Bearing in mind (VIII.5.21), we infer that this inequality continues to hold
with u in place of w. Consequently, reasoning exactly as in the proof of
the first part (precisely, the argument following (VIII.5.22)), we establish the
properties (VIII.5.4) and (VIII.5.6) for v. By completely analogous reasoning,
we can prove (VIII.5.5) and (VIII.5.7) as well. The theorem is completely
proved.

ut
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Remark VIII.5.1 In connection with the assumptions of Theorem VIII.5.1,
it may be of some interest to find conditions under which a vector field f ,
defined on a generic exterior domain Ω ⊆ R3, can be written in the form
∇ · F , with F satisfying the assumptions of Theorem VIII.5.1. For example,
if f is of bounded support in Ω and satisfies some further assumptions, then
f can be represented in the desired way; see Exercise III.3.9 and Exercise
VIII.5.1. When R = 0, a simple sufficient condition (but of course, one could
formulate others as well) is that f ∈ L1(Ω), it is bounded on any bounded
set, and decays to zero as |x| → ∞ like |x|−3, as shown in the following.

Lemma VIII.5.1 Let Ω be an exterior domain of R3, and let f ∈ L1(Ω)
with []f[]3 < ∞. Then, there exists a second-order tensor field F such that
f = ∇ · F (∈ L2(Ω)), and moreover, []F[]2 <∞ .

Proof. Extend f to zero outside Ω and set ψi(x) = (E ∗ fi)(x), i = 1, 2, 3,
where E is the (three-dimensional) Laplace fundamental solution. With the
help of Lemma II.9.1, Lemma II.9.2, and Theorem II.11.2 and employing the
hypothesis made on f , we can show that ψi is well defined and that it satisfies
∆ψi = fi, in R3, i = 1, 2, 3. We next want to estimate the quantity

Dkψi(x) =
1

4π

∫

R3

xk − yk

|x− y|3 fi(y) dy , i, k = 1, 2, 3 . (VIII.5.30)

It is easy to see that Dkψ ∈ L∞(R3). This is because, by the properties of f ,

|Dkψi(x)| ≤ c []f[]3

(∫

|x−y|<1

dy

|x− y|2 +

∫

|x−y|≥1

dy

|x− y|2(1 + |y|)3

)

≤ c1 []f[]3 .

We now set |x| = R > 0, and write the integral in (VIII.5.30) as the sum of
three integrals, over the domains BR/2, BR/2,2R, and B2R, respectively. We
denote these integrals, in order, by I1(R), I2(R), and I3(R). We have

|I1(R)| ≤ c1
R2

∫

BR/2

|fi| ≤ c2
‖f‖1

R2
.

Moreover,

|I2(R)| ≤ c3
[]f []3
R3

∫

BR/2,2R

dy

|x− y|2 ≤ c4
[]f []3

R3

∫ 3R

0

dr ≤ c5
[]f[]3

R2 .

Finally,

|I3(R)| ≤ c6
R2

∫

B2R

|f | ≤ c6
‖f‖1

R2
.

The lemma then follows with Fij = Diψj, i, j = 1, 2, 3. ut

�
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Exercise VIII.5.1 Let Ω ⊂ R
n, n ≥ 2 and let f ∈ Lq(Ω), q ≥ n, with bounded

support and fΩ = 0. Show that there exists a second-order tensor field F defined
in Ω, and with bounded support, such that

f = ∇ · F in Ω , ‖F‖∞ ≤ c ‖f‖q .

Hint: Use Theorem III.3.1 and Theorem III.3.2.

VIII.6 On the Pointwise Asymptotic Behavior of
Generalized Solutions

In this section we will investigate the behavior at large distances from the
boundary of generalized solutions to (VIII.0.2), (VIII.0.7) in a generic (suffi-
ciently smooth) exterior domain of R3. Precisely, we shall show that, under
suitable assumptions on the body force, the magnitude of the velocity field can
be pointwise bounded by the function w(x) = (1 + |x|)(1 + 2R s(x)), where,
we recall, s(x) = |x| + x1. Thus, if R > 0, the function w shows the same
asymptotic behavior as the Oseen fundamental solution E (see (VII.3.23) and
Remark VII.3.1), whereas if R = 0, the behavior is the same as the Stokes
fundamental solution (see (IV.2.6)). We also recall that by virtue of the Mozzi–
Chasles transformation considered in the Introduction, R = 0 if and only if
the translational velocity v0 and the angular velocity ω are orthogonal, or,
in particular, v0 = 0.1 Therefore, w(x) does not present a wave-like behavior
unless v0 has a nonzero component in the direction of the angular velocity.

Also in this section, we will keep the notation introduced in (VIII.4.46) .

In order to prove the above-mentioned properties, we need, as usual, some
preparatory results.

Lemma VIII.6.1 Let Ω be an exterior domain of class C2, and let R, T ∈
[0, B], for some B > 0. Assume that f ∈ Lq(ΩR), R > δ(Ωc), and v∗ ∈
W 2−1/q,q(∂Ω), q ∈ (1,∞). Then, the generalized solution (v, p) to (VIII.0.2),
(VIII.0.7) satisfies

v ∈W 2,q(Ωr), p ∈W 1,q(Ωr) , (VIII.6.1)

for all r ∈ (δ(Ωc), R). Moreover,

‖v‖2,q,Ωr + ‖p‖1,q,Ωr ≤ C(‖f‖q,ΩR + ‖v∗‖2−1/q,q,∂Ω + ‖v‖q,ΩR + ‖p‖q,ΩR),
(VIII.6.2)

where C = C(Ω, r, R, B).

Proof. The proof of (VIII.6.1) is a consequence of Theorem VIII.1.1 and the
assumptions made on the data F and v∗. The proof of (VIII.6.2) goes as
follows. We write (VIII.0.7) as a Stokes problem

1 We recall that we are assuming ω 6= 0; otherwise, the analysis coincides with that
performed in Chapter VII.
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∆v = ∇p+H

∇ · v = 0

}
in Ω ,

v = v∗, at ∂Ω ,

with

H = −R ∂v

∂x1
− T (e1 × x · ∇v − e1 × v) + f .

Exploiting Theorem IV.5.1 and Theorem IV.5.3, and taking into account this
expression for the function H, we readily get

‖v‖2,q,Ωr + ‖p‖1,q,Ωr ≤ C (‖f‖q,ΩR + ‖v∗‖2−1/q,q,∂Ω

+‖H‖−1,q,ΩR + ‖v‖q,ΩR + ‖p‖q,ΩR)

with C depending only on Ω, r, and R. Since

‖H‖−1,q,ΩR ≤ C(1 + R + T )‖v‖q,ΩR + ‖f‖q,ΩR ,

we obtain the desired estimate. ut
We are now in a position to establish the main result of this section.

Theorem VIII.6.1 Let Ω be an exterior domain of class C2. Assume that F

is a second-order tensor field on Ω such that ∇·F ∈ L2(Ω) with []F[]2,R <∞,
and that v∗ ∈ W 3/2,2(∂Ω). Let v be the corresponding generalized solution
to (VIII.0.2), (VIII.0.7) with f ≡ ∇ · F . Then, denoting by p the pressure
field associated to v by Lemma VIII.1.1, we have

v ∈W 2,2
loc (Ω) ∩D1,2(Ω) ∩D2,2(Ω) , []v[]1,R <∞ ,

p ∈ D1,2(Ω) ∩ Lq1 (Ω) ∩ Lq2 (Ωρ) for all q1 ∈ (3/2, 6], and all q2 ∈ (6,∞) ,
(VIII.6.3)

where ρ is an arbitrary number greater than δ(Ωc). Moreover, v, p satisfy the
following estimate

|v|2,2 + |v|1,2 + []v[]1,R+ |p|1,2 + ‖p‖q1 + ‖p‖q2,Ωρ

≤ C(‖∇ · F‖2 + []F[]2,R + ‖v∗‖3/2,2,∂Ω) ,
(VIII.6.4)

where C depends only on Ω,B, q1, and ρ, whenever R, T ∈ [0, B].

Proof. In view of the stated assumptions, Lemma VIII.6.1, Lemma VIII.2.1,
and Lemma VIII.2.2, we have only to show that []v[]1,R < ∞, p ∈ Lq1 (Ω) ∩
Lq2(Ωρ), along with the validity of the corresponding estimates. Notice that
by virtue of Lemma VIII.6.1, Lemma VIII.2.2, and the assumptions on F , we
can suppose p ∈ L6(Ω).

To reach the above goal, for a fixed R > δ(Ωc), we denote by ϕ a smooth
“cut-off” function that is 0 for |x| ≤ R and is 1 for |x| ≥ 2R, and set ϑ = 1−ϕ.
We then introduce the fields
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u = ϕv + ϑΦ∇E +w , q = ϕp ,

where E is the Laplace fundamental solution defined in (II.9.1),

Φ =

∫

∂Ω

v∗ · n ,

with n the unit outer normal to ∂Ω, and w satisfies

∇ ·w = −∇ϕ · (v + Φ∇E) in Ω2R ,

w ∈W 3,2
0 (Ω2R) ,

‖w‖3,2 ≤ C (‖v‖2,2,Ω2R + |Φ|) ,
(VIII.6.5)

where C = C(R,Ω). Clearly, ∇ϕ · (v + Φ∇E) ∈W 2,2
0 (Ω2R). Moreover, since2

∫

∂Ω

n · ∇E = −1 ,

it follows that
∫

Ω2R

∇ϕ · (v + Φ∇E) =

∫

∂B2R

(v + Φ∇E) · n−
∫

Ω2R

ϕ∇ · (v + Φ∇E)

=

∫

∂Ω

(v + Φ∇E) · n = 0 .

Thus, Theorem III.3.3 guarantees the existence of the field w. Furthermore,
the pair (u, q) obeys the following problem:

∆u+ R ∂u

∂x1
+ T (e1 × x · ∇u− e1 × v) = ∇q + ∇ ·G + g

∇ ·u = 0





in R3 ,

lim
|x|→∞

u(x) = 0 ,

(VIII.6.6)
where

g = (∆ϕ)(v + Φ∇E) + 2∇ϕ · ∇(v + Φ∇E) + R ∂ϕ

∂x1
v

+T (e1 × x · ∇ϕ)(v + Φ∇E)

−p∇ϕ −R(∇ϕ) · F +∆w+ R ∂w

∂x1
+ T (e1 × x · ∇w− e1 ×w),

G = RϕF −RΦϑ (e1 ⊗∇E) ,

2 Recall that n is the unit outer normal to ∂Ω.



VIII.6 On the Pointwise Asymptotic Behavior of Generalized Solutions 557

and we have used the fact that e1 × x · ∇(∇E)− e1 × (∇E) = 0. Taking into
account that supp (θ) ⊂ B3R, we find that the function G satisfies

‖∇ · G‖2 ≤ c1(R)R (‖∇ · F‖2 + []F[]2,R + |Φ|) ,
[|G|]2,R ≤ c1(R)R ([]F []2,R + |Φ|) .

(VIII.6.7)

We also observe that using several times the embedding Theorem II.3.3 and
the properties of w given in (VIII.6.5), we deduce

‖g‖6 ≤ c2 ([]F []2,R + ‖v‖2,2,Ω2R + ‖q‖1,2,Ω2R + ‖v∗‖3/2,2,∂Ω) , (VIII.6.8)

with c2 = c2(R,B), whenever R, T ∈ [0, B]. Thus, in view of (VIII.6.7),
(VIII.6.8), we check that the hypotheses of Theorem VIII.5.1 are satisfied, and
consequently, there exists at least one solution (u, q) to (VIII.6.6) satisfying all
the properties listed in that theorem. Again by Theorem VIII.5.1, this solution
is unique in the class of generalized solutions, and so we must have u = u

and q = q + q0, where q0 ∈ R. However, q ∈ L6(R3) and q ∈ Lr(R3), for all
r > 3/2, which implies q0 = 0. Thus, recalling that u = v and q = p in Ω2R,
from Lemma VIII.6.1, (VIII.6.7), (VIII.6.8), (VIII.5.3), and the inequality

‖p‖q,Ω2R ≤ c1(R, q)‖p‖6,Ω ≤ c2(R, q)|p|1,2 , q ∈ [1, 6] , (VIII.6.9)

we find, on the one hand, that v, p satisfy (VIII.6.3), and on the other hand,
that they satisfy the estimate

‖D2v‖2,Ω2R + ‖∇v‖2,Ω2R + []v[]1,R,Ω2R + ‖p‖r,Ω2R + ‖∇p‖2,Ω2R

≤ C([]F[]2,R + ‖∇ · F‖2 + ‖v∗‖3/2,2,∂Ω + ‖v‖2,2,Ω2R + ‖p‖1,2,Ω2R) .

This latter, in turn, combined with Lemma VIII.6.1 and with (VIII.6.9), yields

|v|2,2+ |v|1,2 + []v[]1,R + |p|1,2 + ‖p‖q1 + ‖p‖q2,Ω2R

≤ C ([]F []2,R + ‖∇ · F‖2 + ‖v∗‖3/2,2,∂Ω + ‖v‖2,Ω3R + ‖p‖2,Ω3R) ,
(VIII.6.10)

where C = C(Ω,R, q1, q2, B). By means of a standard argument that we have
already used several times, we will now show that

‖v‖2,Ω3R + ‖p‖2,Ω3R ≤ C(‖∇ ·F‖2 + []F[]2,R + ‖v∗‖3/2,2,∂Ω) , (VIII.6.11)

for some constant C satisfying the property stated in the theorem. Then,
combining (VIII.6.11) with (VIII.6.10), we will obtain (VIII.6.4), and this
will conclude the proof of the theorem. Assume that (VIII.6.11) does not
hold. Then, in view of the linearity of problem (VIII.0.2), (VIII.0.7), we can
find a sequence {Fn, v∗n,Rn, Tn}, with Rn, Tn ∈ [0, B], and a sequence of
corresponding solutions {vn, pn} such that

[|Fn|]2,Rn
+ ‖∇ · Fn‖2 + ‖v∗n‖2−1/q,q,∂Ω ≤ 1

n
,

‖vn‖q,Ω3R + ‖pn‖q,Ω3R = 1.

(VIII.6.12)
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From (VIII.6.4), it follows that the sequence of solutions is bounded in the
norm defined by the left-hand side of (VIII.6.4) and that therefore, it con-
verges, in a suitable topology, to a pair {v0, p0} that belongs to the class
defined by (VIII.6.3). Since, in particular,

‖vn‖1,2,Ω3R + ‖pn‖1,2,Ω3R ≤M

with M independent of n, by Rellich’s compactness theorem, Theorem II.5.2,
and by the second equation in (VIII.6.12) we infer

‖v0‖q,Ω3R + ‖p0‖q,Ω3R = 1. (VIII.6.13)

Moreover, using (VIII.6.12)1, it is easy to show that v0, p0 is a solution of the
following boundary-value problem:

∆v0 + R0
∂v0

∂x1
+ T0 (e1 × x · ∇v0 − e1 × v0) = ∇p0

∇ · v0 = 0





in Ω

v0 = 0 at ∂Ω,

(VIII.6.14)

where R0 = limn→∞ Rn, T0 = limn→∞ Tn. However, v0, p0 satisfy (VIII.6.3),
so that in particular, v0 is a weak solution to (VIII.6.14). Thus, by the unique-
ness Theorem VIII.2.1 we obtain v0 = p0 = 0,3 contradicting (VIII.6.13). This
proves (VIII.6.11), and concludes the proof of the theorem.

ut

Remark VIII.6.1 The methods used in the proof of the previous theorem
provide pointwise asymptotic estimates for the velocity field. However, these
methods can be further exploited to give similar results also for the derivatives
of the velocity and of the associated pressure fields. In particular, one can
prove the following two theorems, for whose proof we refer to Galdi (2003,
Theorem 4.1) and Galdi & Silvestre (2007b, Theorem 3), respectively.

Theorem VIII.6.2 Let Ω, F and v∗ be as in Theorem VIII.6.1, and let v
be the corresponding generalized solution to (VIII.0.2), (VIII.0.7) with R = 0.
Suppose also that

[|DiFijej |]3 + [|DjDiFij|]4 <∞
and v∗ ∈ W 2−1/q,q(∂Ω) for all q > 1. Then, in addition to the properties
stated in Theorem VIII.6.1, v and the associated pressure p satisfy

v ∈W 2,q
loc (Ω) , all q ≥ 1, [|∇v|]2 <∞ ,

p ∈W 1,q
loc (Ω), all q ≥ 1, [|p|]2 + [|∇p|]3,ΩR <∞, all R > δ(B).

Moreover, the following estimate holds:

3 Recall that, for instance, p0 ∈ L6(Ω).
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‖v‖2,q,ΩR+ [|∇v|]2 + [|p|]2 + [|∇p|]3,ΩR

≤ c
(
[|F|]2 + [|DiFijej |]3 + [|DjDiFij|]4 + ‖v∗‖2−1/q,q,∂Ω

)
,

where the constant c depends only on Ω, q, R, and B, whenever T ∈ [0, B].

Theorem VIII.6.3 Let Ω and v∗ be as in Theorem VIII.6.1, f ∈ L∞(Ω)
with []f [] 5

2 ,R < ∞, and let v be the generalized solution to (VIII.0.2),

(VIII.0.7) corresponding to f and v∗.4 Then, v and the associated pressure
field p satisfy

v ∈W 2,2
loc (D) ∩D1,2(D) ∩D2,2(D), []v[]1,R + []∇v[] 3

2 ,R <∞
p ∈ W 1,2(D),

along with the estimate

|v|2,2 + |v|1,2 + []v[]1,1 + []∇v[] 3
2 ,R + ‖p‖1,2 ≤ C

(
‖v∗‖ 3

2 ,2 + R− 1
2 []f[] 5

2 ,R

)
,

with C = C(Ω,B), whenever R, T ∈ (0, B).

Notice that in both theorems, the gradient of the velocity field decays exactly
as the gradient of the Stokes fundamental tensor (Theorem VIII.6.2) and that
of the Oseen fundamental tensor (Theorem VIII.6.3). �

Remark VIII.6.2 An interesting problem that can be naturally posed, is
to determine the asymptotic structure of a generalized solution. To date, the
investigation of this issue is still in progress. However, at least in the case
R = 0, Farwig & Hishida (2009) furnish a detailed picture, when the tensor
field F in Theorem VIII.6.1 has components in C∞

0 (Ω), and the boundary
condition reduces to a rigid rotation, that is, v∗ = e1×x. In particular, these
authors prove an asymptotic expansion, for large |x|, of the velocity field, and
they show that the leading term of this expansion is given by

e1 ·
(∫

∂Ω

[T (v, p) + F ] · n
)
u1(x) ,

where u1(x) = (U11(x), U21(x), U31(x)), and (U(x), q(x)) is the Stokes fun-
damental solution. A crucial tool in the proof of this result is provided by the
fact that the field u1(x), q1(x) is a solution to the generalized Oseen system
with R = 0:

∆u1(x) + T (e1 × x · ∇u1(x) − e1 × u1(x)) = ∇q1(x) ,
∇ · u1(x) = 0 ,

for all x ∈ R3 − {0} ,
4 Observe that the assumption on f implies that f ∈ D−1,2

0 (Ω), as the reader will
easily prove. Furthermore, the statement of this result given in Galdi & Silvestre
(2007b) requires the condition

R
∂Ω
v∗ · n = 0, which in fact, is not needed.
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since, as the reader may wish to show,

e1 × x · ∇u1(x) − e1 × u1(x) = 0 , for all x ∈ R3 − {0}.
�

VIII.7 Existence, Uniqueness, and Lq-Estimates. The
case R = 0

In this and the next section we will investigate existence, uniqueness, and
associated estimates of solutions corresponding to right-hand side f from
Lebesgue space Lq, and boundary data v∗ in the trace space W 2−2/q,q(∂Ω),
for suitable values of q. Since the results for the cases R = 0 and R 6= 0 are
quite different, we prefer to analyze them separately, beginning with the case
R = 0 in the current section, while deferring the other case to the following
one.

The starting point of our analysis (regardless of whether R = 0 or 6= 0) is
an appropriate uniqueness result. Precisely, we have the following.

Lemma VIII.7.1 Suppose that for some r ∈ (1,∞) and all R > 0, (u, q) ∈
W 2,r(BR) ×W 1,r(BR) is a solution to (VIII.5.1)1,2 corresponding to f = 0.
The following properties hold:

(a) If

u =

N∑

i=1

ui , ui ∈ Lqi(R3) , for some qi ∈ (1,∞) , i = 1, . . . , N ,

(VIII.7.1)
then u(x) = 0 , ∇q(x) = 0 for a.a. x ∈ R3.

(b) If

D2u =

M∑

i=1

ûi , ûi ∈ Lbqi (R3) , for some q̂i ∈ (1,∞) , i = 1, . . . ,M ,

(VIII.7.2)
then D2u(x) = 0 for a.a. x ∈ R3.

Proof. We begin by proving the property in (a). For simplicity, we shall
consider the case N = 2, leaving to the reader the simple task of estab-
lishing the result in the general case. If we perform the change of variables
(VIII.5.9)–(VIII.5.11), the problem (VIII.5.1) (with f = 0) produces the fol-
lowing Cauchy problem:

∂w

∂t
= ∆w+ R ∂w

∂χ1
−∇π

∇ ·w = 0





in R3 × (0,∞) ,

lim
t→0+

‖w(t) − u‖q,BR = 0 ,

(VIII.7.3)



VIII.7 Existence, Uniqueness, and Lq-Estimates. The case R = 0 561

where q = min{q1, q2}, and R is an arbitrary positive number. Now let W i =
W i(χ, t), i = 1, 2, be the solution that we constructed in Theorem VIII.4.3
to the following Cauchy problem:

∂W i

∂t
= ∆W i + R∂W i

∂χ1

∇ ·W i = 0





in R3 × (0,∞) ,

lim
t→0

‖W i(t) − ui‖qi = 0 .

(VIII.7.4)

As we know from that theorem, W i satisfies, in particular, the following
properties for i = 1, 2:

W i ∈ Lqi(R3
T ) , all T > 0 ,

∂W i

∂t
, D2W i ∈ Lqi

loc((0, T ]× R3)

‖W i(t)‖r ≤ ci t
−3(1/q−1/r)/2‖ui‖qi , i = 1, 2 , all t > 0 ,

(VIII.7.5)

where r > q ≡ max{q1, q2}. Therefore, from (VIII.7.3) and (VIII.7.4) we infer
that the vector field W ≡ w −W 1 −W 2 satisfies

∂W

∂t
= ∆W + R∂W

∂χ1
+ ∇π

∇ ·W = 0





in R3 × (0,∞) ,

lim
t→0

‖W (t)‖q,BR = 0 ,

(VIII.7.6)

where R is an arbitrary positive number. Taking also into account that (see
(VIII.5.15))

∂w

∂t
= −T Q(t) · (e1 × x · ∇u− e1 × u)

by the assumptions made on u and q, we easily deduce

∂w

∂t
, D2w , ∇π ∈ Lr

loc(R
3
T ) , for all T > 0.

Moreover, obviously,

w = w1 +w2 , wi ∈ Lqi (R3
T ) , i = 1, 2 , for all T > 0.

Consequently, from these latter properties and from (VIII.7.5)1,2 we find that
the fieldsW , π satisfy the assumptions of Lemma VIII.4.2, so that we conclude

w = W 1 +W 2 , ∇π = 0 a.e. in R3
T . (VIII.7.7)

Recalling that π(χ, t) = q(Q>(t) · χ, t), x = Q> · χ, the second relation in
(VIII.8.11) delivers ∇q = 0 in R3. Furthermore, taking into account that
w(χ, t) = Q(t) · u(Q>(t) ·χ), from (VIII.7.7) and (VIII.7.5)3 we also have
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‖u‖r = ‖w(t)‖r ≤ ‖W 1(t)‖r + ‖W 2(t)‖r

≤ c t−3(1/q−1/r)/2 (‖u1‖q1 + ‖u2‖q2) .

Letting t → ∞ in this relation gives ‖u‖r = 0, which concludes the proof of
part (a). We shall next prove part (b), again for the simplest case M = 2. We
recall that by Theorem VIII.1.1, u, q ∈ C∞(R3), which implies that (w, π)
is of class C∞ in space and time. Thus, setting w := ∆w, q := ∆q, from
(VIII.7.3) and (VIII.5.16) we deduce

∂w

∂t
= ∆w + R ∂w

∂χ1
−∇q

∇ · w = 0





in R3 × (0,∞) ,

lim
t→0+

‖w −∆u‖bq,BR
= 0 ,

(VIII.7.8)

where q̂ = min{q̂1, q̂2}, and R > 0 is arbitrary. We next repeat for the problem
(VIII.7.8) exactly the same argument used for the proof of the property in
(a), and show that ∆u = 0 a.e. in R3

T . In view of the assumption on D2u and
Exercise II.11.11, we thus conclude that D2u = 0 a.e. in R3

T , and the proof of
the lemma is complete.

ut

An important consequence of the previous result is the following general
uniqueness result.

Theorem VIII.7.1 Let Ω be locally Lipschitz, and let (vi, pi), i = 1, 2, be
two solutions to (VIII.0.7), (VIII.0.2) corresponding to the same data f and
v∗ and such that for all R > δ(Ωc),

(vi, pi) ∈ W 2,qi(ΩR) ×W 1,qi(ΩR) , vi ∈ Lri (Ω) ,

for some qi, ri ∈ (1,∞), i = 1, 2 .
(VIII.7.9)

Then v1 = v2, ∇(p1 − p2) = 0, a.e. in Ω.

Proof. Set v = v1 − v2, p = p1 − p2. From (VIII.0.7) we obtain

∆v + R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p

∇ · v = 0





in Ω

v = 0 at ∂Ω .

(VIII.7.10)

In view of the assumptions and Theorem VIII.1.1, it follows, in particular,
that

(v, p) ∈ [C∞(Ω) ×C∞(Ω)] ∩ [W 2,2(Ωρ) ×W 1,2(Ωρ)] , for all ρ > δ(Ωc).
(VIII.7.11)
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For a fixed σ > δ(Ωc), let ψ = ψ(x) be a smooth “cut-off” function that is
0 for |x| ≤ σ and 1 for |x| ≥ 2σ, and set u = ψ v + w, Φ = ψ p, where w
satisfies the following properties:

∇ ·w = −v · ∇ψ in Ωσ,2σ , w ∈ C∞
0 (Ωσ,2σ) ,

‖w‖2,q,R3 ≤ c ‖v‖1,q,Ωσ,2σ .
(VIII.7.12)

Since
∫

Ωσ,2σ

v · ∇ψ =

∫

Ω2σ

∇ · (ψv) =

∫

∂B2σ

ψv ·n = −
∫

∂Ω

v ·n = 0 , (VIII.7.13)

from Theorem III.3.3 we know that problem (VIII.7.12) has at least one solu-
tion. By a direct computation that starts with (VIII.7.10), we thus find that
the pair (u, Φ) is a solution to the following problem:

∆u+ R ∂u

∂x1
+ T (e1 × x · ∇u− e1 × u) = ∇Φ+ F

∇ · u = 0





in R3 , (VIII.7.14)

with

F = ∆w + R ∂w

∂x1
+ T

(
e1 ×w− e1 ×w

)

+Rv ∂ψ

∂x1
− p∇ψ + 2∇ψ · ∇v + v∆ψ .

(VIII.7.15)

In view of (VIII.7.11) and (VIII.7.12), we deduce F ∈ C∞
0 (Ω), and so, in

particular, F ∈ D1,2
0 (R3). By Theorem VIII.1.1 and Theorem VIII.1.2, we

then infer that problem (VIII.7.14) has at least one solution,

(u, Φ) ∈ [D1,2
0 (R3) ∩ L6(R3) ∩ C∞(R3)]× C∞(R3) . (VIII.7.16)

Since
u − u = u + (w − ψv1) + ψv2 ≡ u1 + u2 + u3

is a solution to (VIII.7.14) with F ≡ 0, and since from (VIII.7.16), (VIII.7.12)
and the assumption (VIII.7.9), we have ui ∈ Lsi(R3), for suitable si ∈ (1,∞),
i = 1, 2, 3, by Lemma VIII.7.1 we infer u = u. This latter, in turn, by the
properties of ψ and by (VIII.7.11) and (VIII.7.16), implies, in particular,

v ∈ D1,2(Ω2σ) .

This information along with (VIII.7.11) furnishes that v is a generalized so-
lution to (VIII.7.10), and so by Lemma VIII.2.3, we conclude that v = 0 in
Ω, which ends the proof of the lemma. ut

We shall now begin our investigation of the summability properties of
solutions to (VIII.0.7), (VIII.0.2), by considering first the case R = 0 and
Ω = R3. The following lemma holds.
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Lemma VIII.7.2 Let f ∈ Lq(R3), for some q ∈ (1,∞). Then, the problem

∆v+ T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0

}
a.e. in R3 (VIII.7.17)

has at least one solution v, p such that

(v, p) ∈ D2,q(R3) ∩D1,q(R3) ,

(e1 × x · ∇v− e1 × v) ∈ Lq(R3) ,
(VIII.7.18)

satisfying

|v|2,q + |p|1,q + T ‖e1 × x · ∇v − e1 × v‖q ≤ c1 ‖f‖q , (VIII.7.19)

where c1 = c1(q) > 0. If 1 < q < 3, there is a solution that in addition to
(VIII.7.19) also satisfies

(v, p) ∈ D1,3q/(3−q)(R3) ∩L3q/(3−q)(R3) (VIII.7.20)

along with the inequality

|v|1,3q/(3−q) + ‖p‖3q/(3−q) ≤ c2 ‖f‖q (VIII.7.21)

and c2 = c2(q) > 0. Furthermore, if 1 < q < 3/2, we can find a solution that
in addition to (VIII.7.19) and (VIII.7.19), satisfies further,

v ∈ L3q/(3−2q)(R3) (VIII.7.22)

and
‖v‖3q/(3−2q) ≤ c3 ‖f‖q , (VIII.7.23)

with c3 = c3(q) > 0.
Finally, if f ∈ Lq(R3) for all q ∈ (1,∞), there exists a solution (v, p) to

(VIII.7.17) satisfying (VIII.7.18)–(VIII.7.23) for all specified values of q.

Proof. It will be enough to prove the existence of a solution satisfying the
stated estimates for the appropriate derivatives of v and p only, in that the
inequality for the “rotational” term (e1×x·∇v−e1×v) becomes a consequence
of (VIII.7.17)1 and these estimates. Let us take first f ∈ C∞

0 (R3). Then, from
Theorem VIII.5.1, we know that problem (VIII.7.17) has one and only one
smooth solution (v, p) such that

v ∈ Ls1(R3) ∩D1,s2(R3) ∩D2,s3(R3) , all s1 > 3, s2 > 3/2, and s3 > 1.
(VIII.7.24)

Making the change of variables (VIII.5.9)–(VIII.5.11) (with u ≡ v), we showed
in Section VIII.5 that problem (VIII.7.17) goes into the following Cauchy
problem:
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∂w

∂t
= ∆w−∇π + F

∇ ·w = 0





in R3 × (0,∞) ,

lim
t→0+

‖w(t) − v‖s1 = 0 ,

(VIII.7.25)

where F (χ, t) = −Q(t) ·g(Q>(t) ·χ). Then, from Theorem VIII.4.1, Theorem
VIII.4.3, Lemma VIII.4.2, and (VIII.7.24), we at once obtain that we may
write w = w1 +w2, where (w1, π) satisfy (VIII.7.25) with v ≡ 0, while

w2(x, t) =

(
1

4π t

)3/2 ∫

R3

e−|x−y|2/4tv(y)dy . (VIII.7.26)

Again by Theorem VIII.4.1, we obtain

∫ T

0

(
|w1(t)|q2,q + |π(t)|q1,q

)
dt ≤ C1

∫ T

0

‖F (t)‖q
qdt , (VIII.7.27)

with a constant C1 independent of T > 0. Furthermore, by differentiating
twice both sides of (VIII.7.26) with respect to the x variable, and then apply-
ing Young’s inequality (II.11.2), we deduce

|w2(t)|2,q ≤ C2t
− 3

2

“
1

s3
− 1

q

”

|v|2,s3 ,

with C2 independent of t > 0, and s3 ∈ (1, q). From this latter it follows that

∫ T

0

|w2(t)|q2,qdt ≤ C3T
− 3

2

“
q

s3
−1

”
+1|v|q2,s3

, (VIII.7.28)

with C3 independent of T . Consequently, recalling that

|v|2,q = |w(t)|2,q , |p|1,q = |π(t)|1,q , ‖f‖q = ‖F (t)‖q , for all t ≥ 0 ,

we obtain

T
(
|v|q2,q + |p|q1,q

)
≤ C4

∫ T

0

(
|w1(t)|q2,q + |w2(t)|2,q + |π(t)|q1,q

)
dt

≤ C5

(∫ T

0

‖F (t)‖q
qdt+ T

− 3
2

“
q

s3
−1

”
+1|v|q2,s3

)

= C5

(
T‖f‖q

q + T
− 3

2

“
q

s3
−1

”
+1|v|q2,s3

)
.

Dividing both sides of this inequality by T , and passing to the limit T → ∞,
we then get

|v|2,q + |p|1,q ≤ C6 ‖f‖q , (VIII.7.29)
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with C6 = C6(q). Next, let f be merely in Lq(R3), and denote by {fk} ⊂
C∞

0 (R3) a sequence converging to f in Lq(R3). We shall show that the se-
quence of corresponding solutions {vk, pk} can be modified by adding to vk a
suitable linear function, in such a way that the new sequence converges to a
solution (v, p) to (VIII.7.17) satisfying the estimates stated in the lemma. We
begin by considering the case q ∈ (1,∞). From (VIII.7.29) and the uniqueness
Theorem VIII.7.1, it follows that {vk, pk} is Cauchy in Ḋ2,q(R3) × Ḋ1,q(R3),
and, consequently, so is {ṽk, pk}, where

ṽk := vk − akx1 − bkx2 − ckx3 − dk ,

ak := (D1vk)B1
, bk := (D2vk)B1

, ck := (D3vk)B1
, dk := vkB1

.

(VIII.7.30)
Thus, by Lemma II.6.2 and (VIII.7.29), there exists at least one (ṽ, p) ∈
D2,q(R3) ×D1,q(R3) such that

D2ṽk → D2ṽ , ∇pk → ∇p in Lq(R3) , (VIII.7.31)

which satisfies
|ṽ|2,q + |p|1,q ≤ C6 ‖f‖q , (VIII.7.32)

In addition, also by means of the first of the obvious properties

∫

BR

xi =

∫

BR

xixj = 0 , for all R > 0 and i, j = 1, 2, 3 , i 6= j , (VIII.7.33)

we obtain
(D1ṽk)B1

= (D2ṽk)B1
= (D3ṽk)B1

= ṽkB1
= 0 ,

and so, from a double application of Theorem II.5.4, Exercise II.6.1 and
(VIII.7.31), we obtain

ṽk → ṽ in W 1,q(BR), for all R > 0 . (VIII.7.34)

Thus, noticing that ∇ · ṽk = 0 for all k ∈ N, we deduce, in particular,

∇ · ṽ = 0 . (VIII.7.35)

Since

e1 × x · ∇x1 = 0 , e1 × x · ∇x2 = −x3 , e1 × x · ∇x3 = x2 , (VIII.7.36)

we have

e1 × x · ∇vk = e1 × x · ∇ṽk + x2ck − x3bk ,

e1 × vk = e1 × ṽk + e1 × (x1ak + x2bk + x3ck + dk) .

Consequently, from (VIII.7.17)1, which with f ≡ fk is satisfied by (vk, pk)
for all k ∈ N, we obtain
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(
∆ṽk+ T (e1 × x · ∇ṽk − e1 × ṽk), ψ

)
− (∇pk, ψ) − (f , ψ)

= T (x2Bk + x3Ck + e1 × (x1ak + dk), ψ) ,

Bk : = −ck + e1 × bk , Ck := bk + e1 × ck ,

(VIII.7.37)

for all ψ ∈ L∞(R3) with bounded support. In view of (VIII.7.31) and
(VIII.7.34), it follows that as k → ∞,

(
∆ṽk+ T (e1 × x · ∇ṽk − e1 × ṽk), ψ

)
− (∇pk, ψ) − (f , ψ)

→
(
∆ṽ + T (e1 × x · ∇ṽ− e1 × ṽ), ψ

)
− (∇p, ψ) − (f , ψ) ,

(VIII.7.38)
for all functions ψ specified above. Denote by χR the characteristic function
of BR. Then, if we choose in (VIII.7.37), in order, ψ = χR, ψ = χRxi, i =
1, 2, 3, recall (VIII.7.33), and use (VIII.7.38), it is easily shown that there are
d,a,B,C ∈ R3 such that

e1 × dk → e1 × d , e1 × ak → e1 × a , Bk → B , Ck → C , as k → ∞ ,
(VIII.7.39)

where the vectors a,B,C may be taken to satisfy

a · e1 = 0 , B = B1e1 + e1 ×C , C = C1e1 − e1 ×B . (VIII.7.40)

Combining (VIII.7.38)–(VIII.7.40), by the arbitrariness of ψ we thus deduce
the validity of the following equation, a.e. in R3:

∆ṽ+ T (e1 × x · ∇ṽ − e1 × ṽ) −∇p− f
= T (x2(B1e1 + e1 ×C) + x3(C1e1 − e1 ×B) + e1 × (x1a + d)) .

(VIII.7.41)
Set

v∗ = ṽ + x1a + d+ x2C1e1 − x3B1e1 .

Observing that with the help of (VIII.7.36), we have

e1 × ṽ + x1e1 × a + e1 × d = e1 × (ṽ + x1a+ d+ x2C1e1 − x3B1e1) ,

= e1 × v∗

e1 × x · ∇ṽ − x2B1e1 − x3C1e1 = e1 × x · ∇(ṽ − x3B1e1 + x2C1e1)

= e1 × x · ∇(ṽ−x3B1e1+x2C1e1 + x1a+ d)

= e1 × x · ∇v∗ ,

equation (VIII.7.41) can be rewritten as follows:

∆v∗ + T (e1 × x · ∇v∗ − e1 × v∗) −∇p− f = T (x2e1 ×C − x3e1 ×B)) .
(VIII.7.42)

Moreover, by (VIII.7.35) and (VIII.7.40)1, we obtain



568 VIII Steady Generalized Oseen Flow in Exterior Domains

∇ · v∗ = 0 . (VIII.7.43)

We next observe that setting B′ = (0, B2, B3) and C ′ = (0, C2, C3), from
(VIII.7.40)2,3, we deduce

B′ = e1 ×C = e1 ×C ′ , C ′ = −e1 ×B = −e1 ×B′ . (VIII.7.44)

Therefore, if we let v := v∗ + 1
2 (x2C

′ − x3B
′), equation (VIII.7.42) delivers

∆v + T (e1 × x · ∇v∗ − 1
2(x2B

′ + x3C
′) − e1 × v) = ∇p+ f . (VIII.7.45)

However, employing the identities (VIII.7.36)2,3, we have

e1×x ·∇v∗− 1
2 (x2B

′+x3C
′) = e1×x ·∇

(
v∗+ 1

2 (x2C
′−x3B

′)) = e1×x ·∇v ,

so that from the latter and (VIII.7.45), we establish that (v, p) satisfies
(VIII.7.17)1. Since v and ṽ differ by a linear function of x, by (VIII.7.32), we
infer that (v, p) also satisfies (VIII.7.19). Finally, noting that by (VIII.7.44)
C ′

3 = B′
2, and using (VIII.7.43), we get ∇ · v = 0, and we conclude that (v, p)

satisfies all the properties stated in the lemma, which is thus proved for a
generic q ∈ (1,∞). If q ∈ (1, 3), we define ṽk := vk − vkB1

, and proceed
as in the previous proof, by formally taking ak = bk = ck = 0. The only
thing that we have to notice is that when q ∈ (1, 3), the fields vk and pk

converge (strongly) also in Ḋ3q/(3−q)(R3), in view of the following inequalities
(see Theorem II.6.3, and, in particular, (II.6.49)):

|vk|3q/(3−q) ≤ c1 |vk|2,q

|pk|3q/(3−q) ≤ c1 |pk|1,q

, for all k ∈ N.

As a consequence, the fields ṽ (and therefore v := ṽ+d; see (VIII.7.39)) and
p will satisfy the same inequality, which, together with (VIII.7.32), completes
the proof also when q ∈ (1, 3). Finally, if q ∈ (1, 3/2), again by Theorem II.6.3
and by (VIII.7.29) the approximating solution {vk, pk} satisfies the inequality

‖vk‖3q/(3−2q) + |vk|3q/(3−q) + |vk|2,q + |pk|1,q ≤ c2 ‖fk‖q , for all k ∈ N.
(VIII.7.46)

Thus, from (VIII.7.46) and the uniqueness Theorem VIII.7.1, it follows that
{vk, pk} is Cauchy in the (Banach) space of functions having finite norm on
the left-hand side of (VIII.7.46). Therefore, the sequence converges to some
(v, p) that, on the one hand, satisfies (VIII.7.46) with f in place of fk, and, on
the other hand, as shown by a simple argument, satisfies (VIII.7.17). Finally,
assume f ∈ Lq(R3) for all q ∈ (1,∞). By taking, in particular, q ∈ (1, 3/2),
from the existence result just shown, we obtain a solution (v, p) satisfying
(VIII.7.18)–(VIII.7.23) for this specific value of q. However, by the existence
result and the uniqueness Lemma VIII.7.1, (v, p) will satisfy (VIII.7.18)–
(VIII.7.23) for all q ∈ (1, 3/2). Next, let q ∈ [3/2, 3) and let
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(v1, p1) ∈ [D2,q(R3) ∩D1,3q/(3−q)(R3)] × [D1,q(R3) ∩ L3q/(3−q)(R3)]

be the solution previously constructed. We claim that

D2v1 = D2v ∇v1 = ∇v , and p1 = p , a.e. in R3. (VIII.7.47)

In fact, again by Lemma VIII.7.1, the first relation in (VIII.7.47) follows
immediately. This latter implies∇v1 = ∇v+A, whereA is a constant second-
order tensor. However, since for s ∈ (1, 3/2),

∫

R3

(
|∇v1|3q/(3−q) + |∇v|3s/(3−s)

)
<∞ ,

there exists an unbounded sequence {ρk} ⊂ (0,∞) such that

lim
k→∞

∫

S2

(
|∇v1(ρk , ω)|3q/(3−q) + |∇v(ρk, ω)|3s/(3−s)

)
dω = 0,

which implies

lim
k→∞

∫

S2

(|∇v1(ρk, ω)| + |∇v(ρk, ω)|)dω = 0,

and so we conclude that A = 0, which proves the second relation in
(VIII.7.47). As for the pressure, we observe that since both (v1, p1) and (v, p)
obey (VIII.7.17), by a simple argument we show that, setting π := p1 − p, it
is (∇π,∇ψ) = 0, for all ψ ∈ C∞

0 (R3). Thus, π is harmonic in R3, and since
p1 ∈ L3q/(3−q)(R3), p ∈ L3s/(3−s)(R3), s ∈ (1, 3/2), the third condition in
(VIII.7.47) follows from Exercise II.11.11. Finally, suppose q ∈ [3,∞). Then,
by the existence part of the lemma, we find a solution (v2, p2) such that

(v2, p2) ∈ D2,q(R3) × [D1,q(R3) .

We claim

D2v2 = D2v and ∇p2 = ∇p , a.e. in R3. (VIII.7.48)

In fact, again by the uniqueness Lemma VIII.7.1, the first condition in
(VIII.7.48) is at once verified. Concerning the second one, we can show, as
before, that p2−p is harmonic in R3 and since p2 ∈ D1,q(R3), p ∈ D1,s(R3) for
s ∈ (1, 3/2), from Exercise II.11.11 we infer the validity of the second relation
in (VIII.7.48), and the proof of the lemma is complete. ut

Exercise VIII.7.1 Let v be the velocity field of the solution determined in Lemma

VIII.7.2 corresponding to f ∈ Lq(R3), q ∈ (1,∞), and let (x1, r, θ) be a system of

cylindrical coordinates. Show that ∂v1/∂θ ∈ Lq(R3). Show also that this latter

implies (v1 − v1) ∈ Lq(R3), where v1 = v1(x1, r) := 1
2π

R 2π

0
v1(x1, r, θ) dθ. Hint: Use

(VIII.7.19) and the Wirtinger inequality (II.5.17).
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The next result concerns an extension of the previous lemma to the case
of an exterior domain.

Theorem VIII.7.2 Let Ω be an exterior domain of class C2. Then, for any
given

f ∈ Lq(Ω) , v∗ ∈ W 2−1/q,q(∂Ω) , q ∈ (1, 3/2) , (VIII.7.49)

there exists at least one solution, (v, p), to the generalized Oseen problem
(VIII.0.7), (VIII.0.2) with R = 0, such that1

v ∈ D2,q(Ω) ∩D1,3q/(3−q)(Ω ∩ L3q/(3−2q)(Ω) , p ∈ D1,q(Ω ∩ L3q/(3−q)(Ω) .
(VIII.7.50)

Moreover, the following estimate holds:

‖v‖3q/(3−2q) + |v|3q/(3−q)+ |v|2,q + |p|1,q + T ‖e1 × x · ∇v − e1 × v‖q

≤ C
(
‖f‖q + ‖v∗‖2−2/q,q(∂Ω)

)
,

(VIII.7.51)
where C = C(q, Ω, B) whenever T ∈ [0, B]. Finally, suppose that for some
r ∈ (1,∞) and all R > δ(Ωc), (v1, p1) ∈ W 2,r(ΩR) ×W 1,r(ΩR) is another
solution to (VIII.0.7) with R = 0 corresponding to the same data and that

v ∈ Lq(Ω) , for some q ∈ (1,∞) . (VIII.7.52)

Then v(x) = v1(x) , p(x) = p1(x) + p0 for a.a. x ∈ Ω, and some constant p0.

Proof. We begin by observing that the uniqueness part is an immediate con-
sequence of Theorem VIII.7.1. We thus proceed to the proof of existence. For
given f and v∗ satisfying the assumptions of the theorem, let {fk} and {v∗k}
be sequences of smooth functions, with f k of bounded support for each k ∈ N,
converging to f and v∗ in the Lq(Ω)- and W 2−1/q,q(∂Ω)-norms, respectively.
We then denote by vk, k ∈ N, the (unique) generalized solution corresponding
to fk, v∗k, and by pk ∈W 1,2(ΩR) the associated pressure field. We also set

uk = ψ (vk + Φkσ) +wk , φk = ψ pk ,

where ψ is the “cut-off” function introduced in the proof of Theorem VIII.7.1,

Φk :=

∫

∂Ω

v∗k · n ,

σ is defined in (VIII.1.5), and finally, wk satisfies (VIII.7.12) with v ≡
vk + Φkσ. Using the properties of σ, it is at once checked that (VIII.7.13) is
satisfied. We next observe that uk and φk satisfy (VIII.7.17) with f ≡ F k,
where

1 See Remark VIII.7.1.
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F k := fk +∆wk + T
(
e1 ×wk − e1 ×wk

)
+ 2Φk∇ψ · ∇σ + Φkσ∆ψ

−pk ∇ψ + 2∇ψ · ∇vk + vk ∆ψ ,

and where we have used (VIII.1.8). Therefore, recalling (VIII.7.12)2, that for
all R > δ(Ωc),

vk ∈W 2,2(ΩR) ∩ L6(Ω) , pk ∈W 1,2(ΩR) (VIII.7.53)

(see Remark VIII.1.1), and that moreover, by the trace Theorem II.4.1, |Φk| ≤
c‖vk‖1,r,Ω2σ , for any r ≥ 1, we obtain, after a simple computation,

‖F k‖q ≤ C (‖fk‖q + ‖vk‖1,q,Ω2σ + ‖pk‖q,Ω2σ ) , for all q ∈ (1, 3/2),
(VIII.7.54)

where C = C(σ, Ω, q, B). Now, again by (VIII.7.53), we have

uk ∈ L6(R3) ∩W 2,2(BR) , φk ∈W 1,2(BR) ,

for all R > 0, and so by Lemma VIII.7.2, Lemma VIII.7.1, and (VIII.7.54), we
obtain, on the one hand, that (uk, φk) is in the class (VIII.7.50), for all k ∈ N,
and that, on the other hand, it must satisfy (VIII.7.51) with f replaced by
F k. Recalling that uk(x) = vk(x), φk(x) = pk(x) for all x ∈ Ω2σ, and taking
into account (VIII.7.54), we thus deduce

‖vk‖3q/(3−2q),Ω2σ+ |vk|3q/(3−q),Ω2σ + |vk|2,q,Ω2σ + |pk|1,q,Ω2σ

≤ C (‖fk‖q + ‖vk‖1,q,Ω2σ + ‖pk‖q,Ω2σ) ,
(VIII.7.55)

with C = C(q, Ω, σ). However, by Lemma VIII.6.1, we also have

‖vk‖2,q,Ω2σ+‖pk‖1,q,Ω2σ

≤ c2 (‖fk‖q,Ω3σ + ‖v∗k‖2−1/q,q,∂Ω + ‖vk‖q,Ω3σ + ‖pk‖q,Ω3σ ),
(VIII.7.56)

where c2 = c2(q, σ, Ω, B). Therefore, combining (VIII.7.55) and (VIII.7.56)
we deduce

‖vk‖3q/(3−2q) +|vk|3q/(3−q) + |vk|2,q + |pk|1,q

≤ c3
(
‖fk‖q + ‖v∗k‖2−1/q,q(∂Ω) + ‖vk‖1,qΩ3σ + ‖pk‖q,Ω3σ

)
,

(VIII.7.57)
where c3 = c3(q, Ω, σ, B). The next task is to prove the existence of a constant
c4 = c4(q, Ω, σ, B) such that

‖vk‖1,q,Ω3σ + ‖pk‖q,Ω3σ ≤ c4
(
‖fk‖q + ‖v∗k‖2−1/q,q(∂Ω)

)
. (VIII.7.58)

The proof of (VIII.7.58) is based on a contradiction argument that uses (i) the
embedding W 1,q(Ω) ↪→↪→ Lq(ΩR) (see Exercise II.5.8), and (ii) the unique-
ness of solutions to (VIII.0.7), (VIII.0.2) with R = 0 and T ∈ [0, B], in
the class of functions (VIII.7.50). Since the argument is entirely analogous to
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that employed in the proofs of Theorem V.5.1, Theorem V.8.1, and Theorem
VII.7.1, it will be omitted. From (VIII.7.57) and (VIII.7.58), we thus infer

‖vk‖3q/(3−2q)+|vk|3q/(3−q)+|vk|2,q+|pk|1,q ≤ c5
(
‖fk‖q + ‖v∗k‖2−1/q,q(∂Ω)

)
,

(VIII.7.59)
with c5 = c5(q, Ω, σ, B). We now let k → ∞ in this relation and, again by a
by now standard reasoning, we show that {(vk, pk)} tends, in the topology
defined by the left-hand side of (VIII.7.59), to a solution (v, p) to (VIII.0.7),
(VIII.0.2), with R = 0, satisfying all the statements of the theorem, which is
therefore completely proved. ut

Remark VIII.7.1 We would like to specify the way in which solutions con-
structed in the previous theorem satisfy the condition at infinity (VIII.0.2).
Since q ∈ (1, 3/2), we have v ∈ D1,s(Ω), where s := 3q/(3 − q) < 3. Conse-
quently, taking also into account that v ∈ L3q/(3−2q)(Ω), from Lemma II.6.3
we have ∫

S2

|v(|x|, ω)| dω = o
(
|x|2−3/q

)
as |x| → ∞ .

�

Exercise VIII.7.2 Let the assumptions of Theorem VIII.7.2 on Ω, f , and v∗ be
satisfied, and suppose, in addition, that f ∈ Ls(Ω), v∗ ∈ W 2−1/s,s(∂Ω), for some
s ∈ (1,∞). Show that the corresponding solution (v, p), besides the properties stated
in that theorem, satisfies also the following ones:

(v, p) ∈ D2,s(Ω) ×D1,s(Ω) ,

|v|2,s + |p|1,s ≤ C
`
‖f‖s + ‖v∗‖2−1/s(∂Ω)

´
,

with C = C(q, Ω,B), whenever T ∈ [0, B]. Moreover, show that

lim
|x|→∞

v(x) = 0 if s ∈ (1, 3/2) ; lim
|x|→∞

∇v(x) = 0 if s ∈ (1, 3) .

Hint: Use the arguments of the proof of Theorem V.4.8.

VIII.8 Existence, Uniqueness, and Lq-Estimates. The
Case R 6= 0

We begin by proving existence of solutions, with corresponding estimates,
to the system (VIII.5.1)1,2, when f ∈ Lq(R3). To this end, we will use the
following result of Farwig (2006, Theorem 1.1) which we state without proof;
see also Galdi & Kyed (2011b, Theorem 1.1) for a simple proof.

Lemma VIII.8.1 Let f ∈ Lq(R3), for some q ∈ (1,∞), and R > 0. Suppose
that the problem
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∆v+ R ∂v

∂x1
+ T (e1 × x · ∇v − e1 × v) = ∇p+ f

∇ · v = 0





a.e. in R3

(VIII.8.1)
has a solution (v, p) ∈ D2,s(R3) ×D1,s(R3), for some s ∈ (1,∞). Then

∂v

∂x1
, (e1 × x · ∇v − e1 × v) ∈ Lq(R3) ,

and the following estimate holds:

R
∥∥∥∥
∂v

∂x1

∥∥∥∥
q

+ T ‖e1 × x · ∇v − e1 × v‖q ≤ C1

(
1 +

R4

T 2

)
‖f‖q .

We are now in a position to prove the following.

Lemma VIII.8.2 Let f ∈ Lq(R3), for some q ∈ (1,∞), and R > 0. Then,
problem (VIII.8.1) has at least one solution (v, p) such that

(v, p) ∈ D2,q(R3) ×D1,q(R3) ,

∂v

∂x1
, (e1 × x · ∇v − e1 × v) ∈ Lq(R3) ,

(VIII.8.2)

and that satisfies the inequalities

|v|2,q + |p|1,q ≤ C1 ‖f‖q (VIII.8.3)

and

R
∥∥∥∥
∂v

∂x1

∥∥∥∥
q

+ T ‖e1 × x · ∇v − e1 × v‖q ≤ C1

(
1 +

R4

T 2

)
‖f‖q (VIII.8.4)

with C1 = C1(q). If q ∈ (1, 4), then there is a solution that, in addition to
(VIII.8.2)–(VIII.8.4), satisfies also

v ∈ D1,4q/(4−q)(R3) ,

R1/4|v|1,4q/(4−q) ≤ C2

(
1 +

R4

T 2

)
‖f‖q ,

(VIII.8.5)

with C2 = C2(q). Furthermore, if q ∈ (1, 2), then we can find a solution that,
in addition to (VIII.8.2)–(VIII.8.5), satisfies further,1

v ∈ L2q/(2−q)(R3) , p ∈ L3q/(3−q)(R3) (VIII.8.6)

along with the inequalities

1 In fact, this summability property for p below requires only q ∈ (1, 3).
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R1/2‖v‖2q/(2−q) ≤ C3

(
1 +

R4

T 2

)
‖f‖q ,

‖p‖3q/(3−q) ≤ C3 ‖f‖q ,

(VIII.8.7)

where C3 = C3(q).
Finally, if f ∈ Lq(R3) for all q ∈ (1,∞), then there exists a solution (v, p)

to (VIII.8.1) satisfying (VIII.8.2)–(VIII.8.7) for all specified values of q.

Proof. The proof of this result follows the same main arguments used in that of
Lemma VIII.7.2, and therefore will be only sketched here leaving to the reader
the (straightforward) task of filling in the details. We take first f ∈ C∞

0 (R3).
Thus, from Theorem VIII.5.1, we know that problem (VIII.8.1) has one and
only one smooth solution (v, p) such that

[]v[]1,R + []∇v[]2,R + []D2v[]2,R <∞ ,

|p|1,2 + ‖p‖r <∞ , all r ∈ (3/2,∞) .

It is a simple exercise to show that

v ∈ Ls1(R3) ∩D1,s2(R3) ∩D2,s3(R3) , all s1 > 2, s2 > 4/3, and s3 > 1 ;
(VIII.8.8)

see also (VII.3.28) and (VII.3.33). Therefore, arguing exactly as in the part
of the proof of Lemma VIII.7.2 leading to (VIII.7.29), we can show that v, p
satisfy the estimate (VIII.8.3). From Lemma VIII.8.1 we then infer (VIII.8.2)2,
together with the validity of (VIII.8.4). Take now f just in Lq(R3), and let
{fk} ⊂ C∞

0 (R3) be a sequence converging to f in Lq(R3), and {(vk, pk)}
the sequence of corresponding solutions. From what we have shown, (vk, pk)
satisfies (VIII.8.2)–(VIII.8.4), with f ≡ fk, for all k ∈ N and all q ∈ (1,∞).
We then consider the fields ṽk defined in (VIII.7.30) by formally setting ak =
0, and follow, step by step, the analogous proof given in Lemma VIII.7.2 for
the case of a generic q ∈ (1,∞), to prove the existence of a solution for such
a value of q. This solution satisfies the estimates (VIII.8.3) and that for D1v

in (VIII.8.4). Thus, from (VIII.8.1), we deduce that it satisfies (VIII.8.4).
The lemma is then proved for q ∈ (1,∞). If q ∈ (1, 4), we formally rewrite
the generalized Oseen system (VIII.8.1) for (vk, pk) as the following Oseen
system:

∆vk + R∂vk

∂x1
= ∇pk + F k

∇ · vk = 0





in R3 , (VIII.8.9)

where
F k := fk − T (e1 × x · ∇vk − e1 × vk) .

From Theorem VII.4.1 and the uniqueness property of the pair (vk, pk) we
find that the sequence {vk} is Cauchy (also) in D4q/(4−q)(R3), and thus, af-
ter modifying the vk by a constant vector and proceeding as in the proof
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of Lemma VIII.7.2, we show that the modified sequence, together with the
corresponding sequence {pk}, converges to a solution to (VIII.8.1) with the
properties (VIII.8.2)–(VIII.8.5). In the last case, q ∈ (1, 2), again from The-
orem VII.4.1 applied to (VIII.8.9), we obtain that the sequence {(vk, pk)}
satisfies (VIII.8.2)–(VIII.8.7) with f ≡ f k. Using again the uniqueness prop-
erty of (vk, pk) along with the estimates in (VIII.8.3)–(VIII.8.7), it is routine
to show that the sequence {vk, pk)} converges to a solution (v, p) to (VIII.8.1)
satisfying the desired properties. Finally, assume f ∈ Lq(R3) for all q ∈ (1,∞).
Then, we may follow verbatim the argument adopted in the proof of Lemma
VIII.7.2 to establish the existence of a solution satisfying the stated properties.
Details are again left to the reader.

ut

With Lemma VIII.8.2 in hand, we shall now proceed to prove the main
result of this section. To this end, it is convenient to introduce a suitable
function class. Let Ω be an exterior domain of R3, and let v, p be vector and
scalar fields, respectively, defined on Ω. We shall say that (v, p) is in the class
Cq(Ω), q ∈ (1, 2), if

v ∈ D2,q(Ω) ∩D1,4q/(4−q)(Ω) ∩ L2q/(2−q)(Ω) ,

∂v

∂x1
, (e1 × x · ∇v − e1 × v) ∈ Lq(Ω) ,

p ∈ D1,q(Ω) ∩ L3q/(3−q)(Ω) .

Remark VIII.8.1 We observe that by Lemma II.6.1, Cq(Ω) ⊂ W 2,q(ΩR),
for all R > δ(Ωc), if Ω is locally Lipschitz. �

Our main result thus reads as follows.

Theorem VIII.8.1 Let Ω be an exterior domain of R3 of class C2, and
assume R > 0. Then, for any given

f ∈ Lq(Ω) , v∗ ∈W 2−1/q,q(∂Ω) , q ∈ (1, 2) , (VIII.8.10)

there exists at least one corresponding solution v, p to the generalized Os-
een problem (VIII.0.7), (VIII.0.2) in the class Cq(Ω). Moreover, the following
estimate holds:

|v|2,q +R
∥∥∥∥
∂v

∂x1

∥∥∥∥
q

+ T |e1 × x · ∇v − e1 × v‖q + R1/4|v|1,4q/(4−q)

+R1/2‖v‖2q/(2−q) + |p|1,q + ‖p‖3q/(3−q) ≤ C
(
‖f‖q + ‖v∗‖2−1/q,q(∂Ω)

)
,

(VIII.8.11)
with C = C(q, Ω,R, T ). However, if q ∈ (1, 3/2), we may take C =
C(q, Ω, B, T ) whenever R ∈ (0, B].
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Finally, suppose that for some r ∈ (1,∞) and all R > δ(Ωc), (v1, p1) ∈
W 2,r(ΩR) ×W 1,r(ΩR) is another solution to (VIII.0.7) corresponding to the
same data and that in addition,

v ∈ Lq(Ω) , for some q ∈ (1,∞) , (VIII.8.12)

Then v(x) = v1(x) , p(x) = p1(x) + p0 for a.a. x ∈ Ω, and some constant p0.

Proof. We begin by observing that the uniqueness part is an immediate con-
sequence of Theorem VIII.7.1. It remains to prove existence. For given f and
v∗ satisfying the assumptions of the theorem, we let {fk} and {v∗k} be se-
quences of smooth functions, with fk of bounded support for each k ∈ N,
converging to f and v∗ in the Lq- and W 2−1/q,q-norms, respectively. We next
denote by vk, k ∈ N, the (unique) generalized solution corresponding to fk,
v∗k, and by pk ∈W 1,2(ΩR) the associated pressure field. We also set

uk = ψ (vk + Φkσ) +wk , φk = ψ pk ,

where ψ, Φk, σ, and wk are the same quantities introduced in the proof of
Theorem VIII.7.2. We next observe that uk and φk satisfy (VIII.5.1)1,2 with
f ≡ F k, where

F k = fk +∆wk + R∂wk

∂x1
+ T

(
e1 ×wk − e1 ×wk

)

+Rvk
∂ψ

∂x1
− pk ∇ψ + 2∇ψ · ∇vk + vk ∆ψ

+2Φk∇ψ · ∇σ + Φkσ∆ψ + RΦkσ
∂ψ

∂x1
,

where we have used (VIII.1.8). Therefore, recalling (VIII.7.12)2 and that for
all R > δ(Ωc),

vk ∈W 2,2(ΩR) ∩ L6(Ω) , pk ∈W 1,2(ΩR) (VIII.8.13)

(see Remark VIII.1.1) we show, as in the proof of Theorem VIII.7.2, that

‖F k‖q ≤ C (‖fk‖q + ‖vk‖1,q,Ω2σ + ‖p‖q,Ω2σ) , for all q ∈ (1, 2), (VIII.8.14)

where C = C(σ, Ω, q, B, T ). Now again by (VIII.8.13), we have

uk ∈ L6(R3) ∩W 2,2(BR) , Φk ∈W 1,2(BR) ,

for all R > 0, and so by Lemma VIII.8.2 and Lemma VIII.7.1 and (VIII.8.14),
we obtain, on the one hand, that (uk, φk) is in the class Cq(R3), for all k ∈
N, and that on the other hand, it must satisfy (VIII.8.4)–(VIII.8.7) with f
replaced by F k. Since uk(x) = vk(x), φk(x) = pk(x) for all x ∈ Ω2σ, by
(VIII.8.14) we thus obtain
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|vk|2,q,Ω2σ + R
∥∥∥∥
∂vk

∂x1

∥∥∥∥
q,Ω2σ

+ T ‖e1 × x · ∇vk − e1 × vk‖q,Ω2σ

+R1/4|vk|4q/(4−q),Ω2σ +R1/2‖vk‖2q/(2−q),Ω2σ +|pk|1,q,Ω2σ +‖pk‖3q/(3−q),Ω2σ

≤ c1

(
1 +

R4

T 2

)
(‖fk‖q + ‖vk‖1,q,Ω2σ + ‖pk‖q,Ω2σ) ,

(VIII.8.15)
with c1 = c1(σ, q, Ω, B, T ). However, by Lemma VIII.6.1, we also have

‖vk‖2,q,Ω2σ+‖pk‖1,q,Ω2σ

≤ c2 (‖fk‖q,Ω3σ + ‖v∗k‖2−1/q,q,∂Ω + ‖vk‖q,Ω3σ + ‖pk‖q,Ω3σ ),
(VIII.8.16)

where c2 = c2(Ω, σ, B, T ). Therefore, combining (VIII.8.15) and (VIII.8.16),
we deduce

|vk|2,q,Ω +R
∥∥∥∥
∂vk

∂x1

∥∥∥∥
q,Ω

+ T ‖e1 × x · ∇vk − e1 × vk‖q,Ω

+R1/4 |vk|4q/(4−q),Ω + R1/2‖vk‖2q/(2−q),Ω + |pk|1,q,Ω + ‖pk‖3q/(3−q),Ω

≤ c1
(
‖fk‖q + ‖v∗k‖2−1/q,q,∂Ω + ‖vk‖1,q,Ω3σ + ‖pk‖q,Ω3σ

)
,

(VIII.8.17)
Using a by now standard contradiction argument already employed several
times previously, and which relies on the embedding W 1,q(ΩR) ↪→↪→ Lq(ΩR)
(see Exercise II.5.8) and the uniqueness Theorem VIII.7.1, we prove the exis-
tence of a constant c3 depending on Ω, σ, R, and T but otherwise independent
of k ∈ N such that

‖vk‖1,q,Ω3σ + ‖pk‖q,Ω3σ ≤ c3
(
‖fk‖q + ‖v∗k‖2−1/q,q,∂Ω

)
.

However, we observe that if q ∈ (1, 3/2), the constant c3 may be taken de-
pendent only on q, Ω, B, and T , whenever R ∈ (0, B]. The argument that we
need to prove this assertion is entirely analogous to that given in the proof of
Theorem VII.7.1, and precisely in that part following (VII.7.19). We leave it
to the reader. From this latter inequality and (VIII.8.17) we infer

|vk|2,q +R
∥∥∥∥
∂vk

∂x1

∥∥∥∥
q

+ T ‖e1 × x · ∇vk − e1 × vk‖q

+R1/4|vk|4q/(4−q) + R1/2‖vk‖2q/(2−q) + |pk|1,q,Ω + ‖pk‖3q/(3−q)

≤ c4
(
‖fk‖q + ‖v∗k‖2−1/q,q,∂Ω

)
,

(VIII.8.18)
where for simplicity, we have omitted the subscript Ω. We now let k → ∞
in (VIII.8.18), and using the fact that fk → f in Lq(Ω) and v∗k → v∗
in W 2−1/q,q(∂Ω), we easily establish, again by a standard argument, that
{(vk, pk)} tends, in the topology defined by the norms on the left-hand side
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of (VIII.8.18), to a pair (v, p) ∈ Cq(Ω) satisfying (VIII.0.7), (VIII.0.2). The
proof of the theorem is thus complete. ut

Remark VIII.8.2 We wish to clarify how the solutions of Theorem VIII.8.1
satisfy the condition at infinity (VIII.0.2). If q ∈ (3/2, 2), since v ∈ D2,q(Ω),
by the embedding Theorem II.6.1(i) it follows that v ∈ D1,q∗

(Ω), for some
q∗ > 3. Therefore, since v ∈ L2q/(2−q)(Ω), from Theorem II.9.1 we deduce

lim
|x|→∞

v(x) = 0 , uniformly pointwise.

If q ∈ (1, 3/2], in view of the fact that v ∈ D1,4q/(4−q)(Ω), it follows that
v ∈ D1,s(Ω), for some s ∈ (4/3, 12/5]. Consequently, from Lemma II.6.3 we
have ∫

S2

|v(|x|, ω)| dω = o
(
|x|1−3/s

)
as |x| → ∞ .

�

Theorem VIII.8.1 immediately leads to the following corollary.

Corollary VIII.8.1 Let Ω and R be as in Theorem VIII.8.1. Then, for any
f , v∗ satisfying (VIII.8.10), problem (VIII.0.7), (VIII.0.2) has one and only
one corresponding solution (v, p) in the class Cq(Ω). Moreover, this solution
satisfies the inequality (VIII.8.11).

Finally, taking into account Remark VIII.1.1 and Theorem VIII.1.1, from
Theorem VIII.8.1 we also at once deduce the following.

Corollary VIII.8.2 Let Ω and R be as in Theorem VIII.8.1, and let v
be a generalized solution to problem (VIII.0.7), (VIII.0.2). If f , v∗ satisfy
(VIII.8.10), then v and its associated pressure p (by Lemma VIII.1.1) are in
the class Cq(Ω). Moreover, (v, p) satisfies the inequality (VIII.8.11).

VIII.9 Notes for the Chapter

Section VIII.1. The first result on the existence of generalized solutions to
(VIII.0.7), (VIII.0.2) can be traced back to the paper of Leray (1933, Chapter
III); see also Weinberger (1973), Serre (1987), and Borchers (1992, Korollar
4.1).

Theorem VIII.1.2 is due to me.
Existence, uniqueness, and corresponding estimates of q-generalized solu-

tions when R = 0 were proved by Hishida (2006) when Ω = R3 and, more
generally, when Ω is a (smooth) exterior domain of R3. Hishida’s results are
formally analogous to those derived in Theorem IV.2.2 and Theorem V.5.1 for
the Stokes problem, and in particular, if ∂Ω 6= ∅, they require the restriction
q ∈ (3/2, 3). In the case Ω = R3, Hishida’s results have been extended to
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R 6= 0 by Kračmar, Nečasová, & Penel (2006). See also Kračmar, Nečasová,
& Penel (2005, 2007, 2010).

Weak solutions in Lorentz spaces have been studied by Farwig & Hishida
(2007) when R = 0. Their results are the analogous counterpart, for T 6= 0,
of those obtained by Kozono & Yamazaki (1998) for the Stokes problem. In
fact, they reduce to these latter when T = 0.

As we mentioned in the Introduction, there has been very little contribu-
tion to the study of the generalized Oseen problem for n = 2. As a matter of
fact, in two dimensions, the problem of existence of generalized solutions is
either rather well known or very complicated. Actually, because of n = 2, we
have to restrict ourselves to the case in which the angular velocity ω is per-
pendicular to the plane, Π , that contains the relevant region of motion of the
liquid. However, the translational velocity v0 must belong to Π and therefore
is orthogonal to ω. Now, if ω = 0, we go back to the Oseen problem already
treated in great detail and solved in the previous chapter. If, however, ω 6= 0,
the Mozzi–Chasles transformation reduces the problem, formally, to the study
of (VIII.0.7), (VIII.0.2) with R = 0 and with v = (v2(x2, x3), v3(x2, x3)),
p = p(x2, x3). For this latter, using the same method employed in the proof of
Theorem VIII.1.2, one can prove the existence of a vector field v ∈ D1,2(Ω)
that satisfies (VIII.1.1) (with R = 0) along with properties (ii) and (iii) of
Definition VIII.1.1. However, as in the analogous Stokes problem considered
in Chapter V, with this information alone one cannot ensure that the velocity
field tends (even in a weak sense) to a prescribed limit at infinity. In other
words, one cannot exclude the occurrence of a “Stokes paradox.” It is inter-
esting to observe that, in the case that Ω is the exterior of a circle and f ≡ 0,
v∗ = e1 × x, the problem has the explicit solution given in (V.0.8) (with
ω ≡ e1). This fact would suggest that a solution might exists also when Ω is
a more general (sufficiently smooth) exterior domain and with more general
data, possibly satisfying a suitable compatibility condition, but no proof is,
to date, available. We end these considerations by mentioning the paper by
Farwig, Krbec, & Nečasová (2008) in which existence is investigated in the
case Ω = R2.

Section VIII.2. All main results and, in particular, the uniqueness Theorem
VIII.2.1 are due to me. Seemingly, this is the first (and only one, to my
knowledge) uniqueness theorem of generalized solutions in their own class.
The main tool is the proof that the pressure possesses suitable summability
properties in a neighborhood of infinity (see Lemma VIII.2.2).

The “regularization” result for generalized solutions obtained in Lemma
VIII.2.1 is also new. However, the existence of a generalized solution satisfying
the properties stated in Lemma VIII.2.1, including the estimate (VIII.2.3),
can also be proved by the method of “invading domains” adopted by Silvestre
(2004).

Section VIII.3. The proofs of the main results (Lemma VIII.3.1, Lemma
VIII.3.4, and Lemma VIII.3.6) are taken (and expanded) from the work of
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Galdi & Silvestre (2007a, 2007b). A different proof of Lemma VIII.3.1 can
also be found in Mizumachi (1984, Lemma 2).

We would like to emphasize that Lemma VIII.3.1 admits also of a two-
dimensional counterpart. Specifically, one could show that for R = 0, which,
as we observed previously, is the only relevant case for two dimensions, the
fundamental tensor solution, Γ (ξ, τ), satisfies the following estimates

Γ0(ξ) ≡
∫ ∞

0

|Γ (ξ, τ)| dτ ≤ c | log |ξ| | ,

Γ1(ξ) ≡
∫ ∞

0

|∇ξΓ (ξ, τ)| dτ ≤ c |ξ|−1 ,

ξ 6= 0 , (VIII.8.1)

which coincide with the estimates satisfied by the Stokes fundamental tensor
solution U in dimension 2 (see (IV.2.6)).

Section VIII.4. Theorem VIII.4.1 is basically due to O.A. Ladyzhenskaya.
Its proof appears for the first time in English in Chapter 4, §5, of the first
edition, dated 1963, of Ladyzhenskaya (1969).

Lemma VIII.4.2, in its generality, seems to be new and is due to me.
Theorem VIII.4.4, which represents the main contribution of the section,

is taken from Galdi & Silvestre (2007b). In this regard, and in connection with
the remarks made in the Notes to Section VIII.1, we would like to emphasize
that the method used in the proof of Theorem VIII.4.4 fails in dimension
n = 2. In fact, we recall that for n = 2, we have to consider only the case
R = 0, and in such a case, according to (VIII.8.1), the function Γ0(ξ) is
bounded above by log |ξ|, for large |ξ|. This prevents us from proving the
existence of solutions to (VIII.4.1) that are spatially decaying, even for a
right-hand side f with compact support in the space variables.

Section VIII.5. The entire approach described in this section is due to Galdi
(2002) and was further developed by Galdi & Silvestre (2007a, 2007b). In
particular, Theorem VIII.5.1 is proved in Galdi & Silvestre (2007b).

Section VIII.6. Theorem VIII.6.1 and Theorem VIII.6.2 are improved ver-
sions of analogous results derived in Galdi & Silvestre (2007a, 2007b).

Section VIII.7. The uniqueness results proved in Lemma VIII.7.1 and The-
orem VIII.7.1 are due to me. They also appear, in a slightly different form, in
Galdi & Kyed (2011a).

Existence and associated estimates of solutions in homogeneous Sobolev
spaces corresponding to f in Lq were first proved by Hishida (1999a, 1999b))
for q = 2. Specifically, Hishida (1999b, Proposition 3.1) shows, with Ω = R3,
that for every f ∈ L2(R3) there exists one solution to (VIII.0.7) belonging
to D2,2(R3) and satisfying corresponding estimates. Hishida’s result was ex-
tended to the case R 6= 0 by Galdi (2002, Lemma 4.14), who also proves
uniqueness.

The first complete treatment of the problem for arbitrary q ∈ (1,∞) and
Ω = Rn is due to Farwig, Hishida, & Müller (2004) (for both cases n = 2, 3).
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For n = 3 their existence result, based on multiplier and Littlewood–Paley
theories, essentially coincides with that given in Lemma VIII.7.2, which is,
however, established by a completely different approach.

Theorem VIII.7.2 is due to me.

Section VIII.8. Existence and corresponding Lq-estimates when Ω = R3

were first derived by Farwig (2006). It should be noted that, as shown in
the proof of Lemma VIII.8.2, the estimates associated with the first deriva-
tives of the velocity field of solutions constructed by Farwig have the puzzling
(but, apparently, necessary) feature that the constant involved depends on
the (square of the) inverse of the Taylor number T . Therefore, it becomes
unbounded as T → 0, even though one can easily show that as T → 0, the
corresponding solutions tend, in fact, in a suitable sense, to the solution of
the problem with T = 0. As proved in Farwig (2005), this feature can be re-
moved if the first derivatives are estimated in suitable weighted homogeneous
Sobolev spaces.

Theorem VIII.8.1 is due to me.





IX

Steady Navier–Stokes Flow in Bounded

Domains

Kαὶ ήγάπησαν oὶ α̋νϑρωπoι
µeαλλoν τò ϕeωs η τò σκóτoς.

Introduction

The objective of this and the following chapters is the study of steady motions
of a viscous incompressible fluid described by the full nonlinear Navier–Stokes
system. In the present chapter we shall focus on the case where the region
of flow, Ω, is bounded. More specifically, we shall analyze the boundary value
problem obtained by coupling the following system

ν∆v = v · ∇v + ∇p+ f

∇ · v = 0

}
in Ω (IX.0.1)

with the adherence boundary condition:

v = v∗ at ∂Ω, (IX.0.2)

where v∗ a prescribed field.
The first and fundamental contribution to the resolution of (IX.0.1),

(IX.0.2) for Ω bounded, is due to F. K. G. Odqvist in 1930. The method used
by this author articulates into several steps. First, he transforms (IX.0.1),
(IX.0.2) into a (nonlinear) integral equation, by means of Green’s tensor G
associated to the corresponding linearized Stokes problem (see Section IV.6);
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then he derives suitable estimates forG and combines these with a successive
approximation technique that, finally, produces existence. However, for this
procedure to work it is necessary to restrict appropriately the size of the data.
At the time when Odqvist derived his results, such a restriction was, in a
sense, expected from both the physical and the mathematical points of view.
In fact, on the one hand, it confirmed the idea that the agreement between the
Navier–Stokes theory and experiment should hold only at “small” Reynolds
numbers.1 On the other hand, the highly nonlinear character of the problem
enhanced the possibility of solving it only “locally.” Therefore, when in his
celebrated paper of 1933, Jean Leray proved existence of solutions to (IX.0.1),
(IX.0.2) without restrictions on the size of the data, the result sounded ab-
solutely remarkable, since it was not predictable from known experimental
observation, nor was it obvious from the structure of the equations. Leray’s
proof was based on the discovery that every solution to (IX.0.1), (IX.0.2) for-
mally obeys the following a priori estimate, whatever the size of the data may
be: ∫

Ω

∇v : ∇v ≤M,

where M depends only on the data f , v∗ and on Ω and ν (see Section IX.3
and Section IX.4). Such a uniform bound along with the Odqvist estimate for
Green’s tensor and with a new method for determining fixed points of nonlin-
ear maps in Banach spaces2 allowed Leray to show the stated result; see Leray
(1933, 1936). This outstanding achievement, however, presents an undesired
feature in the case when the boundary ∂Ω has more than one connected com-
ponent, say, Γi, i = 1, ..., m. In such a case, the compatibility condition on the
velocity v∗ at the boundary, required by the incompressibility of the fluid, is

∫

∂Ω

v∗ ·n =

m∑

i=1

∫

Γi

v∗ · n = 0, (IX.0.3)

with n unit outer normal to ∂Ω, while Leray’s argument works if the condition
∫

Γi

v∗ ·n = 0 i = 1, ..., m (IX.0.4)

is imposed (see also Hopf 1941, 1957). Clearly, if m > 1, (IX.0.4) is stronger
than (IX.0.3) and, in particular, it does not allow for the presence of extended
“sinks” and “sources” into the region of flow. The question of whether prob-
lem (IX.0.1), (IX.0.2) admits a solution only under the natural restriction

1 This view relies on the experimental evidence that “laminar motions” such as
Couette or Poiseuille flows are observed only for small values of the Reynolds
number R (“large” viscosity ν) even though, as mathematical solutions, they
exists for all values of R. As is known, this view has been modified in light of
the modern theory of bifurcation.

2 This method will lead to the celebrated Leray-Schauder theorem, see Leray &
Schauder (1934).
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(IX.0.3) was left out by Leray and it still is a fundamental open question in
the mathematical theory of the Navier–Stokes equations.

In this chapter we study existence, uniqueness, and regularity of solutions
to problem (IX.0.1), (IX.0.2) with Ω bounded.

Following Ladyzhenskaya (1959b), we introduce a variational formulation
of (IX.0.1), (IX.0.2) and corresponding generalized (weak) solutions. The tech-
nique we shall use for existence of generalized solutions is different (and sim-
pler) than Leray’s and is based on a variant of the Galerkin method we used
for the linearized Oseen problem in Section VII.2. This approach is due to Fu-
jita (1961) and, independently, to Vorovich & Youdovich (1961); see also Finn
(1965b, §2.7). Moreover, in place of condition (IX.0.4), we prove existence
under the following weaker assumption on the flux of v∗ through Γi:

m∑

i=1

ci

∣∣∣∣
∫

Γi

v∗ ·n
∣∣∣∣ < ν

where ci, i = 1, ..., m, are computable constants depending on the domain Ω;
see Galdi (1991).3

Concerning uniqueness, we obtain, as expected, that generalized solutions
are unique only for “small” data (or, equivalently, for “large” viscosity ν). We
also give examples of non-uniqueness for “large” data (or, equivalently, for
“small” ν). These examples are based on ideas of Youdovich (1967) and, to
the best of our knowledge, they are the only ones so far explicitly given for
the steady-state Navier–Stokes problem in a bounded domain with adherence
boundary conditions.4

Regularity of a generalized solution is investigated by means of a general
technique which, in fact, allows us to study regularity of a much larger class
of solutions (in arbitrary dimension n ≥ 2).

Finally, we analyze the behavior of generalized solutions in the limit of
large viscosity ν (small Reynolds number). Specifically, we shall show that,
under suitable regularity assumptions on the data, such solutions tend uni-
formly pointwise, as ν → ∞, to solutions of the Stokes problem corresponding
to the same data.

As in the linearized approximations, also for the full nonlinear equations
we shall mainly be concerned with the physically interesting cases when Ω
is a three-dimensional or (for plane flow) two-dimensional domain. However,
we shall also explicitly remark if and in what form a result can be extended
to spatial dimension n > 3. In this respect, we wish to notice that all main
results we prove in this chapter for n = 2, 3 carry over (more or less simply)

3 See also Borchers and Pileckas (1994) and the more recent results of Kozono
and Yanagisawa (2009a, 2009b). For other results under the general assumption
(IX.0.3), we refer the reader to the Notes for this Chapter.

4 For non-uniqueness, and even bifurcation, of steady-state solutions under periodic
boundary conditions, we refer to Zeidler (1997, §§ 72.7–72.8), where a detailed
analysis of these phenomena is performed for the so called Taylor-Couette flow.
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to the case where n = 4. If n ≥ 5 new difficulties appear that are not easily
attacked by the known methods. This is because a generalized solution has
a priori only the property of being in the Sobolev space W 1,2(Ω), and this
is not enough, by use of the embedding theorems, to dominate appropriately
the nonlinear term in (IX.0.1)1. For instance, whether or not any generalized
solution in higher dimension corresponding to regular data of arbitrary size
is regular, remains an open question.5 However, Frehse and Růžička (1994a,
1994b, 1995), and Struwe (1995) have shown the existence of regular solutions
in dimension n ≥ 5 without restrictions on the size of the data. We refer the
reader to these papers and to the review article by Frehse and Růžička (1996)
for details and further related literature.

IX.1 Generalized Solutions. Preliminary Considerations

In the present section we begin to introduce the weak (or generalized) for-
mulation of the steady Navier–Stokes problem in a bounded domain and to
investigate some of the basic properties of the associated solutions. In doing
this we will essentially pattern the same lines followed for the linear problem
in Section IV.1.

Following Ladyzhenskaya (1959b), we give a weak (or variational) formula-
tion of (IX.0.1). Let ϕ ∈ D(Ω). Assuming v ∈ C2(Ω), p ∈ C1(Ω), f ∈ C(Ω),
if we multiply (IX.0.1)1 by ϕ and integrate by parts over Ω we obtain

ν

∫

Ω

∇v : ∇ϕ+

∫

Ω

v · ∇v · ϕ = −
∫

Ω

f · ϕ. (IX.1.1)

Thus every classical solution to (IX.0.1) satisfies (IX.1.1). Conversely, if v ∈
C2(Ω) satisfies (IX.1.1) for some f ∈ C(Ω) and for all ϕ ∈ D(Ω), then

∫

Ω

(ν∆v− v · ∇v − f) · ϕ = 0

and we use Lemma III.1.1 to show that v obeys (IX.0.1)1 for suitable
p ∈ C1(Ω). However, if v merely satisfies (IX.1.1) for all ϕ ∈ D(Ω) and
is not sufficiently differentiable, we cannot go from (IX.1.1) to (IX.0.1)1, and
therefore (IX.1.1) is to be interpreted as a generalized version of (IX.0.1)1.

As in the linear case, it is convenient to investigate the more general
situation, where the right-hand side of (IX.1.1) is defined by a functional
f ∈ D−1,2

0 (Ω).

5 If n = 5, a partial regularity result for generalized solutions can be found in
Struwe (1988). Extension of this result to arbitrary dimension is due to Tian &
Xin (1999). It should be added that, if the size of the data is suitably restricted,
any generalized solution satisfying the so-called energy inequality corresponding
to smooth data is smooth as well, for any n ≥ 5; see Remark IX.5.5.
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With a view to all this and in analogy with Definition IV.1.1, we give the
following definition of generalized solution to (IX.0.1), (IX.0.2).

Definition IX.1.1. Let Ω be a bounded domain of Rn, n ≥ 2. A field v :
Ω → Rn is called a weak (or generalized) solution to the Navier–Stokes problem
(IX.0.1), (IX.0.2) if and only if

(i) v ∈ D1,2(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v satisfies boundary condition (IX.0.2) (in the trace sense) or, if v∗ ≡ 0,

then v ∈ D1,2
0 (Ω);

(iv) v obeys the identity

ν(∇v,∇ϕ) + (v · ∇v,ϕ) = −〈f ,ϕ〉 (IX.1.2)

for all ϕ ∈ D(Ω).

Remark IX.1.1 Since every function in D1,2(Ω) is also in W 1,2
loc (Ω) (see

Lemma II.6.1), from the inequality

|(v · ∇v,ϕ)| ≤ sup
Ω0

|ϕ| ‖v‖2
1,2,Ω0

, Ω0 ≡ supp (ϕ),

we see that identity (IX.1.2) is meaningful, whatever the regularity of Ω may
be. �

Remark IX.1.2 Remark IV.1.1 and Remark IV.1.2, with q = 2, equally
apply to generalized solutions of the Navier–Stokes problem (IX.0.1), (IX.0.2).

�

Remark IX.1.3 In analogy with the Stokes problem, one may give the defini-
tion of q-weak (or q-generalized) solution, by replacing in (i) and (iii) D1,2(Ω)
with D1,q(Ω), 1 < q < ∞. Of course, q should be chosen in such a way
that the nonlinear term in (IX.1.2) is meaningful. This happens whenever
q ≥ 2n/(n+ 2). In fact, by an integration by parts, we have

|(v · ∇v,ϕ)| = |(v · ∇ϕ, v)| ≤ sup
Ω0

|∇ϕ| ‖v‖2,Ω0

with Ω0 as in Remark IX.1.1. From Lemma II.6.1, v ∈ W 1,q(Ω0) and so,
by Theorem II.3.4, it follows that v ∈ Ls(Ω) for all s ≥ 1, if q ≥ n, and
for all s ∈ (1, nq/(n − q)], if q < n. Therefore, if q ≥ n, then v ∈ L2(Ω0),
while if q < n this latter circumstance happens if 2 ≤ nq/(n − q), that is,
q ≥ 2n/(n+ 2). �

Existence and uniqueness of generalized solutions in a bounded domain
will be the object of the next sections. In the remaining part of this section
we wish to point out some notable facts relating to them, which we shall
collect in the following lemmas.
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Lemma IX.1.1 Let Ω be an arbitrary bounded domain of Rn, n = 2, 3.
Then the trilinear form

a(u, v,w) ≡ (u · ∇v,w) (IX.1.3)

is continuous in the space

W 1,2
0 (Ω) ×W 1,2(Ω) ×W 1,2

0 (Ω)

and we have
|a(u, v,w)| ≤ k|u|1,2|v|1,2|w|1,2 (IX.1.4)

where

k =





2
√

2|Ω|1/6

3 if n = 3

|Ω|1/2

2 if n = 2.

(IX.1.5)

Furthermore, if Ω is bounded and locally Lipschitz, then a is continuous in
the space

W 1,2(Ω) ×W 1,2(Ω) ×W 1,2
0 (Ω).

Thus, in particular, every weak solution corresponding to the data

f ∈ D−1,2
0 (Ω), v∗ ≡ 0,

satisfies (IX.1.2) for all ϕ ∈ H1(Ω). The same property holds when v∗ 6≡ 0, if
Ω is bounded and locally Lipschitz.

Proof. The proof of the second part of the lemma concerning weak solutions
is a consequence of the first, since (∇v,∇ϕ) and 〈f ,ϕ〉 are bounded linear
functionals in ϕ ∈ H1(Ω) and, under the stated assumptions, v ∈ W 1,2(Ω)
so that also (v · ∇v,ϕ) is continuous in ϕ ∈ H1(Ω). In order to show the
continuity of a(u, v,w), assume first that n = 3 and u ∈W 1,2

0 (Ω). From the
Hölder inequality

|a(u, v,w)| ≤ ‖u‖2n/(n−2)|v|1,2‖w‖n (IX.1.6)

so that the Sobolev inequality (II.3.7) implies

|a(u, v,w)| ≤ (2/
√

3)|u|1,2|v|1,2‖w‖n. (IX.1.7)

However, since n = 3, Lemma II.3.2 and (II.5.5) furnish

‖w‖n ≤ k1|w|1,2 (IX.1.8)

with
k1 =

√
2|Ω|1/6/

√
3.

Placing (IX.1.8) into (IX.1.7) gives (IX.1.4). Assuming u ∈ W 1,2(Ω) with Ω
locally Lipschitz, from the embedding Theorem II.3.4 we obtain
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‖u‖2n/(n−2) ≤ c‖u‖1,2 (IX.1.9)

for some c = c(Ω, n); thus inequality (IX.1.7) becomes

|a(u, v,w)| ≤ c‖u‖1,2|v|1,2‖w‖n

and the continuity of a follows from this last relation and from (IX.1.8). Con-
sider, next, n = 2. By the Hölder inequality we have

|a(u, v,w)| ≤ ‖u‖r|v|1,2‖w‖s, r−1 + s−1 = 2−1 (IX.1.10)

and therefore, choosing, for instance, r = s = 4, since by Lemma II.3.1 and
(II.5.6) we have

‖f‖4 ≤ (1/
√

2)|Ω|1/4|f |1,2, for all f ∈W 1,2
0 (Ω),

(IX.1.4) becomes a consequence of this last relation and of (IX.1.10). Finally,
if u ∈ W 1,2(Ω), inequality (IX.1.4) with a suitable constant k = k(Ω, n) is
secured from (IX.1.9) and from the following one

‖f‖4 ≤ c‖f‖1,2,

which is proved in the embedding Theorem II.3.4, for some c = c(Ω, n). The
proof of the lemma is thus complete. ut

Remark IX.1.4 If n = 4, Lemma IX.1.1 continues to hold with k = (3/4)2,
since, in such a case, inequality (IX.1.8) remains valid with k1 = 3/4. (Notice
that 2n/(n − 2) = n, for n = 4). If n ≥ 5 (IX.1.8) no longer holds and
a(u, v,w) is continuous in the space

W 1,2
0 (Ω) ×W 1,2(Ω) × [W 1,2

0 (Ω) ∩ Ln(Ω)]

[respectively in the space

W 1,2(Ω) ×W 1,2(Ω) × [W 1,2
0 (Ω) ∩ Ln(Ω)]

if Ω is (bounded and) locally Lipschitz]. Consequently, in such a case, in the
second part of the lemma, the statement

ϕ ∈ H1(Ω)

should be replaced by
ϕ ∈ H̃1(Ω),

where H̃1(Ω) is the completion of D(Ω) in the norm

‖ϕ‖e1,2 ≡ ‖ϕ‖1,2 + ‖ϕ‖n.

Other continuity properties of the trilinear form a will be given in Exercise
IX.2.1 and Lemma X.2.1. �
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As in the linear case (see Lemma IV.1.1), the next result shows, in partic-
ular, that to every generalized solution v, it is possible to associate a suitable
pressure field p.

Lemma IX.1.2 Let Ω be an arbitrary domain in Rn, n = 2, 3, and let

f ∈W−1,2
0 (Ω′) for any bounded domain Ω′, with Ω

′ ⊂ Ω.

Then a vector field v ∈ W 1,2
loc (Ω) satisfies (IX.1.2) for all ϕ ∈ D(Ω) if and

only if there is p ∈ L2
loc(Ω) satisfying the identity

ν(∇v,∇ψ) + (v · ∇v,ψ) = (p,∇ · ψ) − 〈f ,ψ〉 (IX.1.11)

for all ψ ∈ C∞
0 (Ω). If, moreover, Ω is bounded and locally Lipschitz and

f ∈ D−1,2
0 (Ω), v ∈ D1,2(Ω),

then

p ∈ L2(Ω) with

∫

Ω

p = 0,

and (IX.1.11) holds for all ψ ∈W 1,2
0 (Ω).

Proof. Clearly, (IX.1.11) implies (IX.1.2). Thus assume (IX.1.2) and Ω locally
Lipschitzian. By Lemma IX.1.1 the functional

F(ψ) ≡ ν(∇v,∇ψ) + (v · ∇v,ψ) + 〈f ,ψ〉 (IX.1.12)

is (linear and) bounded in ψ ∈ W 1,2
0 (Ω) and vanishes when ψ ∈ D1,2

0 (Ω) (=
H1(Ω)). Therefore, by Corollary III.5.1 there exists p ∈ L2(Ω) such that

F(ψ) = (p,∇ · ψ), (IX.1.13)

for all ψ ∈ D1,2
0 (Ω) (= W 1,2

0 (Ω)), thus satisfying (IX.1.11). If Ω is an arbi-
trary domain, we use Corollary III.5.2 to deduce the existence of p ∈ L2

loc(Ω)
satisfying (IX.1.13) for all ψ ∈ C∞

0 (Ω). The proof is thus complete. ut

Remark IX.1.5 If n = 4, Lemma IX.1.2 continues to hold since (v · ∇v,ψ)
is still a bounded functional in ψ ∈ W 1,2

0 (Ω), see Remark IX.1.4. If n ≥ 5
this property no longer holds and Lemma IX.1.2 fails, unless v ∈ Ln(Ω).
Nevertheless, if

f ∈ D
−1,n/(n−2)
0 (Ω),

we can again define a pressure field

p ∈ Ln/(n−2)(Ω)

satisfying (IX.1.11) if Ω is bounded and locally Lipschitz. If Ω has no regu-
larity or if
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f ∈W
−1,n/(n−2)
0 (Ω′), for all domains Ω′ with Ω

′ ⊂ Ω,

we then only have

p ∈ L
n/(n−2)
loc (Ω).

Actually, if Ω is locally Lipschitz, n ≥ 5, and v is a generalized solution, then

v ∈W 1,n/(n−2)(Ω).

Furthermore, by inequalities (IX.1.6), (IX.1.9), and the Sobolev inequality
(II.3.7) we deduce

|(v · ∇v,ψ)| ≤ c‖v‖1,2|ψ|1,n/2.

As a consequence, the functional (IX.1.12) is bounded for ψ ∈ D
1,n/2
0 (Ω)

(=W
1,n/2
0 (Ω)) and vanishes when ψ ∈ D1,n/2

0 (Ω) (=H1
n/2(Ω)). By Corollary

III.5.1 we then conclude the validity of (IX.1.13) for some p ∈ Ln/(n−2)(Ω)
and all ψ ∈ D1,n

0 (Ω) (=W 1,n
0 (Ω)). If Ω has no regularity, by these arguments

and Corollary III.5.2 we derive p ∈ L
n/(n−2)
loc (Ω). �

IX.2 On the Uniqueness of Generalized Solutions

We shall begin to establish a general uniqueness result for weak solutions in
a bounded domain. To this end, we need some further information about the
trilinear form a(u, v,w) defined in Lemma IX.1.1.

Lemma IX.2.1 Let Ω be a bounded locally Lipschitz domain in Rn, n = 2, 3,
and let v ∈W 1,2(Ω) with ∇ · v = 0. Then

a(v,u,u) = 0 for all u ∈W 1,2
0 (Ω). (IX.2.1)

Thus, in particular,

a(v,u,w) = −a(v,w,u) for all u,w ∈W 1,2
0 (Ω). (IX.2.2)

If v ∈ H1(Ω), the same conclusions hold with no regularity on Ω.

Proof. Property (IX.2.2) is a direct consequence of (IX.2.1) when we replace
the function u in it with u+w and use the multilinear properties of a. To prove
(IX.2.1), in view of Lemma IX.1.1, it is enough to prove it for u ∈ C∞

0 (Ω).
However, for such functions we have

a(v,u,u) =

∫

Ω

v · ∇u · u =
1

2

∫

Ω

v · ∇u2 = 0

since v is weakly divergence-free. The lemma is thus proved. ut
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Remark IX.2.1 If n = 4 the preceding lemma remains unchanged. If n ≥ 5
it holds, by replacingW 1,2

0 (Ω) with W̃ 1,2
0 (Ω), where this latter space is defined

as the completion of C∞
0 (Ω) in the norm ‖ · ‖e1,2 introduced in Remark IX.1.4.

�

Exercise IX.2.1 Let Ω be a domain of R
n, n ≥ 2. Show that the trilinear form

(IX.1.3) is continuous in Lq(Ω)×W 1,r (Ω)×Lqr′/(q−r′)(Ω), q ∈ (1,∞), r ∈ (q/(q−
1),∞). Thus, assuming v ∈ eHs(Ω)1 with ∇ · v = 0, show that the conclusions of
Lemma IX.2.1 continue to hold under any of the following assumptions

(i) s = n, if n ≥ 3, and u,w ∈ W 1,2
0 (Ω) ;

(ii) s > n, if n = 2, and u,w ∈ W 1,2
0 (Ω) ;

(iii) s < n, if n = 2, and u,w ∈ W 1,σ
0 (Ω) , σ > s′ .

Let us next observe that, in view of Lemma IX.1.1 it follows, in particular,
that

|(u · ∇v,u)| ≤ k|v|1,2|u|21,2 (IX.2.3)

for all v ∈ W 1,2(Ω),u ∈ H1(Ω), and with k defined in (IX.1.5). We are now
in a position to prove the following uniqueness theorem.

Theorem IX.2.1 Let Ω be a bounded locally Lipschitz domain in Rn, n =
2, 3, and let v be a generalized solution to (IX.0.1), (IX.0.2) corresponding to
f ∈ D−1,2

0 (Ω) and v∗ ∈ W 1/2,2(∂Ω). If we denote by w another generalized
solution corresponding to the same data, v ≡ w, provided that

|v|1,2 < ν/k (IX.2.4)

where k is defined in (IX.1.5).

Proof. Let u ≡ w − v. From (IX.1.2) and Lemma IX.1.1 we deduce that u
satisfies the following identity

ν(∇u,∇ϕ) + (u · ∇u,ϕ) + (u · ∇v,ϕ) + (v · ∇u,ϕ) = 0 (IX.2.5)

for all ϕ ∈ H1(Ω). Clearly, u has zero trace at the boundary and, conse-
quently, from Remark IX.1.2 and Theorem II.4.2, we have u ∈ W 1,2

0 (Ω).
Since u is weakly divergence-free and Ω locally Lipschitz, from the results of
Section III.4.1 it follows that u ∈ H1(Ω). We may thus substitute ϕ with u
into (IX.2.5) and employ Lemma IX.2.1 to obtain

ν |u|21,2 + (u · ∇v,u) = 0. (IX.2.6)

Using estimate (IX.2.3) in (IX.2.6) yields

(ν − k|v|1,2)|u|21,2 ≤ 0

which, in turn, by (IX.2.4) implies uniqueness. ut
1 We recall that this space is defined in (III.2.4).
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Remark IX.2.2 If Ω has no regularity the procedure adopted earlier a priori
does not furnish uniqueness even in the case of zero boundary data. This fact is
related to the definition of generalized solution given by me in Section IX.1. In
fact, if v∗ = 0, we require that v belongs to the space D̂1,2

0 (Ω) which, a priori
is larger than D1,2

0 (Ω), if Ω has no regularity (cf. Section III.5). Therefore, the
field u introduced in the proof of Theorem IX.2.1 cannot be put in place of ϕ
in the identity (IX.1.7) and we can no longer deduce uniqueness. Nevertheless,
uniqueness can be still recovered in the (a priori smaller) class of generalized
solutions belonging to the space D1,2

0 (Ω). �

Remark IX.2.3 If n = 4 Theorem IX.2.1 continues to hold. Its proof, how-
ever, does not apply if n ≥ 5 since, in this case, identity (IX.2.5) is valid

for ϕ ∈ H̃1(Ω) (cf. Remark IX.1.4) and we cannot take ϕ = u, for u does

not belong a priori to H̃1(Ω). Nevertheless, as we shall see in Remark IX.5.5,
in dimension n ≥ 5 one can construct more regular solutions (at the cost,
however, of imposing some restriction on the size of the data) and to discuss
their uniqueness. For the existence of regular solutions for n ≥ 5 without re-
strictions on the size of the data, we refer the reader to Frehse and Růžička
(1994a, 1994b, 1995, 1996), and Struwe (1995). �

Because of the nonlinearity of the Navier–Stokes equations, we would ex-
pect that if a solution does not satisfy condition (IX.2.4), namely, if the co-
efficient of kinematic viscosity ν is not “sufficiently large,” then uniqueness
may be lost. Employing the ideas of Youdovich (1967), in the remaining part
of this section we shall prove that this is indeed the case. We begin with the
following result.

Lemma IX.2.2 Let Ω be a domain of Rn, n ≥ 2, and let a be a smooth
solenoidal vector in Ω. Moreover, assume that there is µ > 0 for which the
following problem admits a nontrivial solution ϕ, τ

1

µ
∆ϕ = a · ∇ϕ+ ϕ · ∇a+ ∇τ

∇ · ϕ = 0





in Ω

ϕ = 0 at ∂Ω.

(IX.2.7)

Then, there are vector fields F and v∗ such that the Navier–Stokes problem

ν∆v = v · ∇v + ∇p+ F

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω
(IX.2.8)

with ν = 1/2µ admits two distinct solutions corresponding to the same data
F and v∗.
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Proof. Set

v1 =
1

2
(a+ ϕ), v2 =

1

2
(a −ϕ).

Clearly, v1 and v2 satisfy (2.82,3) with

v∗ = a∗/2, (IX.2.9)

where a∗ is the value of a at the boundary ∂Ω. Moreover, by means of a
direct calculation, we find the following identities

ν∆v1 − v1 · ∇v1 =
ν

2
∆a− 1

4
(a · ∇a+ϕ · ∇ϕ)

+
1

4
[2ν∆ϕ− (a · ∇ϕ+ ϕ · ∇a)]

ν∆v2 − v2 · ∇v2 =
ν

2
∆a− 1

4
(a · ∇a+ϕ · ∇ϕ)

− 1

4
[2ν∆ϕ− (a · ∇ϕ+ ϕ · ∇a)]

and so, recalling that ϕ satisfies (IX.2.7), if ν = 1/2µ we deduce that the
pairs v1, p1 and v2, p2 with

p1 = τ/4, p2 = −τ/4

are two distinct solutions to (2.8) corresponding to

F =
ν

2
∆a− 1

4
(a · ∇a+ ϕ · ∇ϕ)

and to v∗ given in (IX.2.9). The lemma is therefore proved. ut

Remark IX.2.4 If Ω is a bounded locally Lipschitz domain of Rn, n ≤ 4, by
the type of reasoning employed in the proof of Theorem IX.2.1, from (IX.2.7)
we show that, for a given a ∈W 1,2(Ω), if ν (=1/2µ) is such that

|a|1,2 < 2ν/k,

then problem (IX.2.7) admits only the zero solution. Therefore, to obtain
nonuniqueness (if any) ν has to be sufficiently small. �

We also have the following lemma.

Lemma IX.2.3 Let Ω ⊂ R3 be a bounded smooth body of revolution around
an axis r. We suppose that Ω does not include points of r so that, for instance,
Ω can be a torus of arbitrary bounded smooth section. In a system of cylin-
drical coordinates (r, θ, z) with the z-axis coinciding with r, we consider the
vector field a =(ar , aθ, az) with
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ar = az = 0, aθ = r−3. (IX.2.10)

Then there is µ > 0 such that problem (IX.2.7) admits at least one nontrivial
smooth solution ϕ, τ .

Proof. We look for a solution to problem (IX.2.7) in the class < of functions
having rotational symmetry, that is, they are independent of the angle θ.
Taking into account that, in cylindrical coordinates, for ϕ ∈ <,

ϕ · ∇a+ a · ∇ϕ =

(
−2aθϕθ,

(
daθ

dr
+
aθ

r

)
ϕr , 0

)
,

equations (IX.2.7) with the choice (IX.2.10) and in the class < become

1

µ
(∆1ϕr −

ϕr

r2
) = −g(r)ϕθ +

∂τ

∂r

1

µ
(∆1ϕθ −

ϕθ

r2
) = −g(r)ϕr

1

µ
∆1ϕz =

∂p

∂z

1

r

∂

∂r
(rϕr) +

∂ϕz

∂z
= 0





in Ω

ϕ = 0 on ∂Ω

(IX.2.11)

where

∆1 =
1

r

∂

∂r
(r
∂

∂r
) +

∂2

∂z2

and

g(r) = 2r−4.

Set

I(ϕ) = −
∫

Ω

gϕθϕr

D(ϕ) =

∫

Ω

{
(
∂ϕr

∂r
)2 + (

∂ϕθ

∂r
)2 + (

∂ϕz

∂r
)2

+ (
∂ϕr

∂z
)2 + (

∂ϕθ

∂z
)2 + (

∂ϕz

∂z
)2 +

ϕ2
r

r2
+
ϕ2

θ

r2

}

and consider the maximum problem

1

µ
= max

H1
0 (Ω),ϕ6=0

{
I(ϕ)

D(ϕ)

}
(IX.2.12)
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with H1
0(Ω) denoting the completion of the subspace of D(Ω) of rotationally

symmetric fields in the norm [D(ϕ)]1/2. In view of inequality (II.5.5), we at
once conclude that the functional I(ϕ)/D(ϕ) is bounded from above. Further-
more, taking among possible competitors ϕ those vectors such that ϕθ = −ϕr

(which is an allowed choice) we find

sup
H1

0 (Ω),ϕ6=0

{
I(ϕ)

D(ϕ)

}
> 0. (IX.2.13)

Also, from Theorem II.3.4, it easily follows thatH1
0 (Ω) is compactly embedded

into the subspace of L2(Ω) constituted by vectors having rotational symmetry.
Therefore, classical results on the maximum of quadratic functionals (see, e.g.,
Galdi & Straughan 1985, Lemma 3), ensure that the maximum (IX.2.12) exists
and that the maximizing function satisfies (IX.2.11). Moreover, by (IX.2.13),
µ > 0. Finally, by the regularity theory for the Stokes problem developed in
Section IV.4, Section IV.5, we easily show that the solution ϕ ∈ H1

0(Ω) to
(IX.2.11) and the corresponding “pressure field” τ are smooth for Ω smooth.
The lemma is thus proved. ut

From Lemma IX.2.2 and Lemma IX.2.3 we deduce the following nonunique-
ness result.

Theorem IX.2.2 Let Ω be as in Lemma IX.2.3. Then there are smooth fields
F and v∗ and a value of ν > 0 such that the steady Navier–Stokes problem
(2.8) corresponding to these data admits at least two distinct solutions.

IX.3 Existence and Uniqueness with Homogeneous
Boundary Data

It was first noticed by J. Leray in his celebrated memoir of 1933 on the ex-
istence of steady solutions to the Navier–Stokes equations that every smooth
solution to (IX.0.1), (IX.0.2) with v∗ ≡ 0 admits the following a priori esti-
mate (see Leray 1933, Lemme A, p. 23)

∫

Ω

∇v : ∇v ≤M (IX.3.1)

where M is independent of v. Actually, multiplying formally (IX.0.1)1 by v
and using the incompressibility condition (IX.0.1)2 leads to

ν∇v : ∇v = ∇ · (ν
2
∇v2 − pv − 1

2
v2v)− f · v

which, after integration overΩ, in view of the assumed homogeneous boundary
conditions implies

ν

∫

Ω

∇v : ∇v = −
∫

Ω

f · v. (IX.3.2)
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Thus, (IX.3.1) follows with M ≡ |f |2−1,2/ν
2. We wish to point out the remark-

able fact that (IX.3.1) and (IX.3.2) are exactly the same relations we obtain
from the linearized Stokes equations. Then it is not surprising that Fujita
(1961) and independently Vorovich & Youdovich (1961) (cf. also Vorovich &
Youdovich 1959) employed a well-known device for constructing solutions to
linear equations, i.e., the Galerkin method (cf. Galerkin 1915) along with es-
timate (IX.3.1) to show the existence of generalized solutions to the nonlinear
Navier–Stokes problem. Here we shall follow the ideas of these authors.

We begin to consider the case of homogeneous boundary conditions (v∗ ≡
0), while in the next section we will handle the more general nonhomogeneous
case. However, we need some preparatory results. The first concerns the zeros
of continuous mappings of Rm into itself which generalizes to the case m > 1,
the well-known fact that a real continuous function that attains values of
opposite signs at the endpoints of an interval must then vanish at some interior
point. Specifically, we have (see, e.g., Lions 1969, Lemme 4.3, p. 53):1

Lemma IX.3.1 Let P be a continuous function of Rm, m ≥ 1, into itself
such that for some ρ > 0

P (ξ) · ξ ≥ 0 for all ξ ∈ Rm with |ξ| = ρ.

Then there exists ξ0 ∈ Rm with |ξ0| ≤ ρ such that P (ξ0) = 0.

Proof. Assume, per absurdum, P (ξ) 6= 0 for all ξ belonging to the closed ball
Bρ of Rm of radius ρ and centered at the origin. The map

Π : ξ → −P (ξ)
ρ

|P (ξ)|

is then continuous and goes from Bρ into Bρ. By the Brouwer theorem (see,
e.g., Kantorovich & Akilov 1964, Lemma 5, p. 639) we then obtain that the
map Π has a fixed point ξ, i.e.,

ξ = −P (ξ)
ρ

|P (ξ)| , |ξ| = ρ.

Dotting both sides of this relation by P (ξ) yields

P (ξ) · ξ = −ρ|P (ξ)| < 0

contradicting the assumption. ut

The lemma just shown allows us to prove a general existence result con-
cerning certain algebraic systems.

1 In fact, a proof of Lemma IX.3.1 can already be found in Miranda (1940), where it
is also shown that the lemma is equivalent to Brouwer’s fixed point theorem. (For
this latter, see, e.g., Kantorovich & Akilov 1964, Lemma 5, p. 639).) I would like
to thank Professor P.N. Srikanth for bringing Miranda’s paper to my attention.
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Lemma IX.3.2 Let Ω be an arbitrary domain in Rn, n ≥ 1, and let {ψk},
k = 1, . . . , m, be a set of functions from C∞

0 (Ω). such that

(ψk,ψk′) = δkk′, k, k′ = 1, . . . , m.

Consider the algebraic system in the unknown ξ = (ξ1, . . . , ξm) ∈ Rm

ν(∇w,∇ψk) = Fk(ξ), k = 1, . . . , m, (IX.3.3)

where ν > 0,

w =

m∑

k=1

ξkψk, (IX.3.4)

and F is a continuous function of Rm into itself. Then if there are positive
constants c and α < ν such that2

F (ξ) · ξ ≤ c|w|1,2 + α|w|21,2,

problem (IX.3.3)–(IX.3.4) admits at least one solution.

Proof. Consider the map P , which to every vector ξ ∈ Rm, associates the
vector P (ξ) ∈ Rm whose kth component is

(P (ξ))k ≡ ν(∇w,∇ψk) − Fk(ξ).

Evidently, P is continuous. Let us prove that there exists ρ > 0 such that
P (ξ) · ξ ≥ 0 for all ξ such that |ξ| = ρ. Actually, by assumption,

P (ξ) · ξ = ν |w|21,2 − F (ξ) · ξ ≥ |w|1,2 [(ν − α)|w|1,2 − c] .

Denote by K ⊂ Ω a compact set containing the supports of all functions ψk,
k = 1, . . . , m. By inequality (II.5.5) and the normalization condition on the
functions ψk we then have, for a suitable c1 = c1(n),

P (ξ) · ξ ≥ |w|1,2

[
(ν − α)c1|K|−1/n‖w‖2 − c

]

= |w|1,2

[
(ν − α)c1|K|−1/n|ξ| − c

]
.

Therefore,

P (ξ) · ξ ≥ 0 for |ξ| =
c |K|1/n

(ν − α)c1
,

and the lemma follows from Lemma IX.3.1. ut

We are now in a position to prove the following existence result.

2 The stated assumption on F can be widely generalized. However, such a gener-
alization is not needed in the cases treated in this book.
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Theorem IX.3.1 Let Ω be a bounded domain in Rn, n = 2, 3. Given f ∈
D−1,2

0 (Ω) there exists at least one generalized solution v to problem (IX.0.1),
(IX.0.2) with v∗ = 0. This solution satisfies the estimate

ν |v|1,2 ≤ |f |−1,2. (IX.3.5)

Furthermore, if Ω is locally Lipschitz, we have

‖p‖2 ≤ c (|f |−1,2 + |v|21,2 + ν |v|1,2) (IX.3.6)

where p is the pressure field associated to v by Lemma IX.1.2 and c = c(n,Ω).

Proof. Denote by {ψk} a denumerable set of functions of D(Ω) whose linear
hull is dense in H1(Ω). We normalize it as

(ψk,ψk′) = δkk′.

For each m = 1, 2, . . ., we then look for an “approximating solution” vm to
(IX.1.2) as follows:

vm =

m∑

k=1

ξkmψk

ν(∇vm,∇ψk) + (vm · ∇vm,ψk) + 〈f ,ψk〉 = 0, k = 1, 2, . . . , m.

(IX.3.7)

Relation (IX.3.7) represents a system of nonlinear equations in the m un-
knowns ξkm, k = 1, . . . , m. Since vm ∈ D(Ω), by Lemma IX.2.1 it follows
that

m∑

k=1

(vm · ∇vm, ξkψk) = (vm · ∇vm, vm) = 0. (IX.3.8)

Moreover, ∣∣∣∣∣
m∑

k=1

〈f , ξkψk〉
∣∣∣∣∣ ≤ |f |−1,2|vm|1,2 (IX.3.9)

and so, by Lemma IX.3.2, we deduce that problem (IX.3.7) admits a solution
for all m ∈ N. Multiplying (IX.3.7)2 by ξkm, summing over k from 1 to m,
and using (IX.3.8) and (IX.3.9) we deduce also that

ν |vm|21,2 = −〈f , vm〉, (IX.3.10)

and since

−〈f , vm〉 ≤ |f |−1,2|vm|1,2,

we have

|vm|1,2 ≤ |f |−1,2/ν. (IX.3.11)
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Therefore, the sequence {vm} is uniformly bounded in D1,2
0 (Ω) and, by The-

orem II.1.3, there is a subsequence, denoted again by {vm}, and a field
v ∈ D1,2

0 (Ω) such that

vm → v weakly in D1,2
0 (Ω). (IX.3.12)

Moreover, by inequality (II.5.5), {vm} is also uniformly bounded in L2(Ω)
and v ∈ L2(Ω). Thus, by compactness Theorem II.5.2 we may take this
subsequence such that

vm → v strongly in L2(Ω). (IX.3.13)

With (IX.3.12) and (IX.3.13) in hand we pass next to the limit as m→ ∞ in
(IX.3.7)2. By (IX.3.12) it follows that

(∇vm,∇ψk) → (∇v,∇ψk). (IX.3.14)

In addition,

Im ≡ |(vm · ∇vm,ψk) − (v · ∇v,ψk)|
≤ |((vm − v) · ∇vm,ψk)| + |(v · ∇(vm − v),ψk)|
≡ I

(1)
m + I

(2)
m .

(IX.3.15)

Now, by (IX.3.11) we have

I(1)
m ≤ sup

Ω
|ψk| ‖vm − v‖2|v|1,2 ≤ sup

Ω
|ψk| ‖vm − v‖2|f |−1,2/ν

so that by (IX.3.13)
lim

m→∞
I(1)
m = 0. (IX.3.16)

Also, by Lemma IX.2.1,

(v · ∇(vm − v),ψk) = −(v · ∇ψk, (vm − v)),

since v ∈ H1(Ω). Therefore

I(2)
m ≤ sup

Ω
|∇ψk|‖v‖2‖vm − v‖2

and, again by (IX.3.13)
lim

m→∞
I(2)
m = 0. (IX.3.17)

From (IX.3.15)–(IX.3.17) we then conclude

lim
m→∞

Im = 0. (IX.3.18)

Replacing (IX.3.14) and (IX.3.18) into (IX.3.7)2 it follows that the field v
(belongs to H1(Ω) and) satisfies the equation
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ν(∇v,∇ψk) + (v · ∇v,ψk) + 〈f ,ψk〉 = 0, (IX.3.19)

for all k = 1, 2, . . . However, any ϕ ∈ H1(Ω) can be approximated by linear
combinations of functions ψk through suitable coefficients. Since every term
in (IX.3.19) defines a bounded linear functional in ψk ∈ H1(Ω) (cf. Lemma
IX.1.1) we may conclude from (IX.3.19) that the field v satisfies (IX.1.2)
for all ϕ ∈ H1(Ω). Existence is then established. As far as the validity of
estimates (IX.3.5)–(IX.3.6) is concerned, we notice that from (IX.3.11) and
from Theorem II.2.4 we have

|v|1,2 ≤ lim inf
m→∞

|vm|1,2 ≤ |f|−1,2/ν,

which proves (IX.3.5). Assuming Ω locally Lipschitz, from Lemma IX.1.2 fol-
lows the existence of a pressure field p ∈ L2(Ω) satisfying (IX.1.11) and

∫

Ω

p = 0. (IX.3.20)

Consider the problem
∇ · Ψ = p

Ψ ∈W 1,2
0 (Ω)

‖Ψ‖1,2 ≤ c‖p‖2.

(IX.3.21)

Since p is in L2(Ω) and satisfies (IX.3.20), problem (IX.3.21) is solvable in
virtue of Theorem III.3.1. From (IX.1.11), (IX.3.21), and (IX.1.4) we then
deduce

‖p‖2
2 ≤ c1(|f |−1,2 + |v|1,2 + ν |v|1,2)‖p‖2

with c1 = c1(n,Ω), which shows (IX.3.6). The theorem is therefore proved.
ut

Remark IX.3.1 The theorem just shown extends with no changes to cover
the case n = 4. If n ≥ 5 the only change we need is in the choice of the
set {ψk} ⊂ D(Ω) whose linear hull, this time, has to be dense in H̃1(Ω);
see Remark IX.1.4. Moreover, estimate (IX.3.5) continues to be valid, while
(IX.3.6) must be suitably changed according to the fact that now the pressure
field p ∈ Ln/(n−2)(Ω) (cf. Remark IX.1.5). Specifically, ifΩ is locally Lipschitz,
by letting

C ≡ 1

|Ω|

∫

Ω

p|p|(4−n)/(n−2)

and introducing a function Ψ that instead of (IX.3.21) solves the problem:

∇ · Ψ = p |p|(4−n)/(n−2) −C ≡ g

Ψ ∈ W
1,n/2
0 (Ω)

‖Ψ‖1,n/2 ≤ c1‖g‖n/2 ≤ c2‖p‖n/(n−2)
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one may use the arguments adopted in the proof of Theorem IX.3.1 to show
the validity of the following inequality.

‖p‖n/(n−2) ≤ c (|f |−1,2 + |v|21,2 + ν |v|1,2).

�

Remark IX.3.2 As the reader may have noticed, the method employed in
the proof of Theorem IX.3.1 –being based on Lemma IX.3.2– is in fact essen-
tially independent of the boundedness of Ω. Actually, as we shall see in the
next chapters, with an appropriate choice of the basis {ψk}, it can be equally
applied to the case when Ω is unbounded. �

Uniqueness of the solutions just constructed is easily discussed by means of
Theorem IX.2.1. Actually, from the estimate (IX.3.5) we deduce that condition
(IX.2.4) is certainly satisfied if

|f|−1,2 < ν2/k. (IX.3.22)

We thus have the following theorem.

Theorem IX.3.2 The generalized solution determined in Theorem IX.3.1
is the only generalized solution corresponding to f , provided f satisfies
(IX.3.22).

Remark IX.3.3 Theorem IX.3.2 continues to hold if n = 4. For n ≥ 5, we
refer the reader to Remark IX.5.5. �

Exercise IX.3.1 Let Ω be a bounded domain of R
n, n ≥ 2. Show that the gen-

eralized solution v constructed by the method of Theorem IX.3.1 (see also Remark
IX.3.1) satisfies the energy inequality:

ν|v|21,2 ≤ −〈f ,v〉. (IX.3.23)

Hint: Use (IX.3.10).

Furthermore, show that if n = 2, 3, 4, every generalized solution corresponding

to v∗ = 0 and f ∈ D−1,2
0 (Ω) satisfies the energy equality, that is, (IX.3.23) with

the equality sign. Finally, show that if n ≥ 5, the energy equality holds for those

generalized solutions that belong to Ln(Ω).

IX.4 Existence and Uniqueness with Nonhomogeneous
Boundary Data

As in the linear case, to prove existence when v∗ 6≡ 0, we may look for solutions
v of the form

v = u + V ,
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where V is a (sufficiently smooth) solenoidal extension to Ω of the velocity
v∗ at the boundary. From (IX.0.1), (IX.0.2) we then conclude that u solves
the problem

ν∆u = u · ∇u+ u · ∇V + V · ∇u+ ∇p− ν∆V + V · ∇V + f

∇ · u = 0

}
in Ω

u = 0 at ∂Ω.
(IX.4.1)

However, in order to show existence by the technique used in Theorem IX.3.1,
we need, as already observed, to find a uniform bound on |u|21,2 depending
only on the data. Now, formally multiplying (IX.4.1)1 by u, integrating by
parts over Ω and using (IX.4.1)2, we obtain

ν

∫

Ω

∇u : ∇u = −
∫

Ω

u · ∇V ·u−
∫

Ω

f ·u− ν

∫

Ω

∇V : ∇u−
∫

Ω

V · ∇V ·u.
(IX.4.2)

Using the Schwarz inequality and Lemma IX.1.1 one easily shows that the
last three terms of this relation can be increased by

C

(∫

Ω

∇u : ∇u
)1/2

with C = C(n, ν, Ω, f,V ). Therefore, from (IX.4.2) we find the estimate

ν

∫

Ω

∇u : ∇u ≤ −
∫

Ω

u · ∇V ·u +C

(∫

Ω

∇u : ∇u
)1/2

,

and so a way of recovering a uniform bound on |u|21,2, is to require that the
extension field V satisfy the one-sided inequality

−
∫

Ω

u · ∇V ·u ≤ α|u|21,2, (IX.4.3)

for some α < ν and for all u ∈ H1(Ω).1 If we do not want to impose restric-
tions from below on the kinematic viscosity, then Ω and v∗ should satisfy the
following extension condition (referred to by the abbreviation EC ): for any
α > 0 there is a solenoidal extension V = V (α) of v∗ satisfying (IX.4.3). As
a consequence, in contrast with the linear case, to prove existence it is not
enough to pick any (sufficiently smooth) extension of the boundary data.

If V were not required to be solenoidal, every (sufficiently regular) Ω and
v∗ would satisfy EC. Actually, for a given ε > 0 we could choose

V = ψεW (IX.4.4)

1 In fact, according to the Galerkin method, it would suffice to require the validity
of (IX.4.3) for all u ∈ D(Ω).
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withW an extension of v∗ and ψε the “cut-off” function introduced in Lemma
III.6.2. Thus, integrating by parts and using the Hölder inequality together
with the embedding Theorem II.3.4 it follows that

∣∣∣∣
∫

Ω

u · ∇(ψεW ) · u
∣∣∣∣ =

∣∣∣∣
∫

Ω

ψεu · ∇u ·W
∣∣∣∣

≤ ‖u‖4|u|1,2‖ψεW ‖4

≤ c|u|21,2‖ψεW ‖4

and since, by the properties of ψε,

‖ψεW ‖4 → 0 as ε→ 0,

we recover (IX.4.3) for any α > 0. Nevertheless, following the ideas of Leray
(1933, pp. 40-41), completed and clarified by Hopf (1941, §2) (cf. also Hopf
1957, pp. 12-14), instead of (IX.4.4) one can take2

V = ∇× (ψεW ) (IX.4.5)

with a suitable choice of the field W . Then V is solenoidal and, by arguments
slightly more complicated than those employed before, one can show that
(IX.4.3) can be satisfied by any α > 0. Recalling that the incompressibility of
the fluid requires ∫

∂Ω

v∗ · n = 0 (IX.4.6)

we may conclude that, if ∂Ω has only one connected component, the choice
(IX.4.5) ensures that any (sufficiently smooth) Ω and v∗ satisfy EC. However,
if ∂Ω has more than one connected component Γi, say, i.e., for m > 0

∂Ω =

m+1⋃

i=1

Γi,

with the choice (IX.4.5) we have, as a consequence of the Stokes theorem, that
Ω and v∗ satisfy EC if

Φi ≡
∫

Γi

v∗ ·n = 0, i = 1, 2, . . . , m+ 1. (IX.4.7)

Observe that (IX.4.7) is stronger than the compatibility condition (IX.4.6)
and that, in particular, it does not allow for the presence of separated sinks

2 If n = 2, one takes

V = (∂(ψεw)/∂x2,−∂(ψεw)/∂x1) ≡ ∇× (ψεw).
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and sources of liquids into the region of flow. At this point we may think
of choosing a field V in a form other than (IX.4.5) so that Ω and v∗ may
satisfy EC under the sole condition (IX.4.6). However, this is not possible, in
general. In fact, it is easy to bring examples of smooth domains Ω for which
EC holds (if and) only if (IX.4.7) is satisfied, whatever the choice of v∗ may
be, cf. Takeshita (1993, Theorem 1). For instance, let us suppose that Ω is the
annular region

Ω =
{
x ∈ R2 : R1 < |x| < R2

}

and set

Φ =

∫

Γ2

v∗ · n = −
∫

Γ1

v∗ · n (IX.4.8)

where

Γ1 =
{
x ∈ R2 : |x| = R1

}
, Γ2 =

{
x ∈ R2 : |x| = R2

}
.

We take Φ < 0 (inflow condition). Assuming that Ω and v∗ satisfy EC means
that for any α > 0 there is an extension V = V (α) = (Vr, Vθ) of v∗ verifying
(IX.4.3), where, as usual, (r, θ) denotes a system of polar coordinates in the
plane. Then, because V is solenoidal

∂(rVr)

∂r
+
∂Vθ

∂θ
= 0

and by (IX.4.8), it follows for all r ∈ (R1, R2)

r

∫ 2π

0

Vr(r, θ)dθ = Φ. (IX.4.9)

We take, next, u = u(r)eθ with u ∈ C∞
0 ((R1, R2)), and observe that u ∈

D(Ω). With this choice of u and in view of (IX.4.9), we find

∫

Ω

u · ∇V · u =

∫

Ω

(
1

r

∂Vθ

∂θ
+
Vr

r

)
u2 = Φ

∫ R2

R1

u2

r
dr.

Thus admitting EC would imply

|Φ|
∫ R2

R1

u2

r
dr ≤ α|u|21,2,

for any α > 0, that is, Φ = 0.

Remark IX.4.1 This example can be extended, in an simple way, to more
general two-dimensional bounded domains, Ω, satisfying the following prop-
erties: ∂Ω is constituted by two connected components, Γ1 and Γ2; (ii) Γ1

surrounds a circle, C1, and Γ2 lies within a circle, C2, with both C1 and C2

contained in Ω; (iii) The centers of C1, C2 are in the interior of the bounded
connected component of R2 −Ω; (iii) C1 ∩ C2 = ∅. �
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Remark IX.4.2 As already noticed, the above example only works if Φ < 0.
An example when Φ > 0 (outflow condition) has been recently furnished by
Heywood (2010). �

Remark IX.4.3 By similar ideas and a slightly more complicated reasoning,
one is able to prove the invalidity of EC when Ω is the 3-dimensional spherical
shell {

x ∈ R3 : R1 < |x| < R2

}
; (IX.4.10)

see Takeshita (1989, Theorem 1) and Farwig, Kozono & Yanagisawa (2010,
Theorem 1). �

Remark IX.4.4 It is interesting to observe that the counterexample given
previously to the validity of EC implies, indirectly, that the problem

∇ ·w = f in Ω,

∫

Ω

f = 0,

w ∈ W 1,q
0 (Ω)

|w|1,q ≤ c‖f‖q

‖w‖q ≤ c‖f‖−1,q

(IX.4.11)

is, in general, not solvable even if f is in divergence form. Actually let Ω be
the annular region {

x ∈ R2 : R1 < |x| < R2

}
.

If (IX.4.11) were solvable for some q > 2, we could add to the extension
(IX.4.4) a field w verifying (IX.4.11) with f = −∇ · (ψεW ). The vector field
U ≡ V +w is then solenoidal and assumes the value v∗ at ∂Ω. Furthermore,
by the Hölder inequality, by the embedding Theorem II.3.4, and by (IX.4.11)4
we have

∣∣∣∣
∫

Ω

u · ∇U · u
∣∣∣∣ =

∣∣∣∣
∫

Ω

u · ∇u ·U
∣∣∣∣

≤ c1|u|21,2‖U‖q

≤ c2|u|21,2 (‖ψεW ‖q + ‖∇ · (ψεW )‖−1,q) ,

and being
‖∇ · (ψεW )‖−1,q ≤ ‖ψεW ‖q → 0 as ε→ 0,

we obtain that, for all α > 0 there is an extension U = U(α) such that,
∣∣∣∣
∫

Ω

u · ∇U ·u
∣∣∣∣ ≤ α|u|21,2

for any u ∈ H1(Ω), thus allowing EC for Ω. By the same token, one can show
that problem (IX.4.11)1 with f ∈ C(Ω) does not admit a solution v ∈ C1(Ω)
such that
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‖v‖C1 ≤ c‖f‖C

with c = c(n,Ω). �

The example shown previously rules out the general validity of EC, but, on
the other side, it also suggests that condition (IX.4.7) can possibly be replaced
by the weaker one:

m+1∑

i=1

|Φi| < cν, (IX.4.12)

for some positive constant c. In fact, this is indeed the case. Specifically, follow-
ing the work of Galdi (1991), by suitably modifying the Leray-Hopf extension
(IX.4.5), we shall prove existence of solutions under the sole condition that the
fluxes Φi of v∗ through each component Γi of ∂Ω satisfy condition (IX.4.12),
with a computable constant c that depends only on Ω and n.3 However, if
∂Ω has more than one connected component, existence of solutions satisfying
merely (IX.4.6) with no restriction on the size of the fluxes Φi remains open.4

To show our main result we need some preparatory steps.

Lemma IX.4.1 Let Ω be a bounded locally Lipschitz domain in Rn, n = 2, 3.
Denote by ωi, i = 1, . . . , m, the (bounded) connected components of Rn − Ω
and set

ω ≡
m⋃

i=1

ωi.
5

Then, given a ∈W 1/2,2(∂Ω) verifying the condition

∫

Γi

a · n = 0, i = 1, 2, . . . , m+ 1, (IX.4.13)

where n is the outer normal to ∂Ω and

Γi ≡ ∂ωi, for i = 1, . . . , m, Γm+1 ≡ ∂(Ω ∪ ω),

3 We wish to emphasize that, clearly, the condition on the “smallness” of Φi does
not imply a priori “smallness” of v∗. On the other hand, if we assume that the
trace norm of v∗ at the boundary is small with respect to ν, then existence with
nonzero small fluxes Φi is proved in a direct elementary way.

4 For another approach to existence with nonhomogeneous data, again due to Leray,
we refer the reader to the Notes for this Chapter. In that context, we shall also
give other existence results due to Amick (1984), Morimoto (1992) and Morimoto
and Ukai (1996), where the restriction (IX.4.7) can be removed.

5 Clearly, the number m is finite since ∂Ω is compact and, furthermore,

min
i=1,...,m

dist (ωi, ∂(Ω ∪ ω)) > 0,

(cf. also Griesinger 1990a).
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there is w ∈W 2,2(Ω) if n = 3 [respectively w ∈W 2,2(Ω), if n = 2] such that
a = ∇×w [respectively a = ∇×w] in the trace sense at ∂Ω. Moreover, the
following inequality holds

‖w‖2,2 ≤ c‖a‖1/2,2(∂Ω) [respectively ‖w‖2,2 ≤ c‖a‖1/2,2(∂Ω) ] (IX.4.14)

where c = c(n,Ω).

Proof. Since

∂Ω =

m+1⋃

i=1

Γi,

from (IX.4.13) it follows that

∫

∂Ω

a ·n = 0

and so, by Exercise III.3.5, we may extend a to a field v0 ∈ W 1,2(Ω) with
∇ · v0 = 0, and verifying the inequality

‖v0‖1,2 ≤ c‖a‖1/2,2(∂Ω). (IX.4.15)

If n = 2, for a fixed x0 ∈ Ω we define a function w through the line integral

w(x) =

∫ x

x0

(v01dx2 − v02dx1), x ∈ Ω,

i.e., w is the stream function associated to v0. Since (IX.4.13) holds, w is
singlevalued. Furthermore,

∂w

∂x2
= v01,

∂w

∂x1
= −v02

and so
|w|1,2 + |w|2,2 ≤ c1‖v0‖1,2. (IX.4.16)

Also, we can modify w by an additive constant in such a way that

∫

Ω

w = 0

so that by inequality (II.5.10), (IX.4.15), and (IX.4.16) we deduce (IX.4.14),
proving the lemma if n = 2. To prove it for n = 3, we notice that, again
by Exercise III.3.5, we can extend a at ∂ωi, i = 1, . . . , m into each ωi to a
solenoidal vector field vi ∈W 1,2(ωi) satisfying the estimate

‖vi‖1,2,ωi ≤ c2‖a‖1/2,2(∂Ω), i = 1, . . . , m. (IX.4.17)

Moreover, denoting by B an open ball with B ⊃ Ω, since
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∫

Γm+1

a · n = 0,

by Corollary III.3.1 we can extend a at ∂(Ω ∪ω) to a solenoidal vector field,
vm+1, in ωm+1 ≡ B − (Ω ∪ ω) such that

vm+1 ∈W 1,2(ωm+1) , vm+1(x) = 0 x ∈ ∂B

and, moreover,
‖vm+1‖1,2,ωm+1 ≤ c2‖a‖1/2,2(∂Ω). (IX.4.18)

It is then immediately verified that the vector field:

v : x ∈ B →
{
v0 if x ∈ Ω

vi if x ∈ ωi, i = 1, . . . , m+ 1
(IX.4.19)

satisfies the following properties

(i) v ∈W 1,2(B),
(ii) ∇ · v = 0 in B,
(iii) v = 0 at ∂B,

implying v ∈ H1(B). However, by means of an explicit representation formula
it can be easily proved (see Exercise IX.4.1) that, given v ∈ H1(B) there is
w ∈W 2,2(B) such that

v = ∇×w

‖w‖2,2 ≤ c1‖v‖1,2.

This last relation, together with (IX.4.17)–(IX.4.19) implies (IX.4.14) and the
restriction of w to Ω verifies all requirements stated in the lemma. The proof
is therefore complete. ut
Exercise IX.4.1 Let Ω be a bounded domain in R

3 and let v ∈ H1(Ω). Show that
there exists w ∈ W 2,2(Ω) such that v = ∇ × w. Hint: Take first v ∈ D(Ω) and
consider the function U = E ∗ v, where E is the fundamental solution of Laplace’s
equation. Then v = ∇×w, wherew = −∇×U . By the Calderón-Zygmund Theorem
II.7.4 and Young’s inequality (II.5.3) it follows that

‖w‖2,2,Ω ≤ C‖v‖1,2,Ω ,

where C = C(Ω). The result is then a consequence of this inequality and of the

density of D(Ω) into H1(Ω).

Remark IX.4.5 Using the same lines of proof, we at once recognize that
Lemma IX.4.1 is valid, more generally, with w ∈ W 2,q(Ω), 1 < q < ∞, pro-
vided a ∈W 1−1/q(∂Ω). In particular, w obeys the following estimate

‖w‖2,q ≤ c‖a‖1−1/q,q(∂Ω).

�
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Remark IX.4.6 Lemma IX.4.1 admits of a suitable immediate extension
to arbitrary dimension n ≥ 4, which will be appropriate to our purposes.
Actually, if we set W = ∇U (i.e., Wij = ∂Uj/∂xi) with U defined in Exercise
IX.4.1, then it is easily seen that v = ∇ · W (i.e. vj = ∂Wij/∂xi) and
that Wij satisfies an estimate of the type (IX.4.14). More generally, if a ∈
W 1−1/q,q(∂Ω), 1 < q <∞, then for all i, j = 1, . . . , n we have

‖Wij‖2,q ≤ c‖a‖1−1/q,q(∂Ω).

�

The result just shown allows us to construct the desired extension of the
field v∗. Let us introduce some notation first. We denote by c = c(n,Ω) the
constant entering the problem:

∇ · b = h in Ω

b ∈W 1,2
0 (Ω)

|b|1,2 ≤ c‖h‖2.

(IX.4.20)

Moreover, if ∂Ω has more than one boundary, Γ1, .., Γm+1, with Γi, i =
1, . . . , m, the “interior” boundaries and Γm+1 the “outer” one, we set

d ≡ min
i,j

dist (Γi, Γj)

Ωi,d = {x ∈ Ω : dist (x, Γi) < d/2}
(IX.4.21)

and, indicated by ωi, i = 1, ..., m, the (bounded) connected components of
Rn − Ω,

σi(x) = −∇E(x− xi), xi ∈ ωi, i = 1, . . . , m

σm+1(x) = −σ1(x),
(IX.4.22)

where E(ξ) is the fundamental solution of Laplace’s equation defined in
(II.9.1). Clearly, we have

∫

Γi

σi · n = 1, i = 1, . . . , m+ 1, (IX.4.23)

where n denotes the outer normal to ∂Ω at Γi. The following extension lemma
holds.

Lemma IX.4.2 Let Ω be a bounded locally Lipschitz domain in Rn, n = 2, 3,
and let v∗ ∈W 1/2,2(∂Ω) satisfy

∫

∂Ω

v∗ · n = 0 . (IX.4.24)

Then, for any η > 0, there exist ε = ε(η, v∗, n, Ω) > 0, and a solenoidal vector
field V = V (ε) such that
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V ∈W 1,2(Ω), with V = v∗ at ∂Ω

and verifying

∣∣∣∣
∫

Ω

u · ∇V · u
∣∣∣∣ ≤

{
η +

m+1∑

i=1

(
κ2 4cκ2

d
‖σi‖2,Ωi,d + κ‖σi‖4,Ωi,d

)
|Φi|
}
|u|21,2

(IX.4.25)
for all u ∈ H1(Ω). Here κ, κ2 are constants depending on n and defined in
(IX.4.34), (IX.4.35), and Lemma III.6.1, respectively, c = c(n,Ω) is defined
in (IX.4.20) and

Φi =

∫

Γi

v∗ · n, i = 1, . . . , m+ 1.

Furthermore, σi and Ωi,d are given in (IX.4.21) and (IX.4.22). Finally, if v∗
lies in a ball of W 1/2,2(∂Ω), namely, ‖v∗‖1/2,2(∂Ω) ≤ M , for some M > 0,
then there is C = C(n,Ω, η,M) > 0 such that

‖V ‖1,2 ≤ C ‖v∗‖1/2,2(∂Ω) . (IX.4.26)

Proof. We shall first consider the case m > 0. Let

δi(x) ≡ dist (x, Γi), x ∈ Ω, i = 1, . . . , m+ 1,

and denote by ρi(x) the regularized distance of x from Γi, in the sense of Stein
(cf. Lemma III.6.1). Set

ψ(t) =





1 t ≤ 1
2 − t 1 ≤ t ≤ 2
0 t ≥ 2

and define
ψi(x) ≡ ψ(4ρi(x)/d), i = 1, . . . , m+ 1. (IX.4.27)

Recalling the properties of ρi(x), we have that the functions (IX.4.27) are
piecewise differentiable and that, moreover,

ψi(x) = 1 if δi(x) < d/4κ1

ψi(x) = 0 if δi(x) ≥ d/2

|ψi(x)| ≤ 1

|∇ψi(x)| ≤ 4κ2/d

supp (∇ψi) ⊂ {x ∈ Ω : d/4κ1 ≤ δi(x) ≤ d/2}

(IX.4.28)

where κ1 and κ2 are the constants introduced in Lemma III.6.1. In view of
(IX.4.23) and (IX.4.28) we recover that the field
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v1(x) := v∗(x) −
m+1∑

i=1

Φiψi(x)σi(x), x ∈ ∂Ω (IX.4.29)

satisfies the m+ 1 conditions
∫

Γi

v1 ·n = 0, i = 1, . . . , m+ 1.

By Lemma IX.4.1 we then have that, if n = 3, there is a w ∈ W 2,2(Ω)
[respectively w ∈ W 2,2(Ω), if n = 2] such that v1(x) = ∇ × w(x), x ∈ ∂Ω
[respectively v1(x) = ∇× w(x)]. For given ε > 0 we set

V ε = ∇× (ψεw) [respectively V ε = ∇× (ψεw)] (IX.4.30)

where ψε is the “cut-off” function defined in Lemma III.6.2. From the prop-
erties of ψε and w we easily realize that the field

U(x) = V ε(x) +

m+1∑

i=1

Φiψi(x)σi(x), x ∈ Ω,

is a W 1,2(Ω)-extension of v∗. However, U is not solenoidal and, therefore, in
order to obtain the desired extension of v∗, we have to modifyU appropriately.
To this end, let us consider the field b defined by the following properties:

∇ · b = −
m+1∑

i=1

σi(x) · ∇(Φiψi(x)) ≡ h(x)

b ∈W 1,2
0 (Ω)

|b|1,2 ≤ c ‖h‖2.

(IX.4.31)

Since, by (IX.4.24) and (IX.4.28),

h ∈ Lq(Ω), for all q ∈ (1,∞)

∫

Ω

h = 0,

Theorem III.3.1 ensures the existence of at least one vector b satisfying
(IX.4.31). Furthermore, using (IX.4.28)3,4, we obtain

|b|1,2 ≤ 4cκ2

d

m+1∑

i=1

‖σi‖2,Ωi,d|Φi|. (IX.4.32)

The desired extension of v∗ is then given by the field:

V (x) := V ε(x)+

m+1∑

i=1

Φiψi(x)σi(x)+b(x) ≡ V ε(x)+V σ(x)+b(x). (IX.4.33)
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In fact, V is solenoidal, belongs to W 1,2(Ω), and its trace at ∂Ω is v∗. Let us
now estimate the trilinear form:

a(u,V ,u) ≡
∫

Ω

u · ∇V ·u, u ∈ H1.

In this respect, we recall the inequality:

‖u‖4 ≤ κ|u|1,2 (IX.4.34)

where

κ =

{
27/43−13/8|Ω|1/12 if n = 3

|Ω|1/4/
√

2 if n = 2.
(IX.4.35)

Actually, (IX.4.34) and (IX.4.35) follow from (II.3.9), (II.3.10), and (II.5.5).
By the Hölder inequality, (IX.4.32), (IX.4.34), and (IX.4.35) we obtain

|a(u, b,u)| ≤ ‖u‖2
4|b|1,2 ≤

m+1∑

i=1

(
κ2 4cκ2

d
‖σi‖2,Ωi,d|Φi|

)
|u|21,2. (IX.4.36)

Furthermore, by an easily justified integration by parts we find

|a(u,V σ ,u)| = |a(u,u,V σ)|

and so, again by the Hölder inequality, (IX.4.28)3, (IX.4.33), and (IX.4.34),
it follows that

|a(u,V σ ,u)| ≤ ‖u‖4|u|1,2‖V σ‖4 ≤ κ|u|21,2

m+1∑

i=1

‖σi‖4,Ωi,d|Φi|. (IX.4.37)

It remains to estimate the term

a(u,V ε,u).

From the properties of the function ψε established in Lemma III.6.2 we find
that

|V ε(x)|





≤ εκ2

δ(x)
|w(x)|+ |∇w(x)|, if x ∈ Ωε

= 0, if x 6∈ Ωε

(IX.4.38)

where δ(x) is the distance from x ∈ Ω to ∂Ω,

Ωε ≡ {x ∈ Ω : δ(x) ≤ 2γ(ε)} ;

and γ(ε) := exp(−1/ε). Observe that, for any k > 0,

|Ωε|k ≤ c0 ε , (IX.4.39)

with c0 = c0(n, k, Ω). Moreover, from the embedding Theorem II.3.4,
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|w(x)| ≤ c1‖∇w‖2,2

‖∇w‖4 ≤ c1‖w‖2,2

(IX.4.40)

which, by Lemma IX.4.1, in turn implies

‖∇w‖4 + |w(x)| ≤ c2‖v1‖1/2,2(∂Ω). (IX.4.41)

Thus, (IX.4.38), along with (IX.4.41), (IX.4.29) and (II.3.7), gives for all u ∈
H1(Ω)

‖|u||V ε| ‖2 ≤
[
ε‖v∗‖1/2,2(∂Ω)‖uδ−1‖2 +

(∫

Ωε

u2|∇w|2
)1/2

]

≤ c3
(
ε‖v∗‖1/2,2(∂Ω)‖uδ−1‖2 + |u|1,2‖∇w‖3,Ωε

)
,

(IX.4.42)

By Lemma III.6.3, we have

‖uδ−1‖2 ≤ c4|u|1,2,

while, by Hölder inequality and (IX.4.41),

‖∇w‖3,Ωε ≤ |Ωε|
1
12 ‖∇w‖4,Ω ≤ c5 |Ωε|

1
12 ‖v∗‖1/2,2(∂Ω) .

Thus, from (IX.4.39) and (IX.4.42), we infer

‖|u||V ε| ‖2 ≤ c6 ε‖v∗‖1/2,2(∂Ω)|u|1,2 , (IX.4.43)

where c6 = c6(n,Ω). Fix arbitrary η > 0 and choose

ε ≤ η

c6 ‖v∗‖1/2,2(∂Ω)
. (IX.4.44)

From (IX.4.43), (IX.4.44), Lemma IX.2.1, and the Schwarz inequality we then
conclude that

|a(u,V ε,u)| = |a(u,u,V ε)| ≤ η |u|21,2. (IX.4.45)

Collecting (IX.4.33), (IX.4.36), (IX.4.37), and (IX.4.45) yields

|a(u,V ,u)| ≤
{
η +

m+1∑

i=1

(
κ2 4cκ2

d ‖σi‖2,Ωi,d

+κ
4κ2

d
‖σi‖4,Ωi,d

)
|Φi|

}
|u|21,2

(IX.4.46)

which coincides with (IX.4.25) if m > 0. If m = 0 the proof is simpler,
since, then, one can take V = V ε and proceed as before to arrive formally at
(IX.4.46) with identically vanishing Φi. The first part of the lemma is therefore
proved. In order to show (IX.4.26), we observe that, from (IX.4.32), (IX.4.33),
it obviously follows that
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‖V σ‖1,2 + ‖b‖1,2 ≤ c7‖v∗‖1/2,2(∂Ω) . (IX.4.47)

It remains to give an analogous estimate for V ε. To this end, we notice that,
under the stated hypothesis on v∗, (IX.4.44) is certainly satisfied if we choose
ε = η/(c6M) ≡ ε1. Thus, from (IX.4.30) and the properties of the function
ψε, we easily obtain that

‖V ε‖1,2 ≤ c8
(
‖w‖2,2 + ‖w/(δ2 + δ)‖2,Ω′

ε
+ ‖∇w/δ‖2,Ω′

ε

)

where
Ω′

ε :=
{
x ∈ Ω : γ2(ε)/(2κ1) ≤ δ(x) ≤ 2γ(ε)

}
.

and c8 = c8(n,Ω, ε1). Consequently, from (IX.4.14) and the last two displayed
equations we deduce

‖V ε‖1,2 ≤ c9‖v∗‖1/2,2(∂Ω) (IX.4.48)

where c9 = c9(n,Ω, η,M). The proof of the lemma is completed.
ut

Remark IX.4.7 It is simple to generalize Lemma IX.4.2 to dimension n ≥ 4,
provided we make appropriate changes in the proof just given. Actually, it
suffices to use, instead of (IX.4.34), the Sobolev inequality (II.3.7), to take
the field b as solution to the following problem

∇ · b = h

b ∈ W
1,n/2
0 (Ω)

|b|1,n/2 ≤ c‖h‖n/2

and, finally, to choose
V ε = ∇ · (ψεW )

as an extension of the field v1, withW defined in Remark IX.4.5. However, in
order that V ε satisfies the estimate needed in the lemma, we should require
that v∗ has slightly more regularity. Actually, in dimensions higher than three,
(IX.4.40) need not hold and we have, instead,

|W (x)| ≤ c1‖W ‖2,q

‖∇W ‖s ≤ c1‖W ‖2,q

}
q > n/2, s > n; (IX.4.49)

see Theorem II.3.4. On the other hand, taking into account Remark IX.4.6, the
right-hand side of (IX.4.49) is finite provided v∗ ∈ W 1−1/q,q(∂Ω), q > n/2.
Therefore, if n ≥ 4, under this additional condition on v∗ the vector field
(IX.4.33) belongs to W 1,q(Ω),6 and satisfies (IX.4.45). One can then show
that the trilinear form a(u,V ,u) satisfies the estimate

6 Notice that, since h ∈ Lr(Ω), for all r > 1, we may take b ∈ W 1,q(Ω); see Remark
III.3.4.
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|a(u,V ,u)| ≤
{
η +

m+1∑

i=1

(
c3‖σi‖n/2,Ωi,d

+ c4‖σi‖n,Ωi,d

)
|Φi|
}
|u|21,2

with c3 and c4 suitable constants. Likewise, inequality (IX.4.26) is replaced
by the following one

‖V ‖1,q ≤ C ‖v∗‖1−1/q,q(∂Ω) ,

with C = C(n,Ω, η,M), provided ‖v∗‖1−1/q,q(∂Ω) ≤M . �

Exercise IX.4.2 (Alekseev & Tereshko, 1998) By adopting (and simplifying) the
arguments used in the proof of Lemma IX.4.2, show the following result. Suppose
Ω and v∗ satisfy the assumption of Lemma IX.4.2 with Φi = 0, i = 1, . . . ,m + 1.
Then, given η > 0 there exists a solenoidal extension, V η ∈ W 1,2(Ω) of v∗, such
that ˛̨

˛̨
Z

ω

u · ∇V η · u
˛̨
˛̨ ≤ η‖v∗‖1/2,2(∂Ω) |u|21,2 ,

for all u ∈ H1(Ω). Moreover, there is a constant c = c(η, n,Ω) such that

‖V η‖1,2 ≤ c ‖v∗‖1/2,2(∂Ω) .

We are now in a position to prove the main results of this section.

Theorem IX.4.1 Let Ω be a bounded locally Lipschitz domain of Rn, n =
2, 3, with ∂Ω constituted by m+1 connected components Γ1 . . .Γm+1, m ≥ 0,
and let

v∗ ∈W 1/2,2(∂Ω), f ∈ D−1,2
0 (Ω),

with v∗ satisfying (IX.4.24). The following properties hold.

(i) Existence. If

Φ ≡
m+1∑

i=1

(
κ2 4cκ2

d
‖σi‖n/2,Ωi,d

+ κ‖σi‖n,Ωi,d

)∣∣∣∣
∫

Γi

v∗ · n
∣∣∣∣ < ν ,

(IX.4.50)
there is at least one generalized solution v to problem (IX.0.1), (IX.0.2),
with corresponding pressure field p ∈ L2(Ω), associated to v by Lemma
IX.1.2, that satisfies the inequality

‖p‖2 ≤ c
(
|f|−1,2 + ‖v‖2

1,2 + ν‖v‖1,2

)
(IX.4.51)

where c = c(n,Ω).
(ii)Estimate by the data. (a) Let

W
1/2,2
M (∂Ω) := {φ ∈W 1/2,2(∂Ω) : ‖φ‖1/2,2(∂Ω) ≤M}, some M > 0.

(IX.4.52)
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If v∗ ∈ W
1/2,2
M (∂Ω) and Φ ≤ ν/2, any generalized solution v corresponding

to v∗ and f satisfies the estimate:

‖v‖1,2 ≤ c1
ν
|f |−1,2 + c2

(
‖v∗‖2

1/2,2(∂Ω) + ‖v∗‖1/2,2(∂Ω)

)
, (IX.4.53)

where c1 = c1(n,Ω), while c2 = c2(n,Ω, ν,M) .
(b) There exists c3 = c3(n,Ω) such that if

‖v∗‖1/2,2(∂Ω) ≤ c3ν/2,

any generalized solution v corresponding to v∗ and f verifies the following
estimate

‖v‖1,2 ≤ c4
ν

(
|f |−1,2 + ‖v∗‖2

1/2,2(∂Ω) + ν ‖v∗‖1/2,2(∂Ω)

)
, (IX.4.54)

with c4 = c4(n,Ω). Estimates for p follow from (IX.4.51)–(IX.4.54).

Proof. We look for a solution of the form v = u+V , where V is the extension
of the field v∗ constructed in Lemma IX.4.2. We then consider a sequence {us}
of “approximating solutions” as in Theorem IX.3.1, i.e.,

us =

s∑

k=1

ξksψk

ν(∇us,∇ψk) + (us · ∇us,ψk) + (us · ∇V ,ψk) + (V · ∇us,ψk)

= −〈f ,ψk〉 − ν(∇V ,∇ψk) − (V · ∇V ,ψk), k = 1, 2, . . . , s.

(IX.4.55)

From this point on we can repeat step by step the proof of Theorem IX.3.1,
provided we show a uniform bound on |us|1,2. But, as already seen, this is
easily achieved thanks to the particular choice of the field V . Actually, multi-
plying (IX.4.55)2 by ξks, summing over k from one to s and recalling (IX.3.8)
we have

ν |us|21,2 +(us ·∇V ,us) = −〈f ,us〉−ν(∇V ,∇us)− (V ·∇V ,us). (IX.4.56)

Using (IX.4.25) with η = (ν − Φ)/2 (say) and Lemma IX.1.1, from (IX.4.56)
it follows that

1

2
(ν − Φ)|us|21,2 ≤ (|f|−1,2 +C(V , ν)) |us|1,2,

which, in view of (IX.4.50), furnishes the desired bound on |us|1,2. Moreover,
(IX.4.51) is established exactly as in Theorem IX.3.1. The proof of the exis-
tence can be then considered complete. We shall now show the second part
of the theorem. Let v be a generalized solution corresponding to v∗ and f .
We write v = w + U , with U ∈ W 1,2(Ω) solenoidal extension of v∗ to be
specified later on. From (IX.1.2) we find
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ν(∇w,∇ϕ) + (w · ∇w,ϕ) + (w · ∇U ,ϕ) + (U · ∇w,ϕ)

= −〈f ,ϕ〉 − ν(∇U ,∇ϕ) − (U · ∇U ,ϕ).

Since w ∈ Ĥ1(Ω), from Lemma IX.1.1 and Section III.4.1 we can replace ϕ
with w in the previous identity to obtain

ν |w|21,2 + (w · ∇U ,w) = −〈f ,w〉 − ν(∇U ,∇w) − (U · ∇U ,w). (IX.4.57)

We now choose U ≡ V , where V is the extension constructed in Lemma
IX.4.2. Thus, on the account that Φ ≤ ν/2 and by taking η = ν/4, from
(IX.4.57), Lemma IX.4.2 and Lemma IX.1.1, we find

ν

4
|w|1,2 ≤ C1

(
|f |−1,2 + ‖V ‖2

1,2 + ν‖V ‖1,2

)

where C1 = C1(n,Ω). Since v∗ ∈ W
1/2,2
M (∂Ω), from Lemma IX.4.2, we find

that the extension V satisfies (IX.4.26). Thus, (IX.4.53) follows from this
latter displayed inequality and (IX.4.26).7 It remains to show (IX.4.54). To
this end, we choose U ∈ W 1,2(Ω) to be the solenoidal extension of v∗ given in
Exercise III.3.5. From (IX.4.57), Lemma IX.1.1 and the condition (Exercise
III.3.5)

‖U‖1,2 ≤ c ‖v∗‖1/2,2(∂Ω),

we then easily obtain

ν |w|21,2 ≤ c
{
‖v∗‖1/2,2(∂Ω)|w|21,2 +

(
|f |−1,2 + ν‖v∗‖1/2,2(∂Ω)

+‖v∗‖2
1/2,2(∂Ω)

)
|w|1,2

}
,

and (IX.4.54) follows from this latter inequality and the assumption on v∗.
ut

Remark IX.4.8 The estimate of generalized solution in terms of the bound-
ary data given in (IX.4.53) deserves some comments. We wish to emphasize
that the method we employed, which goes back to J. Leray and E. Hopf (see
the Notes for this Chapter for more details), does not seem to furnish the es-
timate (IX.4.53) unless we require the boundedness of the set of the boundary

data (that is, v∗ ∈ W
1/2,2
M (∂Ω). Moreover, the dependence of the constant c2

in (IX.4.53) on the coefficient of kinematic viscosity ν may be very compli-
cated. However, if ν ≥ ν0, for some positive ν0, then c2 depends only on ν0.
These facts seem to have been overlooked by several authors, including myself;
see Finn (1961a, Theorem 2.3), Ladyzhenskaya (1969, Chapter 5, Section 4),
Galdi (1994b, Theorem VIII.4.1), Finn & Solonnikov (1997, Theorem 3). �

7 Notice that the constant c2 in (IX.4.53) depends also on ν, because the choice of
η depends on ν, and the constant C in (IX.4.26) depends on η.
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Sufficient conditions for the uniqueness of generalized solutions are at once
derived from Theorem IX.2.1 and (IX.4.54), and we find the following.

Theorem IX.4.2 The generalized solution v constructed in Theorem IX.4.1
is unique in the class of generalized solutions corresponding to the same f
and v∗ provided

1

ν

(
|f|−1,2 + ‖v∗‖2

1/2,2(∂Ω)

)
+ ‖v∗‖1/2,2(∂Ω) < C ν,

where C = min{c3/2, 1/
√
c4k}, while c3, c4 and k are defined in Theorem

IX.4.1 and in Theorem IX.2.1, respectively.

Remark IX.4.9 If m = 0, that is, if the boundary of Ω is constituted by
only one connected surface (line, for plane flow) Γ , say, condition (IX.4.50) is
automatically satisfied, since, by the incompressibility condition,

∫

Γ

v∗ · n ≡
∫

∂Ω

v∗ · n = 0.

Moreover, if m > 1, condition (IX.4.50) furnishes a computable bound on the
fluxes Φi in terms of ν . It may be of a certain interest to evaluate this bound
when Ω is an annulus. In fact, as we have noticed at the beginning of this
section, such domains cannot admit, in general, an extension field V (α) of v∗
obeying (IX.4.3) for arbitrary α > 0, and, as a consequence, the Leray-Hopf
construction of steady-state solutions would require identically vanishing Φi.
To fix the ideas, take Ω to be the annulus bounded by R and 2R, that is,

Ω =
{
x ∈ R2 : R < |x| < 2R

}
. (IX.4.58)

Thus, in the notation of Lemma IX.4.1 and Theorem IX.4.1, we have8

d = 2R−R = R, κ2 = 1

σ1(x) = −σ2(x) = −∇(log |x|)/2π = −1/(2π|x|),
Ω1,d =

{
x ∈ R2 : R < |x| < 3R/2

}
,

Ω2,d =
{
x ∈ R2 : 3R/2 < |x| < 2R

}
.

Moreover, we have to give explicit values to the constants κ and c defined
in (IX.4.31) and (IX.4.35), respectively. Concerning κ, from (IX.4.35) and
(IX.4.58) we at once obtain

κ = (3π)1/4
√
R/2 ' 1.238

√
R.

However, a sharper estimate can be obtained on κ. Actually, from the La-
dyzhenskaya inequality (II.3.9)

8 For the value of κ2, cf. Remark III.6.1.
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‖u‖4 ≤ 2−1/4‖u‖1/2
2 ‖∇u‖1/2

2

and from (IX.4.34) we find that κ can be estimated by the product of 2−1/4

times the fourth root of the Poincaré constant µ, defined as

µ = µ(Ω) = max
u∈W1,2

0 (Ω)

(
‖u‖2

2

|u|21,2

)
;

cf. (II.5.3). The value of µ can be calculated from the formula

R/
√
µ = π − 1/(16π) + 163/(3072π2) − 93029/(491520π5) + . . . ;

cf. McLachlan (1961,§1.62, eq.(4)). We then recover µ ' 0.102 ·R2 and

κ ' 0.476
√
R. (IX.4.59)

To evaluate the constant c, we observe that, since the products σi · ∇ψi,
i = 1, 2, depend only on r ≡ |x|, the function h in (IX.4.35) depends only
on r. Therefore, a solution b to (IX.4.35) with Ω given in (IX.4.57) can be
chosen of the form

b(x) =
x

r2

∫ r

R

ξh(x)dξ, x ∈ Ω.

Since
∂b2
∂x1

=
∂b1
∂x2

,

by a direct computation we show that

|b|1,2 = ‖∇ · b‖2 = ‖h‖2,

and we conclude that c = 1. Collecting all these data and setting Φ ≡ −Φ1 =
Φ2, condition (IX.4.50) becomes

H |Φ| < ν, (IX.4.60)

where

H ≡ κ

2π

[
4κ

2π
(A+ B) + (C +D)

]
,

A =

(
2π

∫ 3R/2

R

ξ−1dξ

)1/2

, B =

(
2π

∫ R

3R/2

ξ−1dξ

)1/2

,

C =

(
2π

∫ 3R/2

R

ξ−3dξ

)1/4

, D =

(
2π

∫ R

3R/2

ξ−3dξ

)1/4

,

and κ is given in (IX.4.59). Evaluation of H furnishes
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H ' 0.58

and the flux condition (IX.4.60) becomes

|Φ| < 1.72ν.

�

Remark IX.4.10 The existence result of Theorem IX.4.1 can be extended
to any dimension n ≥ 4, provided

v∗ ∈W 1−1/q,q(∂Ω), q > n/2,

and

Φ(n) ≡
m+1∑

i=1

(
c1‖σi‖n/2,Ωi,d

+ c2‖σ‖n,Ωi,d

)
|
∫

Γi

v∗ · n| < ν.

In fact, by Remark IX.4.7 and (IX.4.56) we obtain

1

2
(ν − Φ(n))|us|21,2 ≤ (|f |−1,2 + ν |V |1,2) |us|1,2 + |(V · ∇V ,us)|.

Moreover, from the Hölder inequality it follows that

|(V · ∇V ,us)| ≤ c‖V ‖2
4|us|1,2,

and since W 1,q(Ω) ⊂ L4(Ω) for q > n/2 and n ≥ 4 (see Theorem II.3.4), we
then have

|(V · ∇V ,us)| ≤ c′‖V ‖2
1,q|us|1,2.

Thus,
1

2
(ν − Φ(n))|us|1,2 ≤

(
|f|−1,2 + ν‖V ‖1,2 + c′‖V ‖2

1,q,
)

which furnishes the desired uniform bound on |us|1,2. Concerning the estimate
for the pressure, we refer to Remark IX.3.1. Under the stated assumptions on
the trace norm of v∗, estimates similar to (IX.4.53), (IX.4.54) continue to
hold for generalized solutions also for n = 4. Therefore, by Remark IX.2.3,
the uniqueness result of Theorem IX.4.2 extends in the same form to n = 4.
For uniqueness in dimension n ≥ 5, we refer to Remark IX.5.5. �

IX.5 Regularity of Generalized Solutions

We shall now show certain Lq-estimates for weak solutions to problem
(IX.0.1), (IX.0.2). These estimates will imply, in particular, that if Ω and
the data are smooth then the corresponding weak solutions are also smooth.

The key tool is a very general result proved in the next Lemma IX.5.1,
regarding a linearized version of problem (IX.0.1), (IX.0.2).
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Lemma IX.5.1 Let Ω be a bounded domain of Rn, n ≥ 2, of class C2,
u ∈ Ln(Ω) with ∇ · u = 0 in Ω, in the weak sense, and q ∈ (1, n). Then, for
any

F ∈ Lq(Ω) , g ∈W 1,q(Ω) , w∗ ∈W 2−1/q,q(∂Ω) ,

with ∫

Ω

g =

∫

∂Ω

w∗ ·n ,

the problem
∆w = u · ∇w+ ∇π + F

divw = g

}
in Ω

w = w∗ at ∂Ω

(IX.5.1)

has at least one solution (w, π) ∈ W 2,q(Ω) ×W 1,q(Ω), that satisfies, in addi-
tion, the following estimate

‖w‖2,q + ‖π‖1,q ≤ C
(
‖F ‖q + ‖g‖1,q + ‖w∗‖2−1/q,q,∂Ω

)
, (IX.5.2)

with C = C(n, q, Ω,u). Furthermore, let w ∈ D1,s(Ω), for some s ∈ (1,∞),
satisfy (IX.5.1)2,3 along with the equation

(∇w,∇ϕ) − (u · ∇ϕ,w) = (F ,ϕ) , for all ϕ ∈ D(Ω) . (IX.5.3)

Then, if n ≥ 3, necessarily w = w, a.e. in Ω, while, if n = 2, the same
conclusion holds provided s ∈ [2,∞) and u ∈ Lq0 (Ω), for some q0 > 2.

Proof. We begin to show the existence result. In this respect, we claim that it
is enough to show it with g ≡ 0 and w∗ ≡ 0. Actually, under the assumption
of the lemma, let (w1, π1) ∈W 2,q(Ω)×W 1,q(Ω) (with π1Ω = 0) be a solution
to the following Stokes problem

∆w1 = ∇π1

divw1 = g

}
in Ω

w|∂Ω = w∗ .

In view of Theorem IV.6.1, this solution exists (uniquely) and satisfies the
estimate

‖w1‖2,q + ‖π1‖1,q ≤ C
(
‖g‖1,q + ‖w∗‖2−1/q,q,∂Ω

)
, (IX.5.4)

with C = C(n, q, Ω). If we then write the solution to (IX.5.1) in the form
(w = w1 + w2, π = π + π2), we immediately recognize that (w2, π2) solves
(IX.5.1) with g = w∗ = 0 and with F replaced by F ′ := F−u·∇w1. However,
by the Hólder and Sobolev inequalities (see Theorem II.3.4), we find

‖u · ∇w1‖q ≤ ‖u‖n‖∇w1‖nq/(n−q) ≤ C ‖u‖n‖w1‖2,q
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which ensures F ′ ∈ Lq(Ω). Consequently, the above claim follows from this
property and from (IX.5.4). We shall thus prove the lemma when g ≡ 0
and w∗ ≡ 0. By Theorem III.2.1 and Exercise II.2.6, given ε > 0, there are
sequences {v(j)} ⊂ C∞(Ω), {F (j)} ⊂ C∞

0 (Ω), and an integer j = j(ε) > 0
such that

‖u− u(j)‖n + ‖∇ · u(j)‖n + ‖F − F (j)‖q < ε , for all j ≥ j . (IX.5.5)

Consider the following sequence of problems

∆w = U (j) · ∇w + u(j) · ∇w + ∇π + F (j)

∇ ·w = 0

}
in Ω

w|∂Ω = 0 ,

(IX.5.6)

where U (j) := u(j)−u(j). If we formally multiply (IX.5.6)1 byw and integrate
by parts over Ω, we obtain

|w|21,2 = 1
2(∇ · u(j), |w|2) − (F (j),w) . (IX.5.7)

From the embedding Theorem II.3.4 we get

‖w‖2n/(n−1) ≤ C1 |w|1,2 ,

where C1 = C1(Ω, n), and so, with the help of the Hölder inequality, it follows
that

|(∇ · u(j), |w|2)| ≤ C2
1 ‖∇ · u(j)‖n|w‖2

1,2 . (IX.5.8)

Moreover, by the Poincaré inequality (II.5.1), we find

|(F (j),w)| ≤ C2‖F (j)‖2|w|1,2 , (IX.5.9)

where C2 = C2(Ω). Thus, choosing ε < 1/C2
1 , from (IX.5.7)–(IX.5.9) it follows

that
|w|1,2 ≤ C2‖F (j)‖2 .

Thanks to this estimate, we may then use the method employed in the proof
of Theorem IX.3.1 to show, for each fixed j ≥ j, the existence of a generalized
solution (w(j), π(j)) ∈ W 1,2

0 (Ω) × L2(Ω) to (IX.5.6). Let us prove that this
solution is, in fact, more regular and that it satisfies, in particular

(w(j), π(j)) ∈W 2,t(Ω) ×W 1,t(Ω) , for all t ∈ [1,∞) . (IX.5.10)

Let us begin to show that

(w(j), π(j)) ∈ W 1,s(Ω) × Ls(Ω), for all s ∈ [1,∞). (IX.5.11)

Actually, since
a(j) ≡ u(j) · ∇w(j) ∈ L2(Ω),
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from the results on the Stokes problem established in Theorem IV.6.1 it then
follows that

(w(j), π(j)) ∈W 2,2(Ω) ×W 1,2(Ω) .

Thus, by the embedding theorem Theorem II.3.4 we infer that a(j) ∈ Lr(Ω)
with r = 2n/(n−2) if n > 2 and all r > 1 if n = 2. Employing again Theorem
IV.6.1, we find that

(w(j), π(j)) ∈W 2,r(Ω) ×W 1,r(Ω).

If r ≥ n, that is, n ≤ 4, then (IX.5.11) is proved; otherwise,

a(j) ∈ Lr1 (Ω), r1 = 2n/(n− 4) (> r)

and, again by Theorem IV.6.1 we deduce

(w(j), π(j)) ∈W 2,r1(Ω) ×W 1,r1(Ω).

If r1 ≥ n we arrive at (IX.5.11); if not, we iterate the argument as many times
as we please until we derive (IX.5.11). Once (IX.5.11) has been established,
we use the classical results of Theorem IV.6.1 one more time to prove, in
particular, the validity of (IX.5.10), in any space dimension n ≥ 2. Next, by
means of the Hölder inequality, the embedding Theorem II.3.4, and relations
(IX.5.5) we deduce, for any q ∈ (1, n),

‖u(j) · ∇w(j)‖q ≤ ‖U (j)‖n‖∇w(j)‖nq/(n−q) + max
Ω

|u(j)| ‖∇w(j)‖q

≤ ε ‖w(j)‖2,q + max
Ω

|u(j)| ‖∇w(j)‖q. (IX.5.12)

In view of (IX.5.10) we can now apply Theorem IV.6.1 to problem (IX.5.6)
to recover, with q ∈ (1, n),

‖w(j)‖2,q + ‖π(j)‖1,q ≤ C3

(
ε‖w(j)‖2,q + max

Ω
|u(j)| ‖∇w(j)‖q + ‖F (j)‖q

)
,

where C3 = C3(q, n, Ω). So, taking ε < min{1/C2
1 , 1/C3}, from the preceding

inequality we derive the following one

‖w(j)‖2,q +‖π(j)‖1,q ≤ C3

(
M(u)‖w(j)‖1,q +‖F (j)‖q

)
, q ∈ (1, n) , (IX.5.13)

withM(u) ≡ maxΩ |u(j)|. Our next task is to prove the existence of a positive
constant C4 = C4(q, n, Ω,u), but otherwise independent of j, such that

‖w(j)‖1,q ≤ C4‖F (j)‖q . (IX.5.14)

This will be proved by the, by now familiar, contradiction argument. Thus,
assuming the invalidity of (IX.5.14), for any integer m we could find {F (m)}
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such that denoted by {(w(m), π(m))} the corresponding solutions to (IX.5.6)
(with j = m), the inequality

‖w(m)‖1,q > m ‖Fm‖q , for all m ∈ N,

would hold. By the linearity of the problem, we can take, without loss,

‖w(m)‖1,q = 1, for all m ∈ N, (IX.5.15)

so that the preceding inequality furnishes

‖F (m)‖q < 1/m , for all m ∈ N . (IX.5.16)

From the estimate (IX.5.13), we deduce that ‖w(m)‖2,q is uniformly bounded
in m, and by Remark II.3.1 and Theorem II.5.2 we can infer the existence of
a field W ∈ W 2,q(Ω) and of a subsequence, again denoted by {w(m)}, such
that

w(m) w→W in W 2,q(Ω)

wm →W in W 1,t
0 (Ω) , for all t ∈ [1, nq/(n− q)).

(IX.5.17)

Furthermore, in view of (IX.5.5),

u(m) → u in Ln(Ω). (IX.5.18)

Passing to the limit m → ∞ in (IX.5.6) (with j = m) and using (IX.5.16)–
(IX.5.18), it follows that the limit function W satisfies

(∇W ,∇ϕ) + (u · ∇W ,ϕ) = 0, for all ϕ ∈ D(Ω),

∇ ·W = 0 , W ∈W 1,q
0 (Ω) ∩W 2,q(Ω) .

(IX.5.19)

Let us prove thatW ≡ 0. If n = 2, since q ∈ (1, 2) by the embedding Theorem
II.3.4 we infer W ∈ H1

r1
(Ω), with r1 = 2q/(2− q) > 2, so that, in particular,

W ∈ H1(Ω). Let {ϕk} ⊂ D(Ω) with ϕk → W in H1
r1

(Ω), and thus, in
particular, in H1(Ω). This ensures that

lim
k→∞

(∇W ,∇ϕk) = |W |21,2 .

Moreover, for any s ∈ (r′1, 2), we have u ∈ Ls(Ω) with ∇·u = 0, and so, using
the properties of W and ϕk along with the embedding Theorem II.3.4, with
the help of Exercise IX.2.1 we find

lim
k→∞

(u · ∇W ,ϕk) = (u · ∇W ,W ) = 0 .

We next replace ϕ with ϕk in (IX.5.19)1, pass to the limit k → ∞ and use
the properties stated in the last two displayed equation to obtain W ≡ 0. On
the other hand, from (IX.5.15) and (IX.5.17) we also have
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‖∇W‖q = 1, (IX.5.20)

leading to a contradiction. We shall next consider the case n ≥ 3. We begin to
suppose q ∈ [2n/(n+2), n). In this situation, by Theorem II.3.4, we get W ∈
W 1,2

0 (Ω). The trilinear form (v ·∇z1, z2) is continuous in Ln(Ω)×W 1,2(Ω)×
L2n/(n−2)(Ω) (see Exercise IX.2.1), and so, by the embedding Theorem II.3.2,
it is continuous in Ln(Ω) × H1(Ω) × H1(Ω). Since, by definition, D(Ω) is
dense in H1(Ω), for all σ ∈ (1,∞), by a standard approximating procedure
we are then allowed to take W = ϕ in (IX.5.19) to get

0 = |W |21,2 + (u · ∇W ,W ) .

However, (u · ∇W ,W ) = 0, by Exercise IX.2.1, because W ∈ W 1,2
0 (Ω) and

u ∈ Ln(Ω) with ∇ · u = 0. As a result, we infer W ≡ 0, which contradicts
(IX.5.20). Inequality (IX.5.14) is therefore established, if n = 2, for q ∈ (1, 2),
and, if n ≥ 3, for q ∈ [2n/(n+ 2), n). From (IX.5.13) and (IX.5.14) we obtain

‖w(j)‖2,q + ‖π(j)‖1,q ≤ C5 ‖F (j)‖q (IX.5.21)

with C5 = C5(n, q, Ω,u). From (IX.5.21), Remark II.3.1 and Theorem II.5.2
it follows that there are subsequences {w(j′)} and {π(j′)}, and two fields
w ∈W 2,q(Ω) and π ∈ W 1,q(Ω), such that

wj′ w→ w in W 2,q(Ω)

wj′ → w in W 1,q(Ω)

and

πj′ w→ π weakly in W 1,q(Ω).

Clearly, (w, π) is a solution to (IX.5.1), and the lemma is thus proved for
n = 2, and, for n ≥ 3, under the condition that q ∈ [2n/(n + 2), n). Let us
next assume n ≥ 3, and q ∈ (1, 2n/(n+2)). Taking into account the procedure
previously used, the result will be proved provided we show that (IX.5.19) has
only the solution W ≡ 0. We begin to observe that, since 2n/(n+ 2) < n/2
(for n ≥ 3) by the embedding Theorem II.3.4, we deduce

W ∈ H1
r1

(Ω) ∩ Lr2 (Ω) ,

r1 ∈ (1, 2) , r2 =
nr1
n− r1

.
(IX.5.22)

Consider now the problem (adjoint to (IX.5.1))

∆ϕ+ u · ∇ϕ = ∇τ +G

∇ ·ϕ = 0

}
in Ω

ϕ |∂Ω = 0 .

(IX.5.23)
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Noticing that

σ ≡ nr′1
n+ r′1

∈ (
2n

n+ 2
, n) ,

nσ

n− σ
= r′1 ,

from what we have previously shown, and, again, Theorem II.3.4, we know
that, for each G ∈ C∞

0 (Ω), there is at least one corresponding solution ϕ, τ
to (IX.5.23) such that

ϕ ∈W
2,

nr′
1

n+r′
1 (Ω) ∩H1

r′
1
(Ω) , τ ∈W

1,
nr′

1
n+r′

1 (Ω). (IX.5.24)

Now, let {ϕk} ⊂ D(Ω) converge to ϕ in H1
σ(Ω), and replace ϕk for ϕ in

(IX.5.19). Clearly, we have

lim
k→∞

(∇W ,∇ϕk) = (∇W , ∇ϕ) . (IX.5.25)

Moreover, by an easily justified integration by parts, based on density argu-
ments, we find

(u · ∇W ,ϕ) = −(u · ∇ϕ,W ) , ϕ ∈ D(Ω) . (IX.5.26)

Furthermore, by the Hölder inequality (see also Exercise IX.2.1),

|(u · ∇ϕk,W )| ≤ ‖u‖n‖∇ϕk‖r′
1
‖W ‖nr1/(n−r1) ,

and so, recalling the summability properties (IX.5.22) of W , we deduce

lim
k→∞

(u · ∇W ,ϕk) = (u · ∇ϕ,W ) . (IX.5.27)

Therefore, from (IX.5.19)1 withϕ ≡ ϕk, and (IX.5.25)–(IX.5.27)we conclude,
in the limit k → ∞,

(∇W ,∇ϕ) − (u · ∇ϕ,W ) = 0 . (IX.5.28)

Next, let {W k} ⊂ C∞
0 (Ω) converge toW inW 1,r1

0 (Ω), so that, by embedding,
it converges to W also in Lnr1/(n−r1)(Ω); see Theorem II.3.4. Thus, taking
into account

(nr1/(n− r1))
′ = nr′1/(n+ r′1) , (IX.5.29)

along with (IX.5.24), we have

(∇W ,∇ϕ) = lim
k→∞

(∇W k,∇ϕ) = − lim
k→∞

(W k, ∆ϕ) = −(W , ∆ϕ) .

As a consequence, with the help of (IX.5.28), we infer

(W , ∆ϕ+ u · ∇ϕ) = 0 ,

which, in turn, recalling that (ϕ, τ) satisfy (IX.5.23), is equivalent to the
following
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(W ,G) = −(W ,∇τ) . (IX.5.30)

However, by (IX.5.22) and Lemma III.2.2, W ∈ Hr2(Ω), r2 ≡ nr1

n−r1
, whereas

by (IX.5.24), and (IX.5.29), τ ∈ Gr′
2
(Ω), and so, by Lemma III.2.1, we ob-

tain (W ,∇τ) = 0. Replacing this information back into (IX.5.30), we deduce
(W ,G) = 0, which, by the arbitrariness of G ∈ C∞

0 (Ω), allows us to con-
clude W = 0 a.e. in Ω. The proof of the existence part of the lemma is thus
completed. We shall now show the uniqueness part. Setting z := w −w, we
have that z satisfies the following problem

(∇z,∇ϕ) − (u · ∇ϕ, z) = 0 , for all ϕ ∈ D(Ω)

z ∈ H1
r (Ω) , r = min{s, q} .

(IX.5.31)

Let us first consider the case n ≥ 3. The result immediately follows if s ≥ 2.
Actually, we then have z ∈ H1(Ω) and therefore, by employing the standard
density argument that we have already used previously in the proof (right
after (IX.5.20)), we may replace ϕ with z in (IX.5.31) to obtain, as before,
|z|1,2 = 0, namely z = 0 a.e. in Ω. Assume then s ∈ (1, 2). However, in
this case, z satisfies the same assumption and the same equation satisfied by
W ; see (IX.5.22), (IX.5.19), and (IX.5.26)) . Therefore, following exactly the
same argument used to show W = 0, we also prove z = 0, and uniqueness
is completely recovered if n ≥ 3. If n = 2, we observe that, since by the
embedding Theorem II.3.4, w ∈ H1(Ω), we have z ∈ H1(Ω). Let {ϕk} ⊂
D(Ω) with ϕk → z in H1(Ω). Furthermore, again by that theorem, we have
also H1(Ω) ↪→ L2q0/(q0−2)(Ω). Therefore, setting ϕ = ϕk into (IX.5.31), then
letting k → ∞ and using the results of Exercise IX.2.1, we find

|z|21,2 = −(u · ∇z, z) = 0 ,

which implies z = 0 a.e. in Ω. The proof of the lemma is complete. ut
The next result provides, in particular, sufficient conditions for the interior

regularity of weak solutions in arbitrary space dimensions n ≥ 2.

Theorem IX.5.1 Let Ω be any domain of Rn, n ≥ 2, and let v be such that:

(i) v ∈ Ls
loc(Ω), where s = n, if n ≥ 3, while s = s0 > 2, if n = 2 ;

(ii)∇ · v = 0, in the weak sense ;
(iii) v satisfies the following equation

ν(v, ∆ϕ) + (v · ∇ϕ, v) = 〈f ,ϕ〉 , for all ϕ ∈ D(Ω) . (IX.5.32)

The following properties hold.

(a) If
f ∈ Lq

loc(Ω) , 1 < q <∞ ,

then
v ∈ W 2,q

loc (Ω) ,

and there exists p ∈W 1,q
loc (Ω) such that (IX.0.1) is satisfied a.e. in Ω).
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(b) If, moreover,
f ∈Wm,q

loc (Ω)

where m ≥ 1, and
q ∈ (1,∞), if n = 2,

while
q ∈ [n/2,∞), if n > 2, 1

then
v ∈Wm+2,q

loc (Ω), p ∈Wm+1,q
loc (Ω). (IX.5.33)

Proof. We begin to show part (a). Let B be a ball of Rn, with B ⊂ Ω. Then,
from (IX.5.32) and Lemma IV.4.1 we find that, for all sufficiently small ε > 0,
the mollification, vε, of v satisfies the following system

ν∆vε = ∇p(ε) + div (v ⊗ v)ε + fε

∇ · vε = 0

}
in B , (IX.5.34)

for some p(ε) ∈ C∞(B). We next denote by w = w(ε), τ = τ (ε), τB = 0, the
solution to the following Stokes problem

ν∆w = ∇τ + div (v ⊗ v)ε + fε

∇ ·w = 0

}
in B

w = 0 at ∂B ,

(IX.5.35)

with
(w, τ ) ∈W 1,r/2(B) × Lr/2(B) , r > 2 .

In view of the properties of the mollification and of Theorem IV.6.1, such a
solution exists and satisfies the inequality

‖w‖1,r/2 + ‖τ‖r/2 ≤ c1
(
‖vε‖2

r,B + ‖fε‖−1,r/2,B

)
. (IX.5.36)

Our next task is to estimate ‖fε‖−1,r/2,B in terms of ‖f‖q,B. The starting
point is the obvious inequality

|(fε,Φ)| ≤ ‖f‖q,B‖Φ‖q′ , Φ ∈W
1,(r/2)′

0 (B) , (IX.5.37)

that follows from (II.2.9) and the Hölder inequality. We distinguish several
cases. Suppose first n = 2. Without loss we may assume s0 ≤ 4. Thus, if we

choose r = s0, from the embedding Theorem II.3.4 it follows W
1,(r/2)′

0 (B) ↪→
Lt(B), for all t ∈ (1,∞), so that from (IX.5.36), we deduce

‖fε‖−1,r/2,B ≤ c2‖f‖q,B , q ∈ (1,∞) , r := s0 , n = 2. (IX.5.38)

1 The lower bound n/2 for q is not necessarily the best possible. However, it suffices
for our aims.
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If n = 3, we observe that (n/2)′ = n = 3. Consequently, if we choose r = 3

by the embedding Theorem II.3.4 we have W
1,(r/2)′

0 (B) ≡W 1,3
0 (B) ↪→ Lt(B),

for all t ∈ (1,∞), and (IX.5.36) furnishes

‖fε‖−1,r/2,B ≤ c3‖f‖q,B , q ∈ (1,∞) , r := 3 , n = 3. (IX.5.39)

We next analyze the case n ≥ 4. In such a case we find (n/2)′ < n, and so,
if q ∈ [n/3,∞), it follows that q′ ≤ n/(n − 3) = n(n/2)′/(n − (n/2)′). Now,

by Theorem II.3.4, W
1,(n/2)′

0 (B) ↪→ Lq′
(B) and, therefore, by choosing r = n,

from (IX.5.36), we obtain

‖fε‖−1,r/2,B ≤ c3‖f‖q,B , q ∈ [n/3,∞) , r := n , n ≥ 4. (IX.5.40)

Finally, if n ≥ 4 and q ∈ (1, n/3), we take r = 2nq/(n− q) and observe that
(r/2)′ < n and that q′ = n(r/2)′/(n− (r/2)′). Thus, since by Theorem II.3.4
W 1,(r/2)′(B) ↪→ Lq′

(B), again from (IX.5.36) we conclude

‖fε‖−1,r/2,B ≤ c3‖f‖q,B , q ∈ (1, n/3) , r :=
2nq

n− q
, n ≥ 4 . (IX.5.41)

We next notice that, from (IX.5.34) and (IX.5.35), the fields z := vε −w and
χ := p(ε) − τ satisfy the following Stokes system

ν∆z = ∇χ
∇ · z = 0

}
in B . (IX.5.42)

From Theorem IV.4.4 and Remark IV.4.2 we then find, in particular,

‖z‖1,r/2,B1
+ ‖χ‖r/2,B1

≤ c3 ‖z‖r/2,B ,

where B1 is an open ball with B1 ⊂ B. Using this inequality, and taking into
account that, by assumption, ‖vε‖r,B ≤ ‖v‖r,B <∞ for all values of r, q and
n specified in (IX.5.38)–(IX.5.41), from (IX.5.36), (IX.5.38)–(IX.5.41), and
Exercise II.3.5 we deduce

v ∈W 1,s0/2(B1) , n = 2 , q ∈ (1,∞)

v ∈W 1,n/2(B1) , n = 3 , q ∈ (1,∞)

v ∈W 1,n/2(B1) , n ≥ 4 , q ∈ [n/3,∞)

v ∈W 1,r/2(B1) , n ≥ 4 , q ∈ (1, n/3) , r :=
2nq

n− q

(IX.5.43)

Moreover, by a similar argument that employs also Theorem II.2.4(ii), we
show the existence of a scalar field p such that

p ∈ Ls0/2(B1) , n = 2 , q ∈ (1,∞)

p ∈ Ln/2(B1) , n = 3 , q ∈ (1,∞)

p ∈ Ln/2(B1) , n ≥ 4 , q ∈ [n/3,∞)

p ∈ Lr/2(B1) , n ≥ 4 , q ∈ (1, n/3) , r :=
2nq

n− q

(IX.5.44)
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and, further, the pair (v, p) satisfies (IX.1.11) for all ψ ∈ C∞
0 (B1). However,

the ball B1 is arbitrary with B1 ⊂ Ω, so that from (IX.5.43)–(IX.5.43) we
find that

(v, p) ∈W
1,s0/2
loc (Ω) × L

s0/2
loc (Ω) , n = 2 , q ∈ (1,∞)

(v, p) ∈W
1,n/2
loc (Ω) × L

n/2
loc (Ω) , n = 3 , q ∈ (1,∞)

(v, p) ∈W
1,n/2
loc (Ω) × L

n/2
loc (Ω) , n ≥ 4 , q ∈ [n/3,∞)

(v, p) ∈W
1,r/2
loc (Ω) × L

r/2
loc (Ω) , n ≥ 4 , q ∈ (1, n/3) , r :=

2nq

n− q
,

(IX.5.45)
and, in addition, that (v, p) satisfies (IX.1.11) for all ψ ∈ C∞

0 (Ω). Our next
objective is to show that

(v, p) ∈W 2,q
loc (Ω) ×W 1,q

loc (Ω) , q ∈ (1, n) , n ≥ 2 . (IX.5.46)

It is clear that, in order to show (IX.5.46), it is enough to show the stated
summability properties on an arbitrary bounded subdomain of Ω. To this
end, let Ω′, Ω′′ be bounded domains in Rn with Ω′ ⊂ Ω′′, Ω′′ ⊂ Ω and let
φ ∈ C∞(Rn) be one in Ω′ and zero outside Ω′′.2 Writing φψ in place of ψ
into (IX.1.11) and extending v to zero outside Ω′′, we readily recognize that
v′ ≡ φv is a weak solution to the problem

∆v′ = u · ∇v′ + ∇p′ + F
∇ · v′ = g

}
in B0

v′ = 0 at ∂B0

(IX.5.47)

where

p′ ≡ φp/ν

u ≡ v/ν
F ≡ φf/ν + 2∇φ · ∇v + v∆φ− v · ∇φv/ν + p∇φ/ν

g ≡ v · ∇φ

(IX.5.48)

and B0 is an open ball containing Ω′′. The leading idea in the proof of
(IX.5.46), is to use a boot-strap argument that starts from (IX.5.45) and
uses several times Lemma IX.5.1 applied to the problem (IX.5.47)–(IX.5.48).
Suppose, at first, n = 2, the case that, seemingly, requires more effort. We
begin to show that

v ∈W 1,2
loc (Ω) . (IX.5.49)

If s0 ≥ 4, this is obvious from (IX.5.45)1, and so we shall assume s0 ∈ (2, 4).
Let B an open ball of R2 with B ⊂ Ω, and consider the following two Stokes
problems

2 For the construction of φ, see the proof of Theorem IV.4.1.
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ν(∇v1,∇ϕ) = (v · ∇ϕ, v) , for all ϕ ∈ D(B) , v ∈ H1
t (B)

ν(∇v2,∇ϕ) = −(f ,ϕ) for all ϕ ∈ D(B) , v ∈ W 2,q(B) ∩H1
q (B) .

(IX.5.50)
Clearly, the functionΦ := v−v1−v2 satisfies (∇Φ,∇ϕ) = 0, for allϕ ∈ D(Ω),
and, consequently, in view of the properties of v, v1, v2 and of Theorem IV.4.3,
we find Φ ∈ C∞(B). Furthermore, by Theorem IV.6.1(a), v2 exists and, by
the embedding Theorem II.3.4, v2 ∈ W 1,2(B). Therefore, to show (IX.5.49),
it is enough to show that v1 ∈ W 1,2(B). We shall prove this by means of
a recurrence argument based on a repeated use of Theorem IV.6.1(b) and
of the embedding Theorem II.3.4. Actually, from the former theorem and
(IX.5.45)1 we can take t ≡ t0 = s0/2, which, by Theorem II.3.4 and the fact
that s0 ∈ (2, 4), implies v ∈ L2t0/(2−t0)(B). Thus, again by Theorem IV.6.1,
we may take t ≡ t1 = t0/(2− t0), which, in turn, by Theorem II.3.4 furnishes
v ∈ L2t1/(2−t1)(B), and so on. We thus obtain the following recurrence relation
for the exponents tk:

tk+1 =
tk

2 − tk
, k ∈ N , t0 = s0/2 . (IX.5.51)

We notice that, since by assumption t0 > 1 + η, for some positive η, the
sequence {tk} is increasing, and so, in particular, tk > 1+η, for all k ∈ N. We
claim that there is k ∈ N such that tk+1 = 2. By assuming the contrary, we
would have tk < 2, for all k ∈ N, and so, due to the fact that {tk} is increasing,
there is t∗ > 0 such that tk → t∗ as k → ∞. However, by taking the limit
k → ∞ in (IX.5.51), we would find t∗ = 1, which furnishes a contradiction. As
a consequence, (IX.5.49) is proved. By an argument entirely analogous to that
used to show (IX.5.38), we show f ∈W−1,2(ω) for all bounded domains ω with
ω ⊂ Ω. Thus, from (IX.5.51) and Lemma IX.2.1, we deduce p ∈ L2

loc(Ω). This
latter property along with (IX.5.51) and (IX.5.48)3,4, allows us to conclude
F ∈ Lq(B0), g ∈W 1,q(B0), q ∈ (1, 2), so that by Lemma IX.5.1 and (IX.5.49)
we prove (IX.5.46) for n = 2. We next consider the case n = 3. If q ∈ (1, 3/2],
from (IX.5.45) and (IX.5.47) we easily find that

F ∈ Lq(B0) , g ∈ W 1,q(B0) , (IX.5.52)

with q = q, and so, by Lemma IX.5.1, the property (IX.5.46) follows for the
above values of q. If q ∈ (3/2, 3), again by (IX.5.45), we find that F , g satisfy
(IX.5.52) with q = 3/2, which, in turn, by Lemma IX.5.1 and the arbitrariness

ofΩ′ implies (v, p) ∈ W
2,3/2
loc (Ω)×W 1,3/2

loc (Ω). From this latter property, by the

embedding Theorem II.3.4, we infer (v, p) ∈
(
W 1,3

loc (Ω) ∩ L∞
loc(Ω)

)
×L3

loc(Ω).

Thus, we deduce the validity of (IX.5.52), with q = q, q ∈ (3/2, 3), which, by
Lemma IX.5.1, concludes the proof of (IX.5.46), in the case n = 3. If n ≥ 4,
suppose first q ∈ (1, n/3). Then, from (IX.5.45)4, we find r/2 > q, which
implies (IX.5.52), with q = q, and so, in turn, (IX.5.46) for these values of q.
If q ∈ [n/3, n/2], then, by (IX.5.45)3, we may take q = q in (IX.5.52), which,
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again by Lemma IX.5.1, furnishes (IX.5.46) also for these values of q. Finally,
if q ∈ [n/2,∞), the argument is identical to that used for the case n = 3 by
replacing 3/2 with n/2. The property (IX.5.46) is thus established, and so is
part (a) of the theorem if q ∈ (1, n). Assume next q ≥ n. Then (IX.5.46) is
satisfied for all q ∈ (1, n), and so, by the embedding Theorem II.3.4, we get

v ∈ L∞
loc(Ω) ∩W 1,t

loc (Ω), p ∈ Lt
loc(Ω), for all t ∈ (1,∞),

yielding, in particular,
v · ∇v ∈ Lq

loc(Ω).

From the interior estimates for the Stokes problem proved in Theorem IV.4.1
it then follows v ∈ W 2,q

loc (Ω), p ∈ W 1,q
loc (Ω), which completes the proof of

part (a) of the theorem. In order to prove part (b), we shall use an inductive
argument. Since, by the results just established, (IX.5.33) is true for l = 0, let
us assume that it holds for l = k− 1, k ≥ 1, and let us show that it continues
to hold for l = k. This amounts to proving that if, for the values of q specified
in the statement of the theorem,

f ∈W k,q
loc (Ω), v ∈W k+1,q

loc (Ω), p ∈ W k,q
loc (Ω), (IX.5.53)

necessarily
v ∈W k+2,q

loc (Ω), p ∈W k+1,q
loc (Ω), (IX.5.54)

By Theorem IV.4.1, (IX.5.54) holds whenever

v · ∇v ∈W k,q
loc (Ω). (IX.5.55)

However, by the inductive assumption, we know that

v · ∇v ∈W k−1,q
loc (Ω)

and so to obtain (IX.5.55), and consequently (IX.5.54), we have to show that

Dα(v · ∇v) ∈ Lq(Ω′), |α| = k, (IX.5.56)

where Ω′ is any bounded subdomain of Rn with Ω
′ ⊂ Ω. Without loss, we

may assume Ω′ to be a ball. Expanding (IX.5.56) according to the Leibniz
rule we deduce

Dα(v · ∇v) =
∑

β≤α

Dβv · ∇Dα−βv (IX.5.57)

where

Dα−β ≡ ∂|α|−|β|

∂xα1−β1

1 . . . ∂xαn−βn
n

,

(
α

β

)
≡
(
α1

β1

)
. . .

(
α

β

)
,

and β ≤ α means βi ≤ αi, i = 1, . . . , n. Take first q > n/2. Then, by the

embedding Theorem II.3.4 we have v ∈ Ck−1(Ω
′
) and so (IX.5.57) yields
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∑

|α|=k

‖Dα(v · ∇v)‖q,Ω′ ≤ c(‖v‖Ck−1(Ω)‖v‖2,q,Ω′ +
∑

|α|=k

‖Dαv · ∇v‖q,Ω′).

(IX.5.58)
Thus, since k ≥ 1, the first term on the right-hand side of (IX.5.58) is bounded
in view of (IX.5.53). Furthermore, by Theorem II.3.4, if k = 1 it follows that

v ∈ W 1,r(Ω′) for all r ∈ (1,∞), while if k > 1, v ∈ C1(Ω
′
) and so, in any

case, the second term on the right-hand side of (IX.5.57) is finite, thus proving
(IX.5.56) when q > n/2 and, therefore, the theorem for n = 2. Assume now

that q = n/2, n > 2. By Theorem II.3.4 it follows that v ∈ Ck−2(Ω
′
) and so

(IX.5.57) gives, with |α′| = k − 2,

|Dα(v · ∇v)| ≤ c(
∑

β≤α′

|Dβv · ∇Dα−βv| +
∑

|β|=k−1

|Dβv · ∇Dα−βv|

+
∑

|β|=k

|Dβv · ∇v|).

(IX.5.59)
The first term in (IX.5.59) is increased as before, and we can show that it
belongs to Lq(Ω′). 3 Again by Theorem II.3.4 and (IX.5.53) we have

v ∈W k,n(Ω′),

v ∈W k−1,r(Ω′), for all r ∈ (1,∞)
(IX.5.60)

and so the third term in (IX.5.59) belongs to Lq(Ω′) ≡ Ln/2(Ω′). As far as
the second term is concerned, we notice that its norm in Ln/2(Ω′) can be
increased by ∑

|β|=k−1

‖Dβv‖n‖v‖2,n

which, if k ≥ 2, is finite by (IX.5.60). If k = 1, the second term is increased by
N ≡ |v||D2v| and, again by (IX.5.60), it follows that it belongs to Ln/2−ε(Ω′),
for ε ∈ (0, n/6). Thus,

v · ∇v ∈W 1,n/2−ε(Ω′)

and by the estimates for the Stokes problem of Theorem IV.4.1 we deduce, in
particular, that

v ∈W 3,n/2−ε(Ω′)

which, by Theorem II.3.4, in turn implies v ∈ C(Ω
′
). From this and (IX.5.53)

we then conclude that N ∈ Ln/2(Ω′). The theorem is therefore proved. ut

Remark IX.5.1 From the embedding Theorem II.3.4 it follows that the as-
sumptions (i)–(iii) on v in Theorem IX.5.1 are satisfied if v is a generalized
solution to (IX.0.1), (IX.0.2) and n ≤ 4. �

3 If, of course, k ≥ 2; otherwise that term does not appear.
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An important consequence of Theorem IX.5.1 is the following.

Corollary IX.5.1 Let v obey conditions (i)–(iii) in Theorem IX.5.1. Then,
if f ∈ C∞(Ω), v and the associated pressure field p belong to C∞(Ω). The
above conditions are satisfied if v is a generalized solution to (IX.0.1), (IX.0.2)
and n ≤ 4.

Remark IX.5.2 Assuming less regularity on f , we can obtain intermediate
regularity results on v and p. �

Regularity up to the boundary of a generalized solution follows as a par-
ticular case of the following one.

Theorem IX.5.2 Let Ω be a bounded domain of Rn, n ≥ 2, of class C2, and
let v be such that:

(i) v ∈W 1,s(Ω) ∩ Ln(Ω), s ∈ (1,∞), if n ≥ 3, while v ∈W 1,2(Ω), if n = 2 ;
(ii) v is weakly divergence free, and obeys (IX.0.2) in the trace sense ;
(iii) v satisfies (IX.1.2) .

Then, the following properties hold.

(a) If
f ∈ Lq(Ω), v∗ ∈W 2−1/q,q(∂Ω) , q ∈ (1,∞) ,

then
v ∈ W 2,q(Ω) ,

and there exists p ∈W 1,q(Ω), such that (IX.0.1) is satisfied a.e. in Ω.
(b) If, moreover, Ω is of class Cm+2 and

f ∈Wm,q(Ω), v∗ ∈Wm+2−1/q(∂Ω)

where m ≥ 1, and
q ∈ (1,∞), if n = 2,

while
q ∈ [n/2,∞), if n > 2, 4

then
v ∈Wm+2,q(Ω), p ∈Wm+1,q(Ω).

Proof. The proof of part (a) is an immediate consequence of Lemma IX.5.1,
and we leave it to the reader as an exercise. The proof of part (b), is entirely
analogous to that of Theorem IX.5.2(b), and will be, therefore, omitted. ut

Remark IX.5.3 In view of the embedding Theorem II.3.4, the assumptions
(i)–(iii) of Theorem IX.5.2 are satisfied by any generalized solution for n ≤ 4.

�

4 The lower bound n/2 for q is not necessarily the best possible.
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Corollary IX.5.2 Let v obey conditions (i)–(iii) in Theorem IX.5.2. If the
bounded domain Ω is of class C∞, and f ∈ C∞(Ω), v∗ ∈ C∞(∂Ω), then v
and the associated pressure field p belong to C∞(Ω). The above conditions
are satisfied if v is a generalized solution to (IX.0.1)–(IX.0.2) and n ≤ 4.

Remark IX.5.4 Assuming less regularity on Ω, f and v∗ we can obtain
intermediate regularity results on v and p. �

Remark IX.5.5 If n ≥ 5, the theory developed in Section IX.3 does not
guarantee existence of solutions verifying the assumptions of Corollary IX.5.1
and Corollary IX.5.2, since we don’t know, in such a case, if a generalized
solution belongs to Ln(Ω). The question of existence of regular solutions for
n ≥ 5 and without restrictions on the size of the data has been addressed by
Frehse and Růžička (1994a, 1994b, 1995, 1996), and Struwe (1995). Here, we
would like to show that, if the size of the data is sufficiently “small,” existence
of regular solutions in arbitrary dimension n ≥ 5 is easily established by means
of the theory developed for the linearized Stokes problem. We assume Ω of

class C2, f ∈W
−1,n/2
0 (Ω), v∗ ∈ W (n−2)/n,n/2(∂Ω), with

∫

∂Ω

v∗ · n = 0,

and set
D = ‖f‖−1,n/2 + ‖v∗‖(n−2)/n,n/2(∂Ω).

We next introduce a sequence of approximating solutions {vm, pm}, m ∈ N,
defined as follows

ν(∇vm,∇ψ) + (vm−1 · ∇vm−1,ψ) − (pm,∇ · ψ) + 〈f ,ψ〉 = 0

∇ · vm = 0 in Ω

vm = v∗ at ∂Ω,

(IX.5.61)

where v0 ≡ 0 and ψ is arbitrary from C∞
0 (Ω). By the existence theory for

the Stokes problem of Theorem IV.6.1, we know that (IX.5.61) for m = 1
admits a unique solution {v1, p1} (p1 up to a constant) with v1 ∈W 1,n/2(Ω),
p1 ∈ Ln/2(Ω), such that

‖v1‖1,n/2 +
1

ν
‖p1‖

n/2/R
≤ 2

c

ν
D (IX.5.62)

where c = c(n,Ω) is the constant entering estimate (IV.6.10). Let us show,
by induction, the existence of {vm, pm} with vm ∈ W 1,n/2(Ω), pm ∈ Ln/2(Ω)
satisfying (IX.5.61), (IX.5.62) for all m ∈ N. We assume that {vm−1, pm−1}
obeys (IX.5.62). For any ψ ∈W

1,n/(n−2)
0 (Ω) we have

|(vm−1 · ∇vm−1,ψ)| = |(vm−1 ⊗ vm−1,∇ψ)| ≤ ‖vm−1‖2
n‖ψ‖1,n/(n−2)

and so, by the embedding Theorem II.3.4:



IX.5 Regularity of Generalized Solutions 637

‖vm−1‖n ≤ γ‖vm−1‖1,n/2, (IX.5.63)

and by the induction hypothesis (IX.5.62) for the (m−1)th solution we deduce
that

|(vm−1 · ∇vm−1,ψ)| ≤ 4
γ2c2

ν2
D2‖ψ‖1,n/(n−2). (IX.5.64)

So

vm−1 · ∇vm−1 ∈ W
−1,n/2
0 (Ω)

and (IX.5.64) together with Theorem IV.6.1 ensure for allm ∈ N the existence
of a pair {vm, pm} satisfying (IX.5.61) along with the inequality

‖vm‖1,n/2 +
1

ν
‖pm‖

n/2/R
≤ c

ν
D
(

4
γ2c2

ν2
D + 1

)
. (IX.5.65)

However, if

D <
ν2

4γ2c2
, (IX.5.66)

relation (IX.5.65) furnishes

‖vm‖1,n/2 +
1

ν
‖pm‖

n/2/R
≤ 2

c

ν
D (IX.5.67)

which is therefore proved for all m ∈ N. Let us next establish that {vm, pm}
is a Cauchy sequence in W 1,n/2(Ω)×

{
Ln/2(Ω)/R

}
. To this end, it is enough

to show that for all m ≥ 1

‖vm − vm−1‖1,n/2 +
1

ν
‖pm − pm−1‖

n/2/R
≤ αm (IX.5.68)

where α ∈ (0, 1).5 From (5.351) we have

ν(∇ (vm − vm−1),∇ψ) + ((vm−1 − vm−2) · ∇vm−1,ψ)

+(vm−2 · ∇(vm−1 − vm−2),ψ) + ((pm − pm−1),ψ) = 0

and with the aid of Theorem IV.6.1, it follows for all m ∈ N, that

5 In fact, for all m′ = m + k, k > 0,

‖vm− vm′‖1,n/2 + 1
ν ‖pm − pm′‖

n/2/R

≤Pk
i=1

“
‖vm+i − vm+i−1‖1,n/2 + 1

ν
‖pm+i − pm+i−1‖n/2/R

”

≤ αmPk
i=1 α

i ≤ αm+1

1 − α
.
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‖vm − vm−1‖1,n/2 +
1

ν
‖pm − pm−1‖n/2/R

≤ c

ν
(‖vm−1 − vm−2‖n‖vm−1‖n + ‖vm−2‖n‖vm−1 − vm−2‖n) .

Using (IX.5.67) and (IX.5.63) in this relation yields

‖vm − vm−1‖1,n/2 +
1

ν
‖pm − pm−1‖n/2/R

≤ 4
γ2c2

ν2 D
(
‖vm−1 − vm−2‖1,n/2 +

1

ν
‖pm−1 − pm−2‖n/2/R

)
,

which in turn implies (IX.5.68) with

α =
4γ2c2

ν2
D.

Thus, if f , v∗ satisfy (IX.5.66), there are v ∈ W 1,n/2(Ω), p ∈ Ln/2(Ω) such
that

vm → v strongly in W 1,n/2(Ω)

pm → p strongly in Ln/2(Ω)/R .

From (IX.5.61) it follows at once that v, p satisfy (IX.1.11), which completes
the proof of existence. In addition, by (IX.5.63), (IX.5.65), and (IX.5.66) we
have

1

γ
‖v‖n + ‖v‖1,n/2 +

1

ν
‖p‖

n/2/R
≤ 2

c

ν

(
‖f‖−1,n/2 + ‖v∗‖(n−2)/n,n/2(∂Ω)

)
.

(IX.5.69)
Taking into account Theorem IX.5.2, we may then conclude with the following
result.

Theorem IX.5.3 Let Ω be a bounded domain in Rn, n ≥ 5, of class C2 and

let f ∈W
−1,n/2
0 (Ω), v∗ ∈ W (n−2)/n,n/2(∂Ω) with

∫

∂Ω

v∗ · n = 0.

Then, there exists a positive C = C(n,Ω) such that if

‖f‖−1,n/2 + ‖v∗‖(n−2)/n,n/2(∂Ω) < Cν2,

there is a generalized solution v to (IX.0.1), (IX.0.2) such that

v ∈ W 1,n/2(Ω), p ∈ Ln/2(Ω)

where p is the pressure field associated to v by Lemma IX.1.2. Moreover, v, p
satisfy (IX.5.69). Finally, if Ω is of class C∞, f ∈ C∞(Ω) and v∗ ∈ C∞(∂Ω),
then v, p ∈ C∞(Ω).
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Concerning the uniqueness of these solutions, we observe that if

‖f‖−1,n/2 + ‖v∗‖(n−2)/n,n/2(∂Ω) (IX.5.70)

is sufficiently small, by the method used in the proof of Theorem IX.2.1 and
Remark IX.2.3, it follows immediately that they are unique in the class of
generalized solutions which, in addition, satisfy v ∈ Ln(Ω). However, we can
prove a more general result which ensures uniqueness in the class of generalized
solutions that obey the energy inequality.6 We shall sketch the proof of this
result in the special case when v∗ = 0. To this end, we notice that, by Exercise
IX.3.1, we can construct, in any dimension n ≥ 2, a generalized solution
satisfying the following energy inequality

ν |v|21,2 ≤ −〈f , v〉. (IX.5.71)

Let now v1 be a solution corresponding to f as given in Theorem IX.5.3. In
view of Remark IX.1.4, we can show that v1 satisfies the energy equality

ν |v1|21,2 = −〈f , v1〉. (IX.5.72)

Again by Remark IX.1.4, we can take ϕ = v1 in (IX.1.2) to obtain

− ν(∇v,∇v1) − (v · ∇v, v1) = 〈f , v1〉. (IX.5.73)

By the same token, we can consider (IX.1.2) with v replaced by v1, and choose
ϕ = v. We then get

− ν(∇v1,∇v) − (v1 · ∇v1, v) = 〈f , v〉. (IX.5.74)

If we add together (IX.5.71)–(IX.5.74), and use again Remark IX.1.4, we can
show that

ν |w|21,2 ≤ (w · ∇w, v1), (IX.5.75)

where w = v−v1. We now use (IX.1.6) and (II.3.7) on the right-hand side of
(IX.5.75) to deduce

(ν − c0‖v1‖n) |w|21,2 ≤ 0,

with c0 = c0(n). This latter inequality along with (IX.5.69) written with
v = v1, proves uniqueness if the norm (IX.5.70) of the data is sufficiently
small. We finally observe that this uniqueness result implies that for n ≥ 5,
any generalized solution v corresponding to smooth small data and satisfying
(IX.5.71) is smooth. �

6 We recall that if n = 2, 3, 4, every generalized solution satisfies the energy equality
(that is, (5.45) with equality sign), while, for n ≥ 5, this equality is satisfied by
those generalized solutions which are also in Ln(Ω); see Exercise IX.3.1.
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IX.6 Limit of Infinite Viscosity: Transition to the Stokes
Problem

As we noticed in the Introduction to Chapter IV, the Stokes system is to be
regarded as a formal approximation of the Navier–Stokes system, whenever
the inertial term v · ∇v becomes small compared to the viscous term ν∆v or,
in dimensionless language, whenever the Reynolds number R becomes van-
ishingly small. The question arises quite naturally of whether one can give
a rigorous mathematical justification of this approximation. The affirmative
answer to such a problem, in the case of a bounded region of flow, is essentially
due to Odqvist (1930, §6); cf. also Finn (1961a, Section 7a)), and is founded
upon the estimate of the Green tensor associated to the Stokes system. Here,
we shall follow a different approach based, mainly, on Theorem IV.6.1. Specif-
ically, we shall show that every generalized solution v to (IX.0.1), (IX.0.2), as
ν → ∞ (or R → 0) tends to the generalized solution w of the Stokes problem
(IV.0.1) corresponding to the same data, cf. Theorem IX.6.1. Furthermore, if
Ω, f , and v∗ are sufficiently smooth, we show that the following estimates
are valid

‖v −w‖C2(Ω) ≤ C1/ν

‖p ′ − π‖C1(Ω) ≤ C2/ν
for all ν ≥ ν0 (IX.6.1)

where p ′ ≡ p/ν , π are the pressure fields associated to v and tow, respectively,
and C1, C2 are known functions of the data and of the positive number ν0.

Theorem IX.6.1 Let Ω , f , and v∗ be as in Theorem IX.4.1. Denote by
v = v(x; ν), p = p(x; ν) the family of generalized solutions to (IX.0.1), (IX.0.2)
corresponding to f , v∗ and parameterized in ν > 0, whose existence has been
established in Theorem IX.4.1. Moreover, let w , π be the generalized solution
to the Stokes problem (IV.0.1) and the associated pressure field, respectively,
corresponding to f and v∗, whose existence is guaranteed by Theorem IV.1.1.
Then

‖v −w‖1,2 + ‖p ′ − π‖2 ≤ c/ν, ν ≥ ν0

where c is a known function of the data and of ν0 (cf. (IX.6.3), (IX.6.4)) and
ν0 is any positive fixed number.

Proof. Setting u = v − w, by the definition of a generalized solution and
Remark IX.1.1 we obtain

(∇u,∇ϕ) = −1

ν
(v · ∇v,ϕ), for all ϕ ∈ D1,2

0 (Ω). (IX.6.2)

Since Ω is locally Lipschitz, we have u ∈ D1,2
0 (Ω) (cf. Section III.5, and we

may take u = ϕ in (IX.6.2) to obtain

|u|21,2 =
1

ν
|(v · ∇v,u)|.
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Thus, Lemma IX.1.1 and inequality (II.5.5) imply

‖u‖1,2 ≤ C

ν
‖v‖2

1,2,

with C = C(n,Ω). Substituting into this inequality (IX.4.51) with Φ = ν/2
(say) furnishes

‖u‖1,2 ≤ CC2
1

ν

(
1

ν
|f |−1,2 +

1

ν
‖v∗‖2

1/2,2(∂Ω) +
1 + ν

ν
‖v∗‖1/2,2(∂Ω)

)2

(IX.6.3)
where C1 = 2c1. Furthermore, using (IX.1.11) and (IV.1.3) (the latter written
with w and π in place of v and p), we deduce that

ν(∇u,∇ψ) + (v · ∇v,ψ) = +(p − νπ,∇ ·ψ)

for all ψ ∈ D1,2
0 (Ω) and so, reasoning as in the proof of Theorem IX.3.1, we

obtain
‖p− νπ‖2 ≤ C3

(
ν |u|1,2 + ‖v‖2

1,2

)
(IX.6.4)

which, on account of (IX.6.3) and of (IX.4.51), completes the proof of the
theorem. ut

Remark IX.6.1 Theorem IX.6.1 is also valid in dimension n = 4. If n ≥ 5,
as already noticed several times, we cannot take ϕ = u into (IX.6.2), because
a generalized solution need not belong a priori to Ln(Ω). However, using the
more regular solutions constructed in Theorem IX.5.3, the reader will prove
without difficulty that Theorem IX.6.1 continues to hold with ν0 depending,
this time, on the magnitude of f and v∗. �

We shall next show that, if Ω is of class C3 and if the data satisfy

f ∈W 1,σ(Ω), v∗ ∈W 3−1/σ,σ(∂Ω), σ =
nr

n+ r
, r > n, (IX.6.5)

then estimates (IX.6.1) hold. To fix the ideas, we suppose n = 3, the case
where n = 2 is treated similarly. If v is a generalized solution to (IX.0.1),
(IX.0.2), then v · ∇v ∈ W−1,3

0 (Ω) and from the estimates for the Stokes
problem derived in Theorem IV.6.1 we obtain v ∈W 1,3(Ω); furthermore

‖v‖1,3 ≤ c

ν

(
‖v‖2

6 + ‖f‖−1,3 + ν‖v∗‖2/3,3(∂Ω)

)

≤ c1
ν

(
‖v‖2

1,2 + ‖f‖−1,3 + ν‖v∗‖2/3,3(∂Ω)

) (IX.6.6)

where, in the second inequality, we have used the embedding Theorem II.3.4.
Again by this latter theorem we deduce

‖v‖s ≤ c2‖v‖1,3, for all s > 1, (IX.6.7)
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and, by the Hölder inequality,

‖v · ∇v‖q ≤ ‖v‖3q/(3−q)‖v‖1,3, for all q ∈ (1, 3). (IX.6.8)

Theorem IV.6.1 then furnishes v ∈ W 2,q(Ω), for all q ∈ (1, 3), and, by
(IX.6.6)–(IX.6.8),

‖v‖2,q ≤ c3
ν

(
‖v‖2

3q/(3−q) + ‖f‖q + ν‖v∗‖2−1/q,q(∂Ω)

)
. (IX.6.9)

On the other hand, by Theorem II.3.4,

‖v‖∞ ≤ c4‖v‖2,q

‖v‖1,3q/(3−q) ≤ c4‖v‖2,q

for all q ∈ (3/2, 3), (IX.6.10)

which, for these values of q, together with (IX.6.8), implies

‖v · ∇v‖1,q ≤ 2(‖v · ∇v‖q + ‖∇(v · ∇v)‖q)

≤ 2(‖v · ∇v‖q + ‖v‖2
1,2q + ‖v‖∞‖v‖2,q)

≤ c5‖v‖2
2,q.

In view of Theorem IV.6.1 we then obtain for all q ∈ (3/2, 3)

‖v‖3,q ≤ c6
ν

(
‖v · ∇v‖1,q + ‖f‖1,q + ν‖v∗‖3−1/q,q(∂Ω)

)

≤ c7
ν

(
‖v‖2

2,q + ‖f‖1,q + ν‖v∗‖3−1/q,q(∂Ω)

)
.

(IX.6.11)

Now, setting as before u = v −w and, further, τ = (p/ν − π), we have

∆u =
1

ν
v · ∇v + ∇τ

∇ · u = 0



 in Ω

u = 0 at ∂Ω

and, by Theorem IV.6.1, we recover for r > 3

‖u‖3,r + ‖τ‖2,r ≤
1

ν
‖v · ∇v‖1,r ≤ c8

ν

(
‖v‖2

1,2r + ‖v‖∞‖v‖2r

)
. (IX.6.12)

By Theorem II.3.4 we have, with σ = 3r/(3 + r)

‖v‖2,r ≤ c9‖v‖3,σ (IX.6.13)

and
‖v‖1,2r ≤ c10‖v‖3,6r/(3+4r) ≤ c11‖v‖3,σ (IX.6.14)

since r > 3. Therefore, (IX.6.10)1, (IX.6.12)–(IX.6.14) furnish
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‖u‖3,r + ‖τ‖2,r ≤ c12

ν
‖v‖2

3,σ

≤ c13

ν3

(
‖v‖2

2,σ + ‖f‖1,σ + ν‖v∗‖3−1/σ,σ(∂Ω)

)2

and estimates (IX.6.1) become a consequence of this latter inequality, of The-
orem II.3.4, of (IX.6.6), (IX.6.9), (IX.6.11), and (IX.4.51).

We have then proved the following result:

Theorem IX.6.2 Let Ω, f , v∗, v, p, w, and π be as in Theorem IX.6.1
with Ω of class C3 and f , v∗ satisfying (IX.6.5). Then v − w ∈ C2(Ω),
p − π ∈ C1(Ω) and they obey estimate (IX.6.1) with ν0 any positive, fixed
number.

Remark IX.6.2 If n ≥ 4, Theorem IX.6.2 continues to hold provided we
use the more regular solutions constructed in Theorem IX.5.3. However, this
time, ν0 will depend on the size of the data; cf. also Remark IX.6.1. �

IX.7 Notes for the Chapter

Section IX.1. The introduction of the pressure field p for weak solutions as
an element of a suitable Lq-space is essentially due to the work of Solonnikov
& Ščadilov (1973), cf. also Lemma IV.1.1. Actually, these authors show the
existence of p in the case of the linearized Stokes system but their ideas carry
over, without conceptual difficulties, to the nonlinear Navier–Stokes problem.

The general results derived in Lemma IX.1.2 and Remark IX.1.5, whose
proofs are based on ideas of Solonnikov & Ščadilov, are due to me.

Section IX.2. Uniqueness of generalized solutions in the form presented here
can be traced back to the papers of Hopf (1941, 1957); cf. Finn (1961a Section
8).

The condition (IX.2.4), ensuring that a generalized solution is unique, can
be improved in several respects. For instance, following the work of Serrin
(1959a) one can give a variational formulation of uniqueness that is aimed,
among other things, at yielding the “best” upper bound on v for uniqueness
to hold. It is interesting to observe that such conditions likewise ensure the
nonlinear energy stability of v, cf. Joseph (1976), Galdi & Rionero (1985).

Section IX.3. An interesting variant of Leray’s existence theorem that shows
existence of generalized solutions has been given by Ladyzhenskaya (1959b,
Theorem 2); cf. also Vorovich & Youdovich (1961, Theorem 1). The variant
is based on the following steps. First, as we already remarked, Ladyzhen-
skaya gives a variational formulation of the boundary-value problem (IX.0.1),
(IX.0.2). Such a formulation leads to an equivalent operator equation for the
velocity field v of the form

v =
1

ν
(Av + f) , (∗)
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with A a suitable nonlinear operator in an appropriate Hilbert space H. She
then proves that A is completely continuous and that every possible solution
v to (∗) that is in H admits a uniform bound independent of 1/ν ∈ (0, B).
This fact, together with a simplified version of the Leray-Schauder theorem,
produces existence in the physically relevant cases of two and three dimen-
sions. For the sake of mathematical generality, however, it should be noted
that neither Leray’s nor Ladyzhenskaya’s argument works in four dimensions
due to the fact that the operator A is no longer completely continuous. This
problem was taken up and solved by Shinbrot (1964) who proves that a prop-
erty for A weaker than complete continuity is sufficient to recover existence
to (∗). In light of this consideration, the method of Fujita which we used here
assumes even more relevance since, as we have seen, it applies in all space
dimensions.1

Existence of q-generalized solutions (see Remark IX.1.3) has been inves-
tigated by Serre (1983). Specifically, he proves that if Ω ⊂ Rn, n = 2, 3, is
(bounded) and of class C2, then given

f ∈ D−1,q
0 (Ω), q ∈ (n/2, 2),

there is at least one corresponding q-generalized solution to (IX.0.1), (IX.0.2)
with v∗ = 0. The result is also extended to the case v∗ 6= 0. The case q = 3/2,
for n = 3, left out by Serre has been lately covered by Kim (2009, Remark 6).

More recently, there has been an increasing interest in the study of the
properties of very weak solutions. These latter are characterized by a weakly
divergence free velocity field v ∈ Ln(Ω)2 satisfying the condition

(v, ∆ψ) = −(v · ∇ψ, v) + 〈f ,ψ〉 − 〈n · ∇ψ, v∗〉∂Ω , (∗∗)

for all ψ ∈ W 2, n
n−1 (Ω) ∩ H1

n
n−1

(Ω) ≡ W̃0(Ω), where, we recall, 〈·, ·〉∂Ω is

the duality pairing between the spaces W−1/q,q(∂Ω) and W 1−1/q′,q′
(∂Ω). As

mentioned in the Notes for Section IV.6, even though, at the outset, very
weak solutions are not weakly differentiable, they still possess a well defined
trace at the (sufficiently smooth) boundary, in an appropriate space; see Galdi,
Simader & Sohr (2005, Theorem 1). The study of existence and uniqueness
of very weak solutions in a smooth (for instance, C1,1), bounded and simply
connected domain of Rn, n = 2, 3, was initiated by Marušić-Paloka (2000). In
particular, when n = 3, this author proves existence for any f ∈ W−1,2

0 (Ω)
and v∗ ∈ L2(∂Ω). Successively, when Ω is a bounded domain of R3 of class

1 As a matter of fact, the method, as presented in the paper of Fujita (1961) fails
for space dimension n > 4. However, the slight modification given by Finn (1965b
§2.7)) and adopted by me permits the demonstration of existence of generalized
solutions for all n ≥ 2.

2 One may replace Ln with Lq, with q ≥ n, on condition of choosing appropriate
test functions ψ in (∗∗); see the literature cited below. However, the case q = n,
is, of course, the more interesting, because it is the case of less regularity.
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C2,1, Galdi, Simader & Sohr (2005) showed existence under the more gen-
eral assumption v∗ ∈ W−1/3,3(∂Ω). (See Farwig, Galdi & Sohr (2006), for
similar results when n = 2.) However, such a result requires the data to be
“sufficiently small”. This latter restriction was further removed by Kim (2009,
Theorem 1), by cleverly combining arguments of Galdi, Simader & Sohr with
those of Gehrardt (1979) and Marušić-Paloka. For the sake of precision, it
is worth noticing that Kim’s definition of “very weak” solution (as well as
Marušić-Paloka’s) is, in principle, more restrictive than the one adopted by
Galdi, Simader & Sohr, where the test function in (∗∗) is chosen from the
space C2

0(Ω), defined in equation (∗) in the Notes for Section IV.6, instead of

the space W̃0(Ω). Of course, whenever C2
0(Ω) is dense in W̃0(Ω), the two def-

initions coincide. This happens, for example, if Ω is of class C2,α, α ∈ (0, 1).
Whether or not the same is true for domains with less regularity remains to be
seen. It must be finally noticed that, in the above papers with the exception of
that by Marušić-Paloka, the more general condition ∇·v = g, with g suitably
prescribed, is considered.

Section IX.4. The case of nonhomogeneous boundary conditions was first
treated by Leray (1933, pp. 28-30, pp. 40-41) by means of two different ap-
proaches. The first is essentially that described at the beginning of the section,
and it was successively completed and clarified by Hopf (1941, 1957); cf. also
Ladyzhenskaya (1959b, Chapter I, §2), Finn (1961a, Lemma 2.1 and Section
2a)). The second is based on a clever contradiction argument, which we would
like to sketch here. As we have mentioned several times, the clue for existence
is to show a uniform bound on the Dirichlet integral of all possible solutions
v to (IX.0.1), (IX.0.2) (in a suitable regularity class):

∫

Ω

∇v : ∇v ≤M, (D)

with M independent of ν ranging in some bounded interval [ν0, ν1], ν0 > 0.
Contradicting (D) means that there is a sequence of solutions {vk, πk} to
(IX.0.1), (IX.0.2) and of positive numbers {νk} such that as k → ∞

Jk ≡
∫

Ω

∇vk : ∇vk → ∞, νk → ν

for a suitable ν ∈ [ν0, ν1]. On the other hand, it is easy to show (cf. Leray
1933, p. 28), that, denoting by V a (sufficiently smooth) solenoidal extension
of v∗ the following identity holds for all k ∈ N

νk

∫

Ω

∇vk : ∇vk = −1

2

∫

∂Ω

v2
∗v∗ ·n+ νk

∫

Ω

∇vk : ∇V +

∫

Ω

vk · ∇vk · V .
(∗ ∗ ∗)

Settingwk = vk/
√
νJk and using standard compactness arguments one shows

that wk tends to a suitable solenoidal field w that vanishes at the boundary,
and that, after dividing both sides of (∗∗∗) by Jk and letting k → ∞, satisfies
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∫

Ω

w · ∇w · V = 1. (I)

Note that if V is an extension of v∗, V + ϕ is such for all ϕ ∈ D(Ω), and
from (I) it follows that

∫

Ω

w · ∇w · ϕ = 0 for all ϕ ∈ D(Ω).

In view of Lemma III.1.1, this latter condition, together with the fact that w is
solenoidal and vanishes at the boundary, tells us that w solves the Euler-type
problem:

w · ∇w = ∇π
∇ ·w = 0

}
in Ω

w = 0 at ∂Ω

(II)

for some “pressure field” π. Therefore, the uniform bound (∗∗), and hence
existence of solutions to (IX.0.1), (IX.0.2), will be proved whenever we show
that conditions (I) and (II) are incompatible. It is readily seen that (I) and
(II) are certainly incompatible if the stronger condition (IX.4.7) is satisfied.
Actually, from (II)1,3 it follows that π is a constant πi (say) on each connected
component Γi of ∂Ω, i = 1, . . . , m+1.3 Multiplying (II)1 by V and integrating
by parts over Ω we find

∫

Ω

w · ∇w · V =

m+1∑

i=1

πi

∫

Γi

v∗ · n

and so, if we assume (IX.4.7), we obtain

∫

Ω

w · ∇w · V = 0,

which contradicts (I). Incompatibility under the sole condition (IX.4.6) was
left open by Leray. However, it is readily seen that Leray’s approach as it
stands does not lead in general to a contradiction. In fact, there are examples
where conditions (I) and (II) are not incompatible. Consider, for instance, the
annular domain

Ω =
{
x ∈ R2 : R1 < |x| < R2

}
(III)

and set

Φ =

∫

Γ2

v∗ · n = −
∫

Γ1

v∗ ·n,

where
Γ1 =

{
x ∈ R2 : |x| = R1

}
, Γ2 =

{
x ∈ R2 : |x| = R2

}
.

3 A detailed proof of this property is given by Kapitanskĭi & Pileckas (1983).
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It is readily seen that the field u = u(r)eθ solves (II) with π = −
∫
(u2/r).

Moreover, taking into account (IX.4.9), we show

∫

Ω

u · ∇u · V = −Φ
∫ R2

R1

u2

r
.

As a consequence, if Φ < 0 the field

w =
u

(
−Φ

∫ R2

R1

u2

r

)1/2

satisfies both conditions (I) and (II) that are, therefore, compatible.
The contradiction method of Leray just described has been more recently

used by Kapitanskǐi & Pileckas (1983, §4), Borchers & Pileckas (1994) and, in-
dependently, by Amick (1984). In particular, the latter author pushes Leray’s
argument a bit further to show that conditions (I) and (II) are indeed in-
compatible in a class of plane domains Ω and fields v∗, w possessing certain
suitable symmetry. As a result, under these assumptions on the data, Am-
ick proves existence requiring only the compatibility condition (IX.4.6) on
the flux. The result of Amick has been successively rediscovered by Sazonov
(1993). Another, constructive proof of Amick’s result can be found in Fu-
jita (1998). If Ω is the annulus (III), Morimoto (1992) and Morimoto & Ukai
(1996) have furnished existence under the general condition (IX.4.6), provided,
however, the boundary data satisfy some extra restrictions. In this respect,
see also Morimoto (1995), Fujita & Morimoto (1997), and Russo & Starita
(2008).

All mentioned papers need a sufficiently high degree of smoothness on
both v∗ and Ω, e.g., of class C3. The first general result with v∗ in the
“natural” trace space W 1/2,2(∂Ω) is due to Foiaş & Temam (1978), under the
assumption that Ω is C2-smooth.

Existence results in locally Lipschitz domains, and with boundary data of
lesser regularity than the W 1/2,2(∂Ω) one, have been proved in the interesting
paper of Russo (2003). The approach followed by this author is based on
potential-theoretic methods which, in turn, rely upon previous work of Fabes,
Kenig & Verchota (1988).

A maximum modulus result for (bounded) locally Lipschitz three-dimensional
domains has been shown by Russo (2011).

Uniqueness under conditions of the type given in Theorem IX.4.2 but with
a computable constant c1 can be found in Payne (1965).

Section IX.5. Regularity of generalized solutions was first proved by La-
dyzhenskaya (1959b, Chapter II, §2). An independent proof is given by Fujita
(1961, §§4,5); see also Shapiro (1976a). Fujita also observes that analyticity
of a generalized solution (v, p), corresponding to an analytic f in Ω, follows
from the fact that v, p ∈ C∞(Ω) along with classical results of Morrey (1958)
and Friedman (1958) on nonlinear analytic elliptic systems. A completely dif-
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ferent (and formally simpler) proof of regularity, based on the estimates of
the Stokes problem, is due to Temam (1977, Chapter II, Proposition 1.1).

All the above results hold in dimension n = 2, 3 but fail if n ≥ 4. The
problem of regularity in higher dimensions has been considered by von Wahl
(1978, Satz II.1) who gave a first, partial answer for n = 4. Successively,
Gerhardt (1979) proved regularity of generalized solutions in dimension n = 4.
An analogous theorem has been later obtained, by different tools, by Giaquinta
& Modica (1982). Results found by all the above authors, however, do not
admit a direct generalization to higher dimensions. Regularity of generalized
solution v in arbitrary dimension n ≥ 2 was first proved by von Wahl (1986)
as a by-product of his study on the unsteady Navier–Stokes equations; cf. also
Sohr & von Wahl (1984). von Wahl’s assumptions on v are a particular case
of those of Theorem IX.5.2, obtained by setting there s = 2. He also requires
extra regularity on Ω.

As already emphasized, our proof of smoothness of generalized (and q-
generalized) solutions is based on Lemma IX.5.1. This lemma improves an
analogous result shown in Galdi (1994b, Chapter VIII, Lemma 5.1)

An interior regularity result similar to that of Theorem IX.5.1(a) is given
by Kim & Kozono (2006, Corollary 5). However, these authors require n ≥ 3
and p ∈ L1

loc(Ω), which are not needed in Theorem IX.5.1(a).
In the paper of Kim & Kozono, the interesting problem of removable sin-

gularities is also addressed. More precisely, assuming that a solution (v, p)
to the steady-state Navier–Stokes equation is regular in the punctured ball
B−{x0}, the question is to find conditions on the behavior of v(x) as x→ x0,
that ensure that the solution is regular in the whole of B. Similar questions
were previously addressed by Dyer & Edmunds (1970), who first studied the
problem, Shapiro (1974, 1976b, 1976c), and Choe & Kim (2000).

The important question of regularity of very weak solutions has been inves-
tigated by several authors. For interior regularity, we recall the contribution
of Kim & Kozono previously mentioned and its improved version furnished
by me in Theorem IX.5.1(a). Results on regularity up to the boundary can
be found in Maruš́ıc-Paloka (2000, Remark 3), Farwig, Galdi & Sohr (2006,
Corollary 1.5), Farwig & Sohr (2009, Theorem 1.5), and Kim (2009, The-
orem 3). In particular, in the latter two papers, the authors independently
prove a result analogous to Theorem IX.5.2(a), under the following assump-
tions (i) v ∈ Lq0 (Ω), q0 = n, if n ≥ 3, q0 > 2, if n = 2; (ii) ∇ · v = g,

g ∈ L
nq0

n+q0 (Ω)∩W 1,q(Ω) with a sufficiently “small” norm; (iii) v satisfies (∗∗)
for all ψ ∈ C2

0(Ω), and Ω of class C2,1 (Farwig & Sohr), all ψ ∈ W̃0(Ω), and Ω
of class C2 (Kim). All the above results leave open the intriguing question of
weather, for n = 2, a very weak solution, with v ∈ L2(Ω) and corresponding
to regular data, is regular.
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Steady Navier–Stokes Flow in

Three-Dimensional Exterior Domains.
Irrotational Case

F.F. CHOPIN, Ballade op.23, bars 7-8.

Introduction

Objective of this and the next two chapters is to investigate the mathematical
properties of steady flow of a viscous incompressible fluid that fills the entire
space outside a finite number of “bodies”, Ω1, . . . , Ωs, and whose motion is
governed by the fully nonlinear Navier–Stokes equations. More specifically, we
shall be concerned with the following boundary value problem

ν∆v = v · ∇v + 2ω × v + ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω

(X.0.1)

to which we append the condition at infinity

lim
|x|→∞

(v(x) + v∞(x)) = 0 . (X.0.2)

Here, as usual, Ω is a domain of Rn, n = 2, 3, exterior to Ω0 := ∪s
i=1Ωi,

with Ωi compact, i = 1, . . . , s, and Ωi ∩ Ωj = ∅, for i 6= j, representing the



650 X Three-Dimensional Flow in Exterior Domains. Irrotational Case

region of flow, f and v∗ are prescribed fields in Ω and ∂Ω, respectively, while
v∞(x) := v0 +ω × x, with v0 and ω given constant vectors. As explained in
Section I.2, this problem is of particularly great relevance in the study of the
steady flow past a rigid body B that translates and rotates, when described
from a frame, S, attached to B. In such a case, s = 1, B ≡ Ω1, and ω

represents the (constant) angular velocity of the body, while v0 is the velocity
of its center of mass referred to S, supposed to be constant.1

Since the type of difficulties encountered, the methods used and the results
found in solving problem (X.0.1)–(X.0.2) are different according to whether
ω = 0 or ω 6= 0, and n = 2 or n = 3, we wish to treat the various cases in
as many chapters. In the present one we shall consider the irrotational case
ω = 0, so that problem (X.0.1) reduces to

ν∆v = v · ∇v + ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω

(X.0.3)

along with the condition at infinity

lim
|x|→∞

v(x) = −v∞ (X.0.4)

where v∞ ≡ v0 ∈ R3.
With few exceptions, which will be either remarked on or explicitly noticed

in the statements of our results, we shall be concerned with three–dimensional
flows, while we shall treat the analogous, more involved two-dimensional prob-
lem in Chapter XII. The three-dimensional case with ω 6= 0 will be studied
in Chapter XI. To date, no significant results are available in two dimensions
when ω 6= 0.

We shall next describe the problems and the main results presented in
this chapter. Following the work of Leray (1933), Ladyzhenskaya (1959b), and
Fujita (1961), one gives, as we already did in previous chapters, a variational
formulation of the problem and proves the existence of a weak solution v to
(X.0.3), (X.0.4) without restrictions on the “size” of the data and even with a
nonzero (but small) total flux of v∗ through ∂Ω. Such solutions, characterized
by having a finite Dirichlet integral:

∫

Ω

∇v : ∇v ≤M, (X.0.5)

where M depends only on the data, are sometimes referred to as D-solutions,
or also Leray solutions. In the investigation of the features of D-solutions one
has to face two different kinds of problems. On the one hand, similarly to
generalized solutions in bounded domains, one has to analyze their differen-
tiability properties. However, this is simply achieved by using the regularity

1 See footnote 14 in Chapter I.
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theory developed in the case Ω bounded and we can prove that D-solutions
are, in fact, smooth provided the data are smooth. On the other hand, one
has to show that D-solutions have those properties expected from the physi-
cal point of view and tightly related to their behavior at large distances. For
example, they have to verify the energy equation:

2ν

∫

Ω

D(v) : D(v) −
∫

∂Ω

[ (v∗ + v∞) · T (v, p)

−1
2(v∗ + v∞)2v∗] ·n+

∫

Ω

f · (v + v∞) = 0

(X.0.6)
with D and T stretching and stress tensors (IV.8.6), which describes the
balance between the power of the work of external force, the work done on
the “body” Ω1, and the energy dissipated by the viscosity. Also, if f , v∗, and
v∞ are “sufficiently small” with respect to the viscosity ν , the corresponding
D-solutions must be unique. In addition, in the case s = 1, v∗ = f = 0 (rigid,
impermeable body translating in the liquid with constant velocity v0), the
flow must exhibit an infinite wake extending in the direction opposite to v∞:
inside the wake the flow is essentially vortical and the order of convergence of
v to v∞ is different depending on whether it is calculated inside or outside
the wake. Finally, according to the boundary-layer concept, the flow must be
potential outside the close vicinity of the body Ω1 and of the wake, which
means (at least) that the vorticity should decay exponentially fast at large
distances and outside the wake.

Despite of the efforts of many mathematicians, for quite a long time these
questions had no answer to the point that, in 1959, R. Finn was led to in-
troduce another class of solutions characterized by the requirement that the
velocity field v obeys, as |x| → ∞,

v(x) + v∞ = O(|x|−1/2−ε), some ε > 0, if v∞ 6= 0

v(x) = O(|x|−1), if v∞ = 0.
(X.0.7)

In a series of fundamental papers, Finn and his coworkers were then able to
show that any such solution has all the basic properties previously mentioned.
For this reason, he called solutions satisfying (X.0.7) physically reasonable
(PR). Moreover, in 1965, by extremely careful and painstaking estimates of
the Green’s tensor function, Finn showed that if the data are “small enough”
there exists a unique corresponding PR-solution.

It then appeared quite natural to study the relation between a D-solution
and a PR-solution and, therefore, to ascertain if D-solutions can effectively
describe the real world or are just mathematical inventions. However, although
it is a relatively simple task to prove that a PR-solution is a D-solution,
the question of whether the converse implication holds true has remained
open for years and, even today, it presents some aspects that are yet to be
clarified. Specifically, if v∞ 6= 0, K.I. Babenko (1973) has shown that every
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D-solution v corresponding to a body force of bounded support is a PR-
solution (cf. also Galdi 1992b, Farwig & Sohr 1998) while Galdi (1992c) has
proved the same property for v∞ = 0 provided, however, that v obeys a the
“energy inequality” (that is, (X.0.6) with “=” replaced by “≤”) and that
the viscosity is sufficiently large. In this respect, it is worth noticing that
the class of D-solutions obeying the energy inequality is certainly nonempty.
The nonhomogeneity of these results for the cases v∞ 6= 0 and v∞ = 0 is
essentially due to the following reason. They both rely on the asymptotic
properties of solutions to the linearized approximations of (X.0.3), (X.0.4).
Now, if v∞ 6= 0, such an approximation leads to the Oseen system, while if
v∞ = 0 it leads to the Stokes system and we know from Chapters V and VII
that the asymptotic properties of solutions to the Stokes system are, in an
appropriate sense, weaker than those of the Oseen one.

In the present chapter, we shall follow the basic ideas of Galdi (1992a,
1992b, 1992c), with several changes in the details. Thus, after proving exis-
tence of D-solutions, we shall investigate, among other things, their asymp-
totic behavior at large distances and shall show that it coincides with that of
the Stokes or the Oseen fundamental tensor according to whether v∞ is or is
not zero. However, if v∞ = 0, we are able to prove this only for large viscosity
and for D-solutions obeying the energy inequality.

It should also be emphasized that if v∞ = 0, several fundamental questions
remain open. For example, it is not known if, for given f and v∗ there are
solutions obeying the energy equation (X.0.6) without restriction on the size
of the data or, equivalently, for all values of the viscosity. Moreover, it is not
known if, when Ω = R3, the only D-solution corresponding to f = 0 is the
zero solution; see Remark X.9.4.

In what follows, we shall find it convenient to put (X.0.3), (X.0.4) into a
dimensionless form, and so we need comparison length d and velocity V . If
v∞ 6= 0 and |Ωc| 6= ∅, we can take d = δ(Ωc), V = |v∞| and so, introducing
the Reynolds number

R =
V d

ν
,

the system (X.0.3) becomes

∆v = Rv · ∇v + ∇p+ Rf
∇ · v = 0

}
in Ω

v = v∗ at ∂Ω

(X.0.8)

where v , v∗, p, and f are now nondimensional quantities. In such a case
the nondimensional velocity v∞ becomes a unit vector that, without loss, we
will take coincident with the unit vector e1. If either v∞ = 0 or Ω ≡ Rn this
choice of d and V is no longer possible, even though we can still give meaning
to (X.0.8), which is what we shall do throughout the chapter.

We wish to observe that, whenever possible, we shall explicitly remark if
and in what form a certain result we find can be generalized to dimension
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n ≥ 4. If no comment is made, it will be tacitly understood that either the
result does not admit of a straightforward generalization to higher dimension
or, even, that such a generalization constitutes an open question.

Finally, we remark that all material presented here concerns the “classi-
cal” formulation of the exterior problem. However, there is a wide variety of
exterior problems which can not be included within this formulation and are
of great physical relevance like, for example, the steady fall of a body or the
steady motion of a self-propelled body in a viscous liquid. We shall not treat
these questions and refer the interested reader to the works of Weinberger
(1972, 1973, 1974), Serre (1887), Galdi (1999a), and to the comprehensive
article of Galdi (2002) and to the references cited therein.

X.1 Generalized Solutions. Preliminary Considerations
and Regularity Properties

We begin to give a generalized formulation of the Navier–Stokes problem
(X.0.8) , (X.0.4) and to investigate some basic properties of the corresponding
solutions, including their regularity. To this end, assuming at first v, p, and f
are sufficiently smooth, we multiply (X.0.8)1 by ϕ ∈ D(Ω) and integrate by
parts over Ω to obtain

∫

Ω

∇v : ∇ϕ+ R
∫

Ω

v · ∇v · ϕ = −R
∫

Ω

f · ϕ. (X.1.1)

Thus, every regular solution to (X.0.8)1 satisfies identity (X.1.1) for all ϕ ∈
D(Ω). Conversely, as in the case where Ω is bounded (cf. Section IX.1), it
is easy to show by means of Lemma III.1.1 that if v is of class C2(Ω), say,
and satisfies (X.1.1) for some f ∈ C(Ω) and all ϕ ∈ D(Ω), then v obeys
(X.0.8)1 for some p ∈ C1(Ω). However, if v merely satisfies (X.1.1) and is
not a priori sufficiently regular, we cannot go from (X.1.1) to (X.0.8)1 and
therefore (X.1.1) is the weak version of (X.0.8).

As in the linear case, we shall consider the more general situation when
the right-hand side of (X.1.1) is defined by a linear functional f ∈ D−1,2

0 (Ω).
Thus, in analogy with Definition V.1.1, we give the following.

Definition X.1.1. Let Ω be an exterior domain of Rn, n ≥ 2. A vector field
v : Ω → Rn is called a weak (or generalized) solution to the Navier–Stokes
problem (X.0.8), (X.0.4) if and only if1

1 Often, in the literature, generalized solutions are called D-solutions (or Leray
solutions), where D means that they have a finite Dirichlet integral. We shall
avoid this nomenclature in the present chapter, while in Chapter XII, which
treats the two-dimensional case, it will be used to mean a field satisfying the
requirements (i)-(iii) and (v) of Definition X.1.1 but not necessarily condition
(iv). It should be emphasized that in three dimensions any such field obeys (iv)
for some v∞ ∈ R

3, as a consequence of Theorem II.6.1.
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(i) v ∈ D1,2(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v satisfies the boundary condition (X.0.8)3 (in the trace sense) or, if v∗ ≡

0, then ϑv ∈ D1,2
0 (Ω) where ϑ ∈ C1

0(Ω) and ϑ(x) = 1 if x ∈ ΩR/2 and
ϑ(x) = 0 if x ∈ ΩR, R > 2δ(Ωc);

(iv) lim
|x|→∞

∫

Sn−1

|v(x) + v∞| = 0;

(v) v satisfies the identity

(∇v,∇ϕ) + R(v · ∇v,ϕ) = −R [f ,ϕ] (X.1.2)

for all ϕ ∈ D(Ω).

Remark X.1.1 Remark V.1.1 with q = 2, and Remark IX.1.1, Remark
IX.1.3 equally apply to generalized solutions of Definition X.1.1. �

Our next objective is to ascertain the existence of a pressure field associ-
ated to a generalized solution and to investigate the corresponding properties.
Existence is, in fact, readily established. Actually, if

f ∈ W−1,2
0 (Ω′), for every bounded domain Ω′ with Ω′ ⊂ Ω,

from Lemma II.6.1 and Lemma IX.1.2 it follows that there is a field

p ∈ L2
loc(Ω)

verifying the identity

(∇v,∇ψ) + R(v · ∇v,ψ) = (p,∇ · ψ) −R[f ,ψ] (X.1.3)

for all ψ ∈ C∞
0 (Ω). In particular, if

f ∈W−1,2
0 (ΩR),

and Ω is locally Lipschitz, again from Lemma II.6.1 and Lemma IX.1.2, we
deduce

p ∈ L2(ΩR).

However, unlike the case where Ω is bounded, we are not able a priori to draw
any conclusion concerning the L2-summability of p on the whole of Ω. This is
due to the circumstance that if we only have

v ∈ D1,2(Ω)

we cannot guarantee the existence of c = c(v) such that

|(v · ∇v,ψ)| ≤ c|ψ|1,2. (X.1.4)

Nevertheless, if we restrict ourselves to three-dimensional flows, we can show
summability for p with a suitable exponent in a neighborhood of infinity. In
this regard, we can show the following.
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Lemma X.1.1 Let Ω be an exterior domain of Rn, n = 2, 3, and let v be a
generalized solution to (X.0.8), (X.0.4) in Ω. Then, if

f ∈W−1,2
0 (Ω′) (X.1.5)

for every bounded domain Ω′ with Ω′ ⊂ Ω, there exists

p ∈ L2
loc(Ω)

satisfying (X.1.3) for all ψ ∈ C∞
0 (Ω). If Ω is locally Lipschitz and for some

R > δ(Ωc)
f ∈W−1,2

0 (ΩR),

we have
p ∈ L2(ΩR).

Moreover, if Ω ⊆ R3 and, in addition to (X.1.5),

f ∈ D−1,q
0 (ΩR), some R > δ(Ωc), and q ∈ (3/2,∞),

then p (up to an additive constant) admits the following decomposition

p = p1 + p2 , p1 ∈ L3(Ωρ) , p2 ∈ Lq(Ωρ) , ρ > R. (X.1.6)

For this latter results to hold, no regularity on Ω is needed.

Proof. By what we already said, we have to prove only (X.1.6). We shall do
this under the assumption v∞ = 0, the case v∞ 6= 0 being treated in an
entirely analogous way. For i = 1, 2, let

(vi, pi) ∈ D1,qi

0 (ΩR) × Lqi(ΩR), q1 = 3 , q2 = q ,

be qi-generalized solution and associated pressure to the following Stokes prob-
lems

(∇vi,∇ψ) = (pi,∇ ·ψ) + [f i,ψ] , ψ ∈ C∞
0 (ΩR) ,

f1 := −Rv · ∇v , f2 := −Rf .
(X.1.7)

Since by (iv) of Definition X.1.1 and Theorem II.6.1 we have

v ∈ L6(ΩR)

and therefore, for all ψ ∈ C∞
0 (ΩR),

|(v · ∇v,ψ)| = |(v ⊗ v,∇ψ)| ≤ ‖v‖2
6,ΩR|ψ|1,3/2 ,

we conclude that
f1 ∈ D−1,3

0 (ΩR).

By this and by the assumption on f , with the help of Theorem V.5.12 we
show the existence of the above solutions. Next, from (X.1.7) and (X.1.3), it
follows that
2 And of Theorem VII.7.2 and Remark VII.7.3 when v∞ 6= 0.
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(∇(v1 + v2 − v),∇ψ) = (p1 + p2 − p,∇ ·ψ) , ψ ∈ C∞
0 (ΩR) ,

and so, from Theorem IV.4.3 we find that V := v1+v2−v and P := p1+p2−p
satisfy the following properties

∆V = ∇P in ΩR , V , P ∈ C∞(ΩR) . (X.1.8)

Suppose, at first, q ≥ 2. By the Hölder inequality, Lemma II.6.3, and Exercise
II.6.3 we find (with |x| = r, x ∈ ΩR)

I2(r) :=

∫

S2

|V (r, ω)|2dω ≤ c1

(
‖v1|23,S2 + ‖v2‖2

q,S2 + ‖v‖2
2,S2

)

≤ c2
[
(ln r)4/3 + g(r) + r−1 + 1

]
,

where g(r) = (ln r)4/3 if q = 3, while g(r) = r2−6/q, if q 6= 3. If q ∈ (3/2, 2),
by the same token, we estimate as follows

Iq(r) :=

∫

S2

|V (r, ω)|qdω ≤ c3

(
‖v1|q3,S2 + ‖v2‖q

q,S2 + ‖v‖q
2,S2

)

≤ c4
[
(ln r)2q/3 + rq−3 + r−q/2 + 1

]
.

As a consequence, we have, for all ρ > R,

∫ ∞

ρ

I2(τ )

(1 + τ )5
τ2dτ <∞ , if q ∈ [2,∞)

∫ ∞

ρ

Iq(τ )

(1 + τ )3+q τ
2dτ <∞ , if q ∈ (3/2, 2) ,

so that V satisfies the assumption of Theorem V.3.2, from which we derive,
in particular, P ∈ Ls(Ωρ), for all ρ > R, and all s > 3/2. The proof of the
theorem is then completed. ut

Remark X.1.2 If n = 2, the proof just given fails, because Theorem II.6.1
does not ensure any summability for v + v∞ on ΩR. Consequently, for plane
motions, a generalized solution has a priori no summability at all in the neigh-
borhood of infinity. However, by a more detailed study performed in Chapter
XII, where we will show that if v∞ 6= 0 the pressure field of any weak solution
satisfying some mild extra property and corresponding to suitable body force
is in Lq(ΩR) for all q > 2. If v∞ = 0, the question is completely open. �

Remark X.1.3 Lemma X.1.1 is readily extended to dimension n ≥ 4. In
fact, under the assumption

f ∈ D−1,q
0 (ΩR) , q ∈ (n/(n− 1),∞)

one can show that
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p = p1 + p2 , p1 ∈ Ln/(n−2)(ΩR) , p2 ∈ Lq(ΩR).

This result is obtained by the same technique used in Lemma X.1.1, observing
that, by Theorem II.6.1, one has

(v + v∞) · ∇v ∈ D
−1,n/(n−2)
0 (ΩR).

In particular, if Ω is locally Lipschitz and q = n/(n− 2), we have

p ∈ Ln/(n−2)(Ω),

thus recovering for p the same property proved in the case Ω bounded; cf.
Remark IX.1.5. It is interesting to observe that if the asymptotic properties
of v merely reduce to v ∈ D1,2(Ω), the exponent n/(n − 2) is sharp, even
if f ∈ C∞

0 (Ω), as the following argument shows. Consider (X.0.8), (X.0.4)
in Ω ≡ Rn, n ≥ 3, with v∞ = 0 and assume v, p to be a smooth solution
corresponding to f = ∇·F , where F ≡ {Fij} ∈ C∞

0 (Rn). (As will be proved in
Theorem X.4.1, such a solution does exist.) By taking the divergence operator
of both sides of (X.0.8) we then recover that the pressure field satisfies the
following equation

1

R∆p =

n∑

i,j=1

DiDj(vivj + Fij).

Starting with this relation, we can then give an explicit representation for p.
Actually, if p tends to a limit p0 at infinity, employing classical arguments we
can easily show (with ci = ci(n), i = 1, 2) that

p(x) = p0 + R{c1
n∑

i=1

[v2
i (x) + Fii(x)]

+ c2

n∑

i,j=1

lim
ε→0

∫

R3−Bε(x)

(vivj(y) + Fij(y))[DiDj |x− y|2−n]dy}

≡ p0 + p1(x) + p2(x) + p3(x) + p4(x).

If
v ∈ D1,2(Rn), (X.1.9)

by the Sobolev inequality it follows that

vivj ∈ Ln/(n−2)(Rn) (X.1.10)

and so
p1 ∈ Ln/(n−2)(Rn).

Clearly,
p2 ∈ Lq(Rn) for all q > 1.
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Moreover, the quantity
DiDj |x− y|2−n

is a singular kernel, and so, by the Calderón–Zygmund theorem, by (X.1.9)
and the properties of F we have

p3 ∈ Ln/(n−2)(Rn)

p4 ∈ Lq(Rn) for all q > 1.

We then conclude that
p ∈ Ln/(n−2)(Rn). (X.1.11)

Since (X.1.10) cannot be improved under the sole assumption (X.1.9), the
estimates on p1 and p3 are sharp and therefore (X.1.11) is sharp too. �

Exercise X.1.1 Let Ω be a exterior domain of R
n, n ≥ 3, of class C2. By the same

argument used in the proof of Lemma X.1.1, show that if v is a weak solution to
(X.0.8), (X.0.4) with

v∗ ∈W 1−1/q,q(∂Ω), f ∈ D−1,q
0 (Ω) , q ∈ (n/(n− 1),∞)

then p = p1 + p2 with p1 ∈ Ln/(n−2)(Ω), p2 ∈ Lq(Ω), where p is the pressure field

associated to v by Lemma X.1.1.

In the final part of this section we shall discuss the differentiability prop-
erties of a generalized solution. This will be done with the help of Theorem
IX.5.1 and Theorem IX.5.2. Specifically, we have the following

Theorem X.1.1 Let v be a generalized solution to (X.0.8), (X.0.4) in an
exterior domain Ω ⊆ Rn, n ≥ 2 with v ∈ Ln

loc(Ω).3 Then, if

f ∈Wm,q
loc (Ω), m ≥ 0 , (X.1.12)

where q ∈ (1,∞) if either m = 0 or n = 2, while q ∈ [n/2,∞) if m > 0 and
n ≥ 3, it follows that

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω),

where p is the pressure associated to v by Lemma X.1.1.4 Thus, in particular,
if

3 These assumptions on on v can be replaced by the weaker requirements (i)–(iii)
of Theorem IX.5.1; see also Remark IX.5.1.

4 Observe that if f satisfies (XI.1.23) for the specified values of m and q, then for

all bounded Ω′ with Ω
′ ⊂ Ω it holds that

f ∈W−1,2
0 (Ω′), if n = 2, 3

while
f ∈ W

−1,n/(n−2)
0 (Ω′), if n ≥ 4.
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f ∈ C∞(Ω),

then
v, p ∈ C∞(Ω).

Assume, further, that v ∈ Ln(ΩR), for some R > δ(Ωc). Then if Ω is of class
Cm+2 and

v∗ ∈Wm+2−1/q,q(∂Ω), f ∈Wm,q(ΩR) (X.1.13)

with the values of m and q specified earlier, we have

v ∈Wm+2,q(ΩR), p ∈Wm+1,q(ΩR). (X.1.14)

Thus, in particular, if Ω is of class C∞ and

v∗ ∈ C∞(∂Ω), f ∈ C∞(ΩR),

it follows that

v, p ∈ C∞(ΩR).

Proof. The first part of the theorem (local regularity) has already been shown
in Theorem IX.5.1. To show the second, from the hypothesis on f made in
(X.1.13) we obtain, again by Theorem IX.5.1,

v ∈Wm+2,q
loc (Ω),

and, as a consequence,

v ∈Wm+2−1/q,q(∂BR).

Therefore, v is a generalized solution to the Navier–Stokes problem in the
bounded domain ΩR with v ∈ Ln(ΩR) and corresponding to data satisfying
the assumption of Theorem IX.5.2. Therefore, (X.1.14) follows and the result
is completely proved. ut

X.2 On the Validity of the Energy Equation for
Generalized Solutions

When we give a mathematical definition of solution to a system of equations
relating to physics, one of the first questions that arises is that of establishing
if these solutions meet all basic physical principles such as conservation laws
or energy balance. Thus, in the present situation, a first issue to investigate is
to ascertain if a generalized solution satisfies the energy equation. In the case
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when the velocity at the boundary vanishes identically1 this equation in its
classical formulation reads:

2

∫

Ω

D(v) : D(v) − v∞ ·
∫

∂Ω

T (v, p) · n+ R
∫

Ω

f · (v + v∞) = 0 (X.2.1)

where D and T are stretching and stress tensors defined in (IV.8.6). The
meaning of (X.2.1) is quite clear: it represents the balance between the dissi-
pation due to the viscosity, the power of external body force and, for v∞ 6= 0,
the total force exerted by the liquid on the bodies. If Ω is bounded, the proof
of the energy equation (i.e., the relation formally obtained from (X.2.1) with
v∞ = 0) depends solely on the regularity in Ω of the solution and one readily
shows that, if f has a mild degree of smoothness, every corresponding gen-
eralized solution satisfies the energy equation; see Exercise IX.3.1. However,
if Ω is an exterior domain, the proof of (X.2.1) demands not only certain
regularity in ΩR, for all R > δ(Ωc), but it also depends in an essential way on
the asymptotic properties of the solution. To see this, assume v, p is a classical
solution to (X.0.8), (X.0.4) with v∗ ≡ 0. Multiplying (X.0.8) by u := v+v∞,
integrating by parts over ΩR and taking into account (X.0.8)2, we deduce

2

∫

ΩR

D(v) : D(v) −v∞ ·
∫

∂Ω

T (v, p) ·n+ R
∫

ΩR

f · (v + v∞)

= R
∫

∂BR

u · T (v, p) · n− R
2

∫

∂BR

u2v · n.
(X.2.2)

If v is a generalized solution,

v ∈ D1,2(Ω) . (X.2.3)

So, if f is “well-behaved” at infinity, letting R → ∞ into (X.2.2), the left-
hand side of (X.2.2) tends to the left-hand side of (X.2.1); nevertheless the
sole condition (X.2.3), together with condition (X.1.6) on the pressure,2 is not
enough to ensure that the surface integral on the right-hand side of (X.2.2)
tends to zero as R → ∞, even along a sequence. Thus, we are not able to
conclude the validity of (X.2.1), unless we have further information on the
behavior of v at large distances.

Another (equivalent) way of looking at the problem is the following one.
Assume, for simplicity, v∗ ≡ v∞ ≡ 0. Then, taking into account that |v|21,2 =
2‖D(v)‖2

2, in our standard notation, the energy equation (X.2.1) becomes

|v|21,2 = −R [f , v] . (X.2.4)

1 This assumption is made here for the sake of simplicity. The case v∗ 6= 0 will be
considered later in this section.

2 Recall that, by Remark X.1.3, (X.1.6) is sharp for a generalized solution. More-
over, (X.1.6) holds if Ω ⊂ R

3, otherwise, if Ω ⊂ R
2, we do not even know if

p ∈ Lq(ΩR) for some q ∈ [1,∞).
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From the definition of generalized solution we know that

(∇v,∇ϕ) + R(v · ∇v,ϕ) = −R [f ,ϕ] (X.2.5)

for all ϕ ∈ D(Ω). The natural step would then be to put v into (X.2.5) in
place of ϕ. However, unlike the case where Ω is bounded (see Exercise IX.3.1),
we are not allowed a priori to do this, since v does not have the appropriate
summability properties at large distances. This fact is intimately related to
the continuity properties of the trilinear form

a(u, v,w) ≡ (u · ∇v,w) (X.2.6)

which, for an arbitrary domain Ω are specified in the following.

Lemma X.2.1 Let Ω be an arbitrary domain in Rn, n ≥ 2. Then the trilinear
form (X.2.6) is continuous in the space

Lq(Ω) × Ḋ1,r(Ω) × Ls(Ω), q−1 + r−1 + s−1 = 1.

If n ≥ 3, it is also continuous in the space

D1,2
0 (Ω) × Ḋ1,2(Ω) × Ln(Ω).

Proof. The first assertion is a trivial consequence of the Hölder inequality,
while the second is proved by choosing q = 2n/(n − 2), r = n and using the
Sobolev inequality (II.3.7):

‖u‖2n/(n−2) ≤
q(n− 1)

2(n− q)
√
n
|u|1,2.

ut

In view of this lemma we can thus formally3 replace ϕ in (X.2.5) with the
generalized solution v if, for instance, v ∈ L4(Ω) (by choosing q = s = 4, r =
2) or, if n ≥ 3, v ∈ Ln(Ω).

The reasonings just developed explain why, in the case of an exterior do-
main Ω, a solution should still be considered a “generalized” solution even
though it is smooth in ΩR for any R > δ(Ωc). Actually, unlike the case where
Ω is bounded, where the word “generalized” expresses only a possible lack
of differentiability, for Ω exterior it is also to mean the possibility that the
solution need not be as “regular” in the neighborhood of infinity as expected
from the physical (and intuitive) point of view.

Our objective in this section is to investigate what regularity must be
imposed on the velocity field at large distances in order that it satisfies equa-
tion (X.2.1). Successively (cf. Section X.7 and Section X.9), we shall analyze

3 We have, in fact, to ascertain that v can be suitably approximated by functions
from D(Ω).
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whether such a regularity can be deduced by making suitable assumptions on
the data (on f in particular). Specifically, when the region of flow is three-
dimensional, we shall prove that if f enjoys certain summability conditions,
every generalized solution corresponding to suitable f and v∞ 6= 0 obeys the
energy equation. If v∞ = 0, however, we are able to show the same result
only for small Reynolds number R. Thus, if v∞ = 0 the validity of (X.2.1) for
arbitrary R remains open. If the region of flow is two-dimensional the picture
is even less clear and will be treated in detail in Chapter XI. Specifically, for
plane flows one shows that, if f is suitable and v∞ 6= 0, every generalized so-
lution satisfying a mild extra property obeys (X.2.1) (even though existence
is only known for small R) while, if v∞ = 0, the question remains entirely
open.

Before performing the above investigation, however, there is a formal as-
pect that must be fixed. If v∞ 6= 0 and v merely belongs to W 1,2

loc (ΩR) for all
R > δ(Ωc), as prescribed by Definition X.1.1, the second integral in (X.2.1)
need not be meaningful. Thus, in such a case, we have to introduce a suitable
generalization of (X.2.1). Let us denote by a any vector field in Ω verifying

(i) a ∈ C∞(Ω);

(ii) ∇ · a = 0;

(iii) a = 0 in Ωd and a + v∞ ≡ 0 in Ω2d for some d > δ(Ωc).

(X.2.7)

For instance, we may take a as in (V.2.5). If v∞ = 0 we take a ≡ 0. The
field a will be called an extension of v∞. We then give the following.

Definition X.2.1. Let v be a generalized solution to (X.0.8), (X.0.4) corre-
sponding to v∗ ≡ 0 and let a be an extension of v∞. The relation

|v|21,2 + R[f , v+ a] = (∇v,∇a) −R(v · ∇a, v + a) (X.2.8)

is called generalized energy equation.

To justify the preceding definition, we notice that, if v∞ = 0, (X.2.8)
coincides with (X.2.1), while it reduces to (X.2.1) for v∞ 6= 0, provided Ω, f ,
v, and p are sufficiently smooth. For example, if Ω is of class C1 and

v ∈ C1(ΩR) ∩ C2(ΩR), p ∈ C(ΩR) ∩ C1(ΩR), f ∈ C(Ω),

multiplying (X.0.8) by a + v∞, integrating by parts over ΩR and observing
that supp (∇a) ⊂ Ωd,2d it follows that

∫

∂Ω

n·T (v, p)·v∞ = R[f ,a+v∞]+2(D(v),D(a))−R(v·∇a, v−a). (X.2.9)

Taking into account that4

4 Let u1,u2 ∈ D1,2(Ω), with u1−u2 ∈ D1,2
0 (Ω). Then, the following identity holds
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|v|21,2 − (∇v,∇a) = 2[‖D(v)‖2
2 − (D(v),D(a))],

(X.2.9) along with (X.2.8), implies (X.2.1).

Exercise X.2.1 The validity of (X.2.9) can be shown under very mild regularity

assumptions on f . For example, suppose that, for some R > δ(Ωc), f ∈ Lr(ΩR),

where r is arbitrary in (1,∞). Assume, further, v∗ ≡ 0 and Ω is of class C2. Show

that every generalized solution v corresponding to these data satisfies (X.2.9) with

p pressure field associated to v by Lemma X.1.1. Hint: Use Theorem X.1.1 and

Exercise II.4.3.

Remark X.2.1 In Section X.4 we shall prove that, regardless of the dimen-
sion n ≥ 2, for any f ∈ D−1,2

0 (Ω) there exists a corresponding generalized
solution that (for v∗ ≡ 0) satisfies the generalized energy inequality, that is, re-
lation (X.2.8) with “=” replaced by “ ≤ ”. However, the case Ω = R2 appears
to be open; see Remark X.4.4 �

The main results of this section are contained in Theorem X.2.1 and The-
orem X.2.2, which we are now going to prove.

Theorem X.2.1 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) in an exterior locally Lipschitz domain of Rn, n = 2, 3,
corresponding to f ∈ D−1,2

0 (Ω), v∗ = 0 and to some v∞ ∈ Rn. Then if
v∞ = 0, a sufficient condition in order that v satisfies the generalized energy
equation (X.2.8) with a ≡ 0 is

v ∈ L4(Ω) (X.2.10)

while, if v∞ 6= 0, a sufficient condition in order that v satisfies (X.2.8) for any
extension a of v∞ is

v + v∞ ∈ L4(Ω) ∩ Lq(Ω)

v∞ · ∇v ∈ Lq′
(Ω)

(X.2.11)

for some q ∈ (1,∞), q′ = q/(q − 1).

Proof. Let us first consider the case where v∞ = 0. By Definition X.1.1 and
Remark XI.1.1 we have

v ∈ D̂1,2
0 (Ω)

and, since Ω is locally Lipschitz, by the results of Section III.5,

v ∈ D1,2
0 (Ω).

|u1|21,2 − (∇u1,∇u2) = 2[‖D(u1)‖2
2 − (D(u1),D(u2))] .

In fact, let {wk} ⊂ D(Ω) be such that |wk − (u1 − u2)|1,2 → 0 as k → ∞.
Multiplying both sides of the identity 2∇ ·D(wk) = ∆wk by u1, integrating by
parts over Ω and letting k → ∞ proves the result.
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Denote by {vk} ⊂ D(Ω) a sequence of functions converging to v in the space
D1,2

0 (Ω) ∩ L4(Ω). In view of (X.2.10) and Theorem III.6.2 this sequence cer-
tainly exists. Replacing ϕ with vk into (X.1.2) furnishes

(∇v,∇vk) + R(v · ∇v, vk) = −R[f , vk]. (X.2.12)

Clearly, as k → ∞,
(∇v,∇vk) → |v|21,2

[f , vk] → [f , v] .
(X.2.13)

Furthermore, by Lemma X.2.1, we have

|(v · ∇v, vk) − (v · ∇v, v)| ≤ ‖v‖4|v|1,2‖v − vk‖4

and so, in virtue of (X.2.10),

(v · ∇v, vk) → (v · ∇v, v). (X.2.14)

However, it is immediately seen that

(v · ∇v, v) = 0. (X.2.15)

Actually, (X.2.15) is a consequence of Lemma X.2.1 and the fact that, by
Lemma IX.2.1,

(vk · ∇vk, vk) = 0, for all k ∈ N.

The proof of the theorem when v∞ = 0 then follows from (X.2.12)–(X.2.15).
Consider next the case where v∞ 6= 0. To this end, let a be any extension of
v∞ and set

u = v + a.

Since Ω is locally Lipschitz, by (i)-(iv) of Definition X.1.1, Theorem II.6.3,
and the results of Section III.5 we obtain, as before,

u ∈ D1,2
0 (Ω). (X.2.16)

Furthermore, from (X.2.11)1 we also have

u ∈ L4(Ω) ∩ Lq(Ω). (X.2.17)

In view of (X.2.16) and (X.2.17), Theorem III.6.2 implies the existence of a
sequence {uk} ⊂ D(Ω) converging to u in the space

D1,2
0 (Ω) ∩ L4(Ω) ∩ Lq(Ω).

Setting ϕ = uk into (X.1.2) we thus find

(∇v,∇uk)+R((v+v∞) ·∇v,uk)−R(v∞ ·∇v,uk) = −R [f ,uk] . (X.2.18)
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Taking into account Lemma X.2.1, (X.2.11), and (X.2.17), we recover, in the
limit k → ∞

(∇v,∇uk) → (∇v,∇u)

((v + v∞) · ∇v,uk) → ((v + v∞) · ∇v,u)

(v∞ · ∇v,uk) → (v∞ · ∇v,u).

(X.2.19)

Moreover, since for all k ∈ N

((v + v∞) · ∇uk,uk) = 0,

we have, again by Lemma X.2.1,

((v + v∞) · ∇u,u) = 0

and (X.2.18), (X.2.19) furnish

|v|21,2 + R [f , v − a] = (∇v,∇a) −R (v · ∇a, v − a) −R (v∞ · ∇u,u) .
(X.2.20)

We have now to show that the last term on the right-hand side of (X.2.20)
vanishes identically. First of all, we observe that it is clearly well-defined since,
by (X.2.11)2 and (X.2.17) it follows that

v∞ · ∇u · u ∈ L1(Ω). (X.2.21)

Next, taking v∞ = e1, for ρ > δ(Ωc) we let {Ck,ρ}, k ∈ N, denote a family of
cylinder-like domains of the form

Ck,ρ = {x ∈ Ω : |x′| < k, |x1| < ρ} ,

where x′ = (x2, . . . , xn). For sufficiently large k and ρ it is Ck,ρ ⊃ Ωc and,
correspondingly, we find

∫

Ck,ρ

v∞ · ∇u · u =

∫

Ck,ρ

∂u

∂x1
· u =

∫

Σ1(k,ρ)

u2 −
∫

Σ2(k,ρ)

u2, (X.2.22)

where
Σ1(k, ρ) = {x ∈ R : x1 = ρ, |x′| ≤ k} ,
Σ2(k, ρ) = {x ∈ R : x1 = −ρ, |x′| ≤ k} .

By (X.2.11)1, it is easy to show that, for each fixed k,

lim
ρ→∞

∫

Σi(k,ρ)

u2 = 0, i = 1, 2. (X.2.23)

In fact, setting xρ = (ρ, 0, . . . , 0), by the boundary inequality (II.4.1), it follows
that
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(∫

Σi(k,ρ)

u2

)1/2

≤ c1
(
‖u‖2,Bk(xρ) + ‖∇u‖2,Bk(xρ)

)

≤ c2
(
‖u‖4,Bk(xρ) + ‖∇u‖2,Bk(xρ)

)

with ci = ci(n, k), and so (X.2.23) with i = 1 is recovered. By an analogous
argument one shows (X.2.23) with i = 2. Putting

Ck = {x ∈ Ω : |x′| < k, x1 ∈ R} ,
from (X.2.22), and (X.2.23) we find

∫

Ck

v∞ · ∇u · u = 0 (X.2.24)

for all sufficiently large k. On the other hand, by (X.2.21),

lim
k→∞

∫

Ck

v∞ · ∇u ·u =

∫

Ω

v∞ · ∇u · u

and so, by (X.2.24),
(v∞ · ∇u,u) = 0,

which completes the proof of the theorem. ut
Remark X.2.2 The theorem continues to hold under different assumptions
on f . In fact, f is required to satisfy

[f , vk − a] → [f, v − a].

Therefore, one can take
f ∈ L4/3(Ω), (X.2.25)

or else, if v∞ 6= 0,
f ∈ Lq′

(Ω).

�

Remark X.2.3 If n = 3, Ω is of class C2, and f satisfies (X.2.25), then
condition (X.2.10) alone is enough to ensure the validity of the energy equality
also in the case v∞ 6= 0. In fact, under the stated assumptions on v and f ,
by the Hölder inequality we find [(v + v∞) · ∇v + f ] ∈ L4/3(Ω). Therefore,
from Theorem VII.7.1 and Theorem VII.6.2, it easily follows, in particular,
that v∞ · ∇v ∈ L4/3(Ω), and condition (X.2.11) remains satisfied with q = 4.

�

Remark X.2.4 Theorem X.2.1 continues to hold, as it stands, in dimension
n ≥ 4, the proof remaining completely unchanged. In this respect, it is in-
teresting to observe that if n = 4, from Theorem II.6.1 it follows that every
generalized solution corresponding to v∗ ≡ v∞ ≡ 0 satisfies (X.2.10). We may
then conclude that in dimension 4 any generalized solution corresponding to
v∗ ≡ v∞ ≡ 0 satisfies the energy equality. Such a result is not known in
dimension n = 3. �
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Theorem X.2.1 can be extended, with no essential technical changes, to the
case when the velocity v∗ at the boundary is not identically zero. To this end,
we need a suitable extension of both v∗ and v∞. Following what we already
did in the proof of Theorem V.2.1, for Ω locally Lipschitz and

v∗ ∈W 1/2,2(∂Ω),

we may take
A = V + Φ∇E − a. (X.2.26)

Here V ∈ W 1,2(Ω) is an extension of v∗ − Φ∇E vanishing in Ωρ for some
ρ > δ(Ωc), Φ is the flux of v∗ through ∂Ω, and a is an extension of v∞
in the sense of (X.2.7). Taking into account the elementary properties of the
fundamental solution of Laplace’s equation, from (X.2.26) it is apparent that

(i) |A(x) + v∞| ≤ c|Φ| |x|−n+1 in Ωρ, c = c(n);

(ii) A ∈ D1,s(Ωρ) ∩W 1,2(Ωρ) ∩ C∞(Ωρ), for all s > 1;

(iii)A = v∗ at ∂Ω;

(iv) ∇ ·A = 0 in Ω.

(X.2.27)

In particular, if Φ = 0, A + v∞ is of bounded support in Ω. Any field A
satisfying conditions (i)-(iv) in (X.2.27) will be called an extension of v∗ and
v∞. Thus, generalizing Definition X.2.1, we give the following definition.

Definition X.2.2. Let v be a generalized solution to (X.0.8), (X.0.4) and let
A be an extension of v∗ and v∞. The relation

|v|21,2 + R[f , v−A] = (∇v,∇A) −R(v · ∇A, v−A) (X.2.28)

is called the generalized energy equation.

As expected, under suitable regularity assumptions on the data and v,
identity (X.2.28) reduces to the energy equation in its classical formulation,
cf. Exercise X.2.2.

By a procedure completely analogous to that used in the proof of Theorem
X.2.1, one can show the following result.

Theorem X.2.2 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) in an exterior locally Lipschitz domain of Rn, n = 2, 3,
corresponding to

f ∈ D−1,2
0 (Ω), v∗ ∈ W 1/2,2(∂Ω), v∞ ∈ Rn.

Then, if v∞ = 0, a sufficient condition in order that v satisfies the generalized
energy equation (X.2.28) for any extension A of v∗ and v∞ is that (X.2.10)
holds. Likewise, if v∞ 6= 0, a sufficient condition in order that v satisfies
(X.2.28) for any extension A of v∗ and v∞ is that (X.2.11) holds for some
q > n/(n− 1).
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Remark X.2.5 The restriction on q (not needed in Theorem X.2.1) is due
to the fact that, if Φ 6= 0, the field A belongs to Lq(Ωρ) for q > n/(n − 1)
only. However, if Φ = 0, A can be taken of bounded support and we may
assume q ∈ (1,∞). �

Remark X.2.6 Remark X.2.2 equally applies to Theorem X.2.2. The same
holds for Remark X.2.3, provided we assume v∗ ∈W 5/4,4/3(∂Ω). �

Remark X.2.7 Theorem X.2.2 continues to hold in dimension n ≥ 4. �

Exercise X.2.2 Let f , v, and Ω satisfy the assumptions of Exercise X.2.1 and
Theorem X.2.2. Suppose, further, that

v∗ ∈ W 2−1/r,r (∂Ω),

with r as in Exercise X.2.1. Then, if Φ = 0, show the identity

Z

∂Ω

n ·T (v, p) · (v∗ + v∞) − R
2

Z

∂Ω

(v∗ + v∞)2v∗ · n

= R[f ,A + v∞] + 2(D(v),D(A)) −R(v · ∇A,v −A)

with A an extension of v∗ and v∞. If Φ 6= 0, show the validity of the same identity
under the additional assumption f ∈ D−1,3

0 (Ω). Thus, since5

|v|21,2 − (∇v,∇A) = 2[‖D(v)‖2
2 − (D(v),D(A))]

under the stated assumptions, in view of Theorem X.2.2, v obeys the energy equation

2

Z

Ω

D(v) : D(v)−
Z

∂Ω

[(v∞+v∗) ·T − R
2

(v∗ +v∞)2v∗] ·n+R
Z

Ω

f · (v+v∞) = 0.

(X.2.29)

X.3 Some Uniqueness Results

The aim of this section is to determine conditions under which a weak solu-
tion v is unique. The problem offers more or less the same type of technical
difficulties encountered in the preceding section, as we are about to explain.
Let us denote by Cv the class of weak solutions achieving the same data as
v. Then, as we shall prove, in order for a weak solution to be unique in Cv,
in addition to the (expected) restriction on the “size” of v in suitable norms
of the type made in Theorem IX.2.1 for Ω bounded, we have to require on
v some extra conditions at large spatial distances that a priori do not follow
directly from Definition X.1.1. Thus, it becomes necessary to ascertain if such
conditions are met by prescribing the data appropriately. This will be done
in Section X.7 and Section X.9. It should be also said that, in fact, we are

5 The proof of this identity is similar to that given in footnote 4 in this section.
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able to prove uniqueness only in the a priori smaller class C′
v constituted by

those elements of Cv that satisfy the energy inequality (cf. (X.3.1)) and, if
v∞ 6= 0, verify further summability conditions at large distances (cf. (X.3.2)).
Nevertheless, in Section X.4 we will prove that C′

v is certainly nonempty.
To accomplish our objective, however, we need to employ a method that

is a bit different from that adopted for flows in bounded domains. This is
because the use of such a method would lead to a uniqueness result that does
not impose extra conditions directly on v but, rather, on v − w, w ∈ Cv, in
contrast to what stated previously. To see why this happens, we recall that
the starting point of the method is the identity (IX.2.5) which, according to
the nondimensionalization used in the present chapter, now reads

R−1(∇u,∇ϕ) + (u · ∇u,ϕ) + (u · ∇v,ϕ) + (v · ∇u,ϕ) = 0.

The next step is to substitute u for ϕ into this relation and this can be done
via the usual approximating procedure that employs the continuity of the
trilinear form (X.2.6). According to Lemma X.2.1, we must then require some
extra conditions on u. However, u is the difference of two generalized solutions
and the method would lead to a uniqueness result different from that stated
at the beginning of the current section.

The method we shall adopt here is due to Galdi (1992a, 1992c) and relies
upon an idea introduced by Leray (1934, §32) in a completely different context,
namely, that of local regularity of weak solutions to the initial value problem
for the Navier–Stokes equations, and successively generalized by Serrin and
Sather; cf. Serrin (1963, Theorem 6), Sather (1963, Theorem 5.1). In the case
of steady flows in exterior domains with v∗ ≡ v∞ ≡ 0, the method was first
considered by Kozono & Sohr (1993).

Before proving the main results, we need to define the class C′
v properly.

Definition X.3.1 C′
v denotes the subclass of Cv constituted by those gener-

alized solutions w satisfying the generalized energy inequality

|w|21,2 + R[f ,w−A] ≤ (∇w,∇A) −R(w · ∇A,w−A) (X.3.1)

with A an extension of v∗ and v∞ in the sense of Definition X.2.2. Moreover,
if v∞ 6= 0, we denote by C′

v,q the subclass of C′
v of functions w such that

w + v∞ ∈ Lq(Ω)

v∞ · ∇w ∈ Lq′
(Ω)

(X.3.2)

for some q > n/(n− 1), q′ = q/(q − 1).

Remark X.3.1 The condition q > n/(n− 1) is required only because, if the
flux Φ of v∗ through ∂Ω is nonzero, A+v∞ is not summable at large distances
for q ≤ n/(n− 1) so that the term

(w · ∇A,w−A)
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can be meaningless. On the other hand, if Φ = 0 we can take A − v∞ of
bounded support in Ω (see Definition X.2.2) so that the restriction q > n/(n−
1) can be dropped. �

We are now in a position to prove the following.

Theorem X.3.1 Let Ω be a locally Lipschitz exterior domain of R3. Assume
v is a generalized solution to the Navier–Stokes problem (X.0.8), (X.0.4) cor-
responding to data

f ∈ D−1,2
0 (Ω), v∗ ∈ W 1/2,2(∂Ω), v∞ ∈ R3,

and such that
v + v∞ ∈ L3(Ω). (X.3.3)

If v∞ 6= 0, suppose, further, that

v + v∞ ∈ Lq(Ω), v∞ · ∇v ∈ Lq′
(Ω) (X.3.4)

for some q > 3/2, q′ = q/(q − 1). Then, if

‖v + v∞‖3 <

√
3

2R , (X.3.5)

v is the unique solution in the class C′
v if v∞ = 0 and in the class C′

v,q if
v∞ 6= 0.

Proof. Let w be any element from C′
v or C′

v,q, according to whether v∞ is zero
or not. The field w−A has zero trace at the boundary, is divergence-free and
vanishes at infinity in the sense of Definition X.1.1(iv). Therefore, from the
results of Theorem III.5.1, it follows that

w −A ∈ D1,2
0 (Ω). (X.3.6)

Furthermore, if v∞ 6= 0, from (X.3.2) and (X.2.27)

w −A ∈ Lq(Ω). (X.3.7)

By (X.3.6), (X.3.7), and Theorem III.6.2 we may find a sequence {ϕk} ⊂ D(Ω)
converging to w−A in D1,2

0 (Ω)∩Lq(Ω). Replacing ϕk for ϕ into (X.1.2) and
reasoning as in the proof of Theorem X.2.1 (with slight difference in details)
we deduce that

(∇v,∇w) + R[f ,w −A] − (∇v,∇A) + R(v · ∇v,w −A) = 0. (X.3.8)

Likewise, observing that v−A has the same summability properties of w−A
and that, in addition, by (X.3.3)

v −A ∈ L3(Ω),
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one shows with no difficulty that

(∇w,∇v) + R[f , v −A] − (∇w,∇A) + R(w · ∇w, v −A) = 0. (X.3.9)

Finally, noticing that, by Theorem II.6.1,

v + v∞ ∈ L6(Ω),

from (X.3.3) we have by interpolation (cf. (II.2.10))

v + v∞ ∈ L4(Ω),

and by Theorem X.2.2 we conclude

|v|21,2 + R[f , v −A] = (∇v,∇A) −R(v · ∇A, v −A). (X.3.10)

Addition of (X.3.8) and (X.3.9) yields

−2(∇w,∇v)−R(v · ∇v,w −A) −R(w · ∇w, v−A) + (∇v,∇A)

+(∇w,∇A) −R[f , v−A] −R[f ,w −A] = 0.
(X.3.11)

Summing side by side (X.3.1), (X.3.10), and (X.3.11) we deduce

1

R|u|21,2 ≤ (w ·∇w, v−A)+(v ·∇v,w−A)−(w ·∇A,w−A)−(v ·∇A, v−A)

with u = w−v. Adding and subtracting to the right-hand side of this relation
the quantity

(v · ∇w, v−A) + (u · ∇v, v −A)

(notice that each term in the sum is well-defined), we obtain

1

R|u|21,2 ≤ (u · ∇u, v + v∞) − (u · ∇u, v∞ +A)

+(u · ∇v, v −A) + (v · ∇w, v −A) − (v · ∇A, v −A)

−(w · ∇A,w−A) + (v · ∇v,w −A).

Since

−(u · ∇u, v∞ +A) + (u · ∇v, v−A) = (u · ∇v, v+v∞)− (u ·∇w, v∞ +A),

it follows that

1

R|u|21,2 ≤ (u · ∇u, v + v∞) + (u · ∇v, v + v∞)

−(u · ∇w, v∞ +A) + (v · ∇(w−A), v −A)

−(w · ∇A,w−A) + (v · ∇v,w−A).

(X.3.12)

The following identities hold
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(i) (u · ∇v, v + v∞) = 0;
(ii) (v · ∇v,w−A) = −(v · ∇(w−A), v + v∞);
(iii) (w · ∇A,w−A) = −(w · ∇(w −A),A+ v∞);
(iv) (u · ∇w, v∞ +A) = (u · ∇(w −A), v∞ +A).

To show (i), we let {uk} ⊂ D(Ω) be a sequence approximating u in D1,2
0 (Ω).

Set

Ωk = supp (uk)

and denote by {vm} ⊂ C∞
0 (Ωk) a sequence converging, for each fixed k, to

v − v∞ in W 1,2(Ωk). Clearly, for all m ∈ N we have

(uk · ∇vm, vm) = 1
2(uk,∇v2

m) = 0

and so, passing to the limit m→ ∞, by Lemma X.2.1,

(uk · ∇v, v+ v∞) = (uk · ∇(v + v∞), v + v∞) = 0, for all k ∈ N.

This relation, along with Lemma X.2.1, implies (i). In a similar way, one
proves (ii) and (iii). Finally, consider the identity

(u · ∇w, v∞ +A) = (u · ∇(w −A), v∞ +A) + (u · ∇(A+ v∞),A+ v∞).

By a reasoning completely analogous to that used before, one shows

(u · ∇(A + v∞),A+ v∞) = 0,

so that also (iv) follows. Replacing (i)-(iv) in (X.3.12) we obtain

1

R|u|21,2 ≤ (u · ∇u, v+ v∞) − (u · ∇(w −A), v∞ +A)

−(v · ∇(w−A), v∞ +A) + (w · ∇(w −A), v∞ +A)

= (u · ∇u, v+ v∞).

(X.3.13)

From Lemma X.2.1 it follows that

|(u · ∇u, v + v∞)| ≤ 2√
3
|u|21,2‖v + v∞‖3,

which, once substituted into (X.3.13), furnishes

|u|21,2(R−1 − 2(3)−1/2‖v + v∞‖3) ≤ 0. (X.3.14)

Thus, if (X.3.5) holds, (X.3.14) implies u(x) = 0 for a.a. x ∈ Ω, and the
theorem is proved. ut

Remark X.3.2 Theorem X.2.1 is easily extended to any space dimension
n ≥ 4. Actually, it is enough to replace (X.3.3) with
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v + v∞ ∈ Ln(Ω), (X.3.15)

(X.3.5) with

‖v + v∞‖n <
(n− 2)

√
n

R(n− 1)
, (X.3.16)

and the condition q > 3/2 in (X.3.4) by q > n/(n − 1). It is interesting to
observe that if n = 4, by Theorem II.6.1, every generalized solution satisfies
(X.3.15) and so, if v∞ = 0, every generalized solution v satisfying (X.3.16) is
unique in the class C′

v. For the case of plane motions, we refer the reader to
Section XII.2. �

Sometimes, it is convenient to formulate uniqueness theorems with sum-
mability assumptions replaced by pointwise bounds. Actually, such a type
of result is of great relevance when investigating the asymptotic structure of
generalized solutions when v∞ = 0. Our goal is then to show a uniqueness
result in such a direction. For the applications we have in mind, it will be
enough to prove this when v∗ ≡ v∞ ≡ 0. Nevertheless, the result admits a
straightforward extension to the more general case of nonzero v∗ and v∞,
which we leave to the reader as an interesting exercise.

Theorem X.3.2 Let Ω be as in Theorem X.3.1 and let v be a generalized
solution to the Navier–Stokes problem (X.0.8), (X.0.4) corresponding to the
data

f ∈ D−1,2
0 (Ω) , v∗ ≡ v∞ ≡ 0,

and such that
|x||v(x)| ≤M, (X.3.17)

for a.a. x ∈ Ω and some M > 0. Then, if

M < (2R)−1 (X.3.18)

v is the unique solution in the class C′
v.

Proof. Let w be any element from C′
v. By Definition X.1.1 and the regularity

of Ω,
w ∈ D1,2

0 (Ω).

It is easy to show the validity of (X.3.8) with A ≡ 0. In fact, let {ϕk} ⊂ D(Ω)
be a sequence converging to w in D1,2

0 (Ω) and set ϕ = ϕk into (X.1.2).
Evidently, as k → ∞,

(∇v,∇ϕk) → (∇v,∇w)

[f ,ϕk] → [f ,w] .
(X.3.19)

Furthermore, from (X.3.17) and Theorem II.6.1 we recover

|(v · ∇v,ϕk −w)| ≤M |v|1,2‖(ϕk −w)/|x|‖2 ≤ c|v|1,2|ϕk −w|1,2
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and so
(v · ∇v,ϕk) → (v · ∇v,w).

Thus, from this latter relation, (X.1.2) with ϕ ≡ ϕk, and (X.3.19), we then
arrive at the identity

(∇v,∇w) + R [f ,w] + R(v · ∇v,w) = 0. (X.3.20)

We shall next show the following relation:

(∇w,∇v) + R [f , v] + R(w · ∇w, v) = 0. (X.3.21)

To this end we notice that, by Lemma X.1.1, for all ψ ∈ C∞
0 (Ω),

(∇w,∇ψ) + R [f ,ψ] + R(w · ∇w,ψ) = (p,∇ · ψ) (X.3.22)

where p ∈ L2(ΩR), any R > δ(Ωc), is the pressure field associated to w. By
this and Lemma IX.1.1, (X.3.22) continues to hold for every ψ ∈ W 1,2

0 (ΩR).
Let ψR(x) be a smooth “cut-off” function such that ψR(x) = 1 if |x| ≤ R,
ψR(x) = 0 if |x| ≥ 2R and, furthermore,

|∇ψR(x)| ≤ CR−1

for some positive C independent of R and x. Taking

ψ = ψRv,

we find

(ψR∇w,∇v)+(∇w, v⊗∇ψR)+R(w ·∇w, ψRv)+R [f , ψRv] = (p,∇ψR ·v)
(X.3.23)

where we have used the condition ∇ · v = 0 in Ω. Recalling the properties of
ψR we have

|(∇w, v ⊗∇ψR)| ≤ c |w|1,2,ΩR,2R‖v/|x|‖2,ΩR,2R

| [f , (ψR − 1)v] | ≤ |f |−1,2|(ψR − 1)v|1,2

≤ c |f|−1,2

(
‖(ψR − 1)∇v‖2 + ‖v/|x|‖2,ΩR,2R

)

|((w · ∇w, (ψR − 1)v)| ≤ M‖(ψR − 1)∇w‖2‖w/|x|‖2.

Employing these inequalities along with Theorem II.6.1 into (X.3.23) and then
letting R→ ∞ furnishes

(∇w,∇v) + R [f , v] + R(w · ∇w, v) = lim
R→∞

(p,∇ψR · v). (X.3.24)

To show (X.3.21), it remains to show that the limit on the right-hand side
of (X.3.24) is zero. To this end, we recall that, from Lemma X.1.1 and the
assumption on f , we have
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p = p1 + p2 , p1 ∈ L3(Ωρ) , p2 ∈ L2(Ωρ) , ρ > δ(Ωc) . (X.3.25)

Thus, from the Hölder inequality and (II.6.48), (II.6.49) we have

(R) ≡ |(p,∇ψR · v) ≤ ‖p1‖3,ΩR,2R‖∇ψR · v‖3/2,ΩR,2R

+‖p2‖2,ΩR,2R‖∇ψR · v‖2,ΩR,2R

≤ c


‖p1‖3,ΩR,2R

(∫ 2R

R

r−1dr

)2/3

+ ‖p2‖2,ΩR,2R


 |v|1,2.

However, from (X.3.25) it follows that

‖p1‖3,ΩR,2R + ‖p2‖2,ΩR,2R → 0 as R→ ∞

and so
lim

R→∞
(R) = 0.

The validity of (X.3.21) is thus established. We next observe that by (X.3.17)
(and (i) of Definition X.1.1, Lemma II.6.1, and Theorem II.3.4 if Ω = R3) it
follows that

v ∈ L4(Ω) (X.3.26)

so that, in view of Theorem X.2.1, v obeys the energy equality

|v|21,2 = −R [f , v] . (X.3.27)

On the other hand, by assumption, w obeys the energy inequality

|w|21,2 ≤ −R [f ,w] . (X.3.28)

Adding the four displayed equations (X.3.20), (X.3.21), (X.3.27), and (X.3.28)
yields

R−1|u|21,2 ≤ (v · ∇v,w) + (w · ∇w, v) (X.3.29)

with u = w − v. The following identities hold:

(i) (v · ∇v,w) = −(v · ∇w, v);
(ii) (B · ∇v, v) = 0, B = v,w.

To show (i), let {wk} ⊂ D(Ω) be a sequence converging to w in D1,2
0 (Ω).

For fixed k ∈ N, we choose ρ > δ(Ωc) with Ωρ ⊃ supp (wk) and denote by
{vm} ⊂ C∞

0 (Ωρ) a sequence converging to v in W 1,2(Ωρ). Clearly,

(vm · ∇vm,wk) = −(vm · ∇wk, vm) + (∇ · vm,wk · vm).

Letting m→ ∞ into this identity, with the aid of Lemma IX.1.1 and the fact
that, as m→ ∞,

‖∇ · vm‖2,Ωρ → 0,
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we recover
(v · ∇v,wk) = −(v · ∇wk, v) (X.3.30)

for all k ∈ N. Using (X.3.17) and Theorem II.6.1 it follows that

|(v · ∇v,wk −w)| ≤M |v|1,2‖(wk −w)/|x|‖2 ≤ c|v|1,2|wk −w|1,2 (X.3.31)

while Lemma X.2.1 furnishes

|(v · ∇(wk −w), v)| ≤ ‖v‖2
4|wk −w|1,2. (X.3.32)

Recalling (X.3.26), we pass to the limit k → ∞ in (X.3.30) and use (X.3.31),
(X.3.32) to show the validity of (i). The proof of (ii) is analogous, and therefore
it will be omitted. In view of (i) and (ii) from (X.3.29) we have

R−1|u|21,2 ≤ −(v · ∇w, v) + (w · ∇w, v) + (v · ∇v, v) − (w · ∇v, v)
= (u · ∇u, v).

(X.3.33)
However, by assumption and (II.6.10),

|(u · ∇u, v)| ≤M‖u/|x|‖2|u|1,2 ≤ 2M |u|21,2

which, once replaced into (X.3.33), furnishes

|u|1,2(R−1 − 2M) ≤ 0.

By (X.3.18) this inequality implies u(x) = 0 for a.a. x ∈ Ω, and the theorem
is proved. ut

Remark X.3.3 Theorem X.3.2 continues to hold in any dimension n ≥ 4,
provided we replace the bound on M given in (X.3.18) with a suitable one
depending on n. This generalization has been considered by Miyakawa (1995).

�

X.4 Existence of Generalized Solutions

As in the case of a bounded domain, the fundamental contribution to the
existence of steady-state solutions to the Navier–Stokes problem in exterior
domains is due to J.Leray (1933, Chapitre III). Again, the leading idea is to
employ the following a priori estimate for solutions to (X.0.3), (X.0.4) with
v∗ = 0: ∫

Ω

∇v : ∇v ≤M (X.4.1)

where M depends only on f , Ω and ν . Actually, for any R > δ(Ωc), Leray
looked for a solution to (X.0.3), (X.0.4) in ΩR with v∗ = 0 at ∂Ω and v = v∞
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at ∂BR and he was able to prove the existence of a solution vR, pR such that
the Dirichlet integral admits a uniform bound

∫

ΩR

∇vR : ∇vR ≤M (X.4.2)

with M independent of R. Upon taking a suitable sequence, as R → ∞, a
solution v, p to (X.0.3), (X.0.4) was found. Because of (X.4.2), this solution
satisfies (X.4.1). In the case of three–dimensional flow, the estimate (X.4.1)
is enough to ensure all requirements of a generalized solution, including the
behavior at infinity. This latter property is in fact a consequence of Lemma
II.6.2. However, for plane flow the bound (X.4.1) is not enough to control
the behavior at infinity of the solution. It is this circumstance that renders
the problem of existence of solutions in a two-dimensional exterior problem a
very difficult one and, in several respects, it has to be considered still an open
question; cf. Chapter XII.

The method we shall employ to show existence is, in fact, different from
Leray’s and it is the same used for the case of a bounded domain, namely,
the Galerkin method. Such an approach is due to Fujita (1961). The proofs
given in Theorem IX.3.1 and Theorem IX.4.1 remain essentially unchanged to
cover the present case (cf. Remark IX.3.2). The only point that deserves some
attention is the construction of a suitable extension V of the velocity field at
the boundary and at infinity. Actually, as in the case where Ω is bounded,
we have to require that V satisfies an inequality of the type (IX.4.3) for
all u ∈ D1,2

0 (Ω) and some α < ν . The first part of this section is devoted
to the preceding question. In this regard, we observe that, for such a field
V to exist, the vanishing of the overall flux Φ of the velocity field through
the bounding walls is not needed; rather, it is enough that Φ be “sufficiently
small” in a way that will be made precise later. However, it is not known
whether an upper bound for Φ is in fact necessary and consequently, unlike
the corresponding linearized Stokes and Oseen approximations, the problem
of existence of steady Navier–Stokes flow in exterior domains with arbitrary
flux at the boundary remains open.

With a view to the rotational case, that will be treated in the following
chapter, we shall construct the extension field V under more general assump-
tions on v∞ than needed here.

To begin with, we need to introduce certain quantities. We recall that
Ω = R3 − ∪s

i=1Ωi, s ≥ 1, where each Ωi is compact and, we assume, with a
non-empty interior. Furthermore, Ωi ∩Ωj = ∅, for i 6= j. We thus set

σi(x) =
1

4π
∇
(

1

|x− xi|

)
, xi ∈

◦
Ωi, i = 1, . . . , s, (X.4.3)

and observe that ∫

∂Ωi

σj · n = δij, i, j = 1, . . . , s , (X.4.4)

where n denotes the outer normal to ∂Ω at ∂Ωi.
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Lemma X.4.1 Let Ω be a locally Lipschitz domain of R3 exterior to s ≥ 1
compact and disjoint sets Ω1, ..., Ωs, and let

v∗ ∈W 1/2,2(∂Ω), v∞ := a+A · x ,

where a ∈ R3 and A is a second order tensor with trace (A) = 0. Then, for
any η > 0, there exists ε = ε(η, v∗, Ω) > 0 and V = V (ε) : Ω → R3 such
that, for some R > δ(Ωc) and all q ∈ (1,∞), r ∈ (3/2,∞):

(i) V + v∞ ∈W 1,2(ΩR) ∩D1,q(ΩR);
(ii) V + v∞ ∈ Lr(ΩR);
(iii) V = v∗ at ∂Ω;
(iv) ∇ · V = 0 in Ω.

Furthermore, for all u ∈ D1,2
0 (Ω), it holds that

|(u · ∇(V + v∞),u)| ≤
{
η +

1

4π

s∑

i=1

|Φi|max
x∈Ω

1

|x− xi|

}
|u|21,2. (X.4.5)

where

Φi =

∫

∂Ωi

v∗ · n, i = 1, . . . , s,

is the flux of v∗ through the boundary of Ωi. Finally, if ‖v∗‖1/2,2(∂Ω) ≤ M ,
for some M > 0, then

‖V + v∞‖1,2 ≤ C1‖v∗‖1/2,2(∂Ω)

‖V + v∞‖r,ΩR + |V + v∞|1,q,ΩR ≤ C2 ‖v∗‖1/2,2,(∂Ω) ,
(X.4.6)

where C1 = C1(η,M,Ω), and C2 = C2(r, q, R, Ω).

Proof. The procedure is similar to, but simpler than, that used in the proof
of Lemma IX.4.2. We set

v1(x) = v∗(x) −
s∑

i=1

Φiσi(x) + v∞, x ∈ ∂Ω .

Clearly, because of (X.4.4),

∫

∂Ωi

v1 · n = 0, i = 1, . . . , s,

and so, according to Lemma IX.4.1, there is w ∈W 2,2(Ω) such that, setting

U := ∇×w ∈W 1,2(Ω)

we have
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U = v1 at ∂Ω

U(x) = 0, for all x ∈ ΩR , R > δ(Ωc).

Given ε > 0, we set

V ε = ∇× (ψεw)

with ψε the “cut-off” function defined in Lemma III.6.2. The desired extension
of v∗ is then given by

V = V ε +

s∑

i=1

Φiσi − v∞ ≡ V ε + V σ − v∞ . (X.4.7)

Taking into account the properties of the function w given in Lemma IX.4.1,
with the help of (X.4.3) it is immediate to show that V satisfies (i)-(iv). Let
us now estimate the trilinear form

a(u,V + v∞,u) ≡ (u · ∇(V + v∞),u) = a(u,V ε + V σ ,u), u ∈ D1,2
0 (Ω).

Fix η > 0. By reasoning entirely analogous to that used in the proof of Lemma
IX.4.2, and which we shall leave to the reader, we have

|a(u,V ε,u)| ≤ η |u|21,2 , (X.4.8)

provided ε ≤ η/
(
c4 ‖v∗‖1/2,2(∂Ω)

)
, for suitable c4 = c4(Ω). Furthermore,

integrating by parts and recalling (X.4.3), we find

|a(u,V σ,u)| ≤
s∑

i=1

|Φi|
∫

Ω

|∇u|2|E(x− xi)| ≤
1

4π

s∑

i=1

|Φi|max
x∈Ω

1

|x− xi|
|u|21,2

(X.4.9)
Inequality (X.4.5) then follows from (X.4.8) and (X.4.9). It remains to show
(X.4.6), under the further stated assumptions on v∗. By the same argument
used in the proof of Lemma IX.4.1 (specifically, the argument leading to
(IX.4.48)), we easily infer

‖V ε‖1,2 ≤ c1‖v∗‖1/2,2(∂Ω) (X.4.10)

with c1 = c1(η,M,Ω). Moreover, from (X.4.3) we deduce

|V σ|1,q + ‖V σ‖r ≤ c1‖v∗‖1/2,2(∂Ω) , for all q ∈ (1,∞), r ∈ (3/2,∞) ,
(X.4.11)

where c2 = c2(Ω). Then, noticing that V (x) + v∞ = V σ for all |x| ≥ R, ΩR

containing the support of ψε,
1 we conclude that (X.4.6) follows from (X.4.10)

and (X.4.11). ut
1 Notice that ∪ε>0supp (ψε) is bounded.



680 X Three-Dimensional Flow in Exterior Domains. Irrotational Case

Remark X.4.1 If s = 1, choosing x1 = 0, we have

max
x∈Ω

1

|x| ≤
1

r0
, r0 = dist (0, ∂Ω),

condition (X.4.5) becomes

|(u · ∇(V + v∞),u)| ≤
{
η +

|Φ1|
4πr0

}
|u|21,2.

�

Remark X.4.2 We would like to discuss the generalization of Lemma X.4.1
to arbitrary dimension n ≥ 2, n 6= 3, in the case v∞ ≡ v∞ ∈ Rn. If n ≥ 4, the
generalization is straightforward, provided we require a little more regularity
on v∗ of the type

v∗ ∈W 1−1/s,s(∂Ω), s > n/2.

The extra regularity is needed to construct the extension field V ε, cf. Remark
IX.4.7. If we assume this, we can prove the existence of a field V satisfying
(i)-(iv) for all q ∈ (1,∞) and all r ∈ (n/(n−1),∞). Furthermore, the following
inequality holds

|(u · ∇V ,u)| ≤ (η + Φ(n))|u|21,2

where

Φ(n) ≡ c

s∑

i=1

|Φi| max
x∈Ω

1

|x− xi|n−2

and c = c(n). In the two-dimensional case, the starting point is, again, (X.4.7),
with

σi(x) =
1

2π
∇ (log |x− xi|) . (X.4.12)

By following exactly the same arguments used for the proof of Lemma X.4.1,
we thus show that V satisfies (i)-(iv) with q ∈ (1,∞) and r ∈ (2,∞), as
well as the inequalities in (X.4.6), under the stated further assumption on v∗.
Moreover, we have

|(u · ∇V ,u)| ≤ (η +
1

2π

s∑

i=1

|Φi|)|u|21,2 .

Given the properties of V ε, the proof of this latter is, as in Lemma X.4.1,
reduced to show the estimate

|(u · ∇V σ,u)| ≤ 1

2π

s∑

i=1

|Φi||u|21,2 . (X.4.13)

However, (X.4.13) can not be obtained by a procedure similar to that used
to obtain (X.4.9), and we have to argue differently. The following argument
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is due to A. Russo (2010b, Lemma 3). By integration by parts, the proof of
(X.4.13) reduces to show (i = 1, . . . , s)

Ii := 2π

∣∣∣∣
∫

Ω

u · ∇u · σi

∣∣∣∣ ≤ |u|21,2 . (X.4.14)

We introduce a system of polar coordinates (r, θ) with the origin at xi, and
set

f :=
1

2π

∫ 2π

0

f(r, θ)dθ .

Extending u to 0 in Ωc, we find

Ii = 2π

∣∣∣∣
∫

Ω

u · ∇u · x

|x|2
∣∣∣∣ =

∣∣∣∣
∫ ∞

0

dr

r

∫ 2π

0

[
(u1 − u1)

∂u2

∂θ
− (u2 − u2)

∂u1

∂θ

]
dθ

∣∣∣∣ ,
(X.4.15)

where we used ∫ 2π

0

u1
∂u2

∂θ
dθ =

∫ 2π

0

u2
∂u1

∂θ
dθ = 0 .

Employing the Schwarz inequality, along with the Wirtinger inequality (II.5.17)
and Exercise II.5.12, we deduce

∣∣∣∣
∫ 2π

0

(u1 − u1)
∂u2

∂θ

∣∣∣∣ ≤
(∫ 2π

0

|u1 − u1|2
∫ 2π

0

∣∣∣∣
∂u2

∂θ

∣∣∣∣
2
)1/2

≤
(∫ 2π

0

∣∣∣∣
∂u1

∂θ

∣∣∣∣
2 ∫ 2π

0

∣∣∣∣
∂u2

∂θ

∣∣∣∣
2
)1/2

,

(X.4.16)

and, likewise,

∣∣∣∣
∫ 2π

0

(u2 − u2)
∂u1

∂θ

∣∣∣∣ ≤
(∫ 2π

0

∣∣∣∣
∂u2

∂θ

∣∣∣∣
2 ∫ 2π

0

∣∣∣∣
∂u1

∂θ

∣∣∣∣
2
)1/2

(X.4.17)

Therefore, observing that |∂u
∂θ

| ≤ r|∇u|, we find that (X.4.14) follows from

(X.4.15)–(X.4.17). �

Theorem X.4.1 Let Ω be a locally Lipschitz domain of R3, exterior to com-
pact and disjoint domains Ω1, ..., Ωs, s ≥ 1.2 Moreover, let

f ∈ D−1,2
0 (Ω), v∗ ∈W 1/2(∂Ω), v∞ ∈ R3 ,

and set

Φ :=
1

4π

s∑

i=1

max
x∈Ω

1

|x− xi|

∣∣∣∣
∫

∂Ωi

v∗ · n
∣∣∣∣ .

The following properties hold.

2 The theorem continues to hold in the case where Ω = R
3.
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(i) Existence. If Φ < 1/R, there exists at least one generalized solution v to
the Navier–Stokes problem (X.0.8), (X.0.4). Such a solution verifies the
conditions:

∫

S2

|v(x) + v∞| = O(1/
√
|x|) as |x| → ∞

‖p‖
2,ΩR/R

≤ c (|v|1,2 + R‖v‖2
1,2ΩR

+ R|f |1,2)

(X.4.18)

for all R > δ(Ωc). In (X.4.18) p is the pressure field associated to v by
Lemma X.1.1, while c = c(Ω,R) with c → ∞ as R → ∞. Furthermore, v
obeys the generalized energy inequality

|v|21,2 + R [f , v − V ] ≤ (∇v,∇V ) −R(v · ∇V , v − V ) (X.4.19)

where V is the extension of v∗ and v∞ constructed in Lemma X.4.1.
(ii)Estimate by the data. If v∗ ∈ M

1/2,2
M (∂Ω) (defined in (IX.4.52)) and

Φ ≤ 1/(2R), then the generalized solution determined in (i) satisfies the
following estimate:

|v|1,2 ≤ 4R|f |−1,2 +C ‖v∗‖1/2,2(∂Ω)

[
1 + R

(
1 + ‖v∗‖1/2,2(∂Ω) + |v∞|

)]
,

(X.4.20)
where C = C(Ω,R,M).

Proof. We shall employ the Galerkin method. We look for a solution of the
form

v = u + V ,

where V is the extension of v∗ and v∞ constructed in Lemma X.4.1 and
corresponding to some η > 0 that will be fixed successively. Let {ψk} ⊂
D(Ω) be the basis of D1,2

0 (Ω), introduced in Lemma VII.2.1. A sequence of
approximating solutions {um} is then sought of the form

um =

m∑

k=1

ξkmψk

1
R(∇um,∇ψk) + (um · ∇um,ψk) + (um · ∇V ,ψk) + (V · ∇um,ψk)

= − [f ,ψk]− 1
R(∇V ,∇ψk) − (V · ∇V ,ψk), k = 1, 2, . . . , m.

(X.4.21)
For each m ∈ N we may establish existence to (X.4.21) in the same way as
in Theorem IX.3.1, provided we show a suitable uniform bound for |um|1,2 in
terms of the data. Thus, multiplying (X.4.21)2 by ξkm, summing over k from
1 to m and recalling that, for all m ∈ N,

(V · ∇um,um) = (um · ∇um,um) = 0, (X.4.22)

(cf. Lemma IX.2.1), we obtain
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1

R|um|21,2 + (um · ∇V ,um) = − [f ,um] − 1

R(∇V ,∇um) − (V · ∇V ,um).

(X.4.23)
Recalling the properties of V given in Lemma X.4.1, we have, by the Schwarz
inequality,

|(∇V ,∇um)| ≤ |um|1,2|V |1,2, (X.4.24)

and, by the Hölder and Sobolev inequalities

|(V · ∇V ,um)| ≤
∣∣∣∣
∫

ΩR

V · ∇V · um

∣∣∣∣+
∣∣∣∣
∫

ΩR

(V + v∞) · ∇V · um

∣∣∣∣

+

∣∣∣∣
∫

ΩR

v∞ · ∇V · um

∣∣∣∣

≤ [c1‖V ‖1,2,ΩR +
2√
3
(‖V + v∞‖3,ΩR |V |1,2

+ |v∞||V |1,6/5)]|um|1,2

(X.4.25)
Furthermore, again from Lemma X.4.1,

|(um · ∇V ,um)| ≤ (η + Φ)|um|21,2. (X.4.26)

Collecting (X.4.23)– (X.4.26), we find

(1/R− η − Φ) |um|1,2 ≤ |f |−1,2 +
1

R|V |1,2 + c1‖V ‖1,2,ΩR

+
2√
3

(
‖V + v∞‖3,ΩR |V |1,2 + |v∞| |V |1,6/5

)
.

(X.4.27)
Thus, if Φ < 1/R, we may choose η ∈ (0, 1/R− Φ) to obtain the following
uniform estimate

|um|1,2 ≤ C, (X.4.28)

with C = C(f , v∗, v∞,R). By (X.4.28) and Lemma IX.3.2 we may show exis-
tence of solutions to (X.4.21) for all m. Moreover, we can select a subsequence,
denoted again by {um}, such that as m→ ∞

um
w→ u in D1,2

0 (Ω). (X.4.29)

Also, by Exercise II.5.8 and the Cantor diagonalization argument, we may
select another subsequence, that we still call {um}, such that, as m→ ∞,

um → u in Lq(ΩR), q ∈ [1, 6) , (X.4.30)

for any R > δ(Ωc). By (X.4.28) and Theorem II.1.3 it follows that the limiting
field u also obeys inequality (X.4.28). Let us now pass to the limit m → ∞
into (X.4.21)2. Observe that, setting
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Ωk ≡ supp (ψk),

we have
(DjVi)ψk, Viψk ∈ L2(Ωk),

and so, from (X.4.29) and (X.4.30) we obtain

(∇um,∇ψk) → (∇u,∇ψk)

(um · ∇V ,ψk) → (u · ∇V ,ψk)

(V · ∇um,ψk) → (V · ∇u,ψk).

(X.4.31)

Furthermore, reasoning as in the proof of Theorem IX.3.13 we have

(um · ∇um,ψk) → (u · ∇u,ψk). (X.4.32)

Employing (X.4.31) and (X.4.32) into (X.4.21)2 yields

1

R(∇u,∇ψk) +(u · ∇u,ψk) + (u · ∇V ,ψk) + (V · ∇u, ψk)

= − [f ,ψk] − 1

R(∇V ,∇ψk) − (V · ∇V ,ψk).

(X.4.33)

It is now immediately verified that the field

v ≡ u + V

is a generalized solution to the problem, in the sense of Definition X.1.1.
Actually, issues (i)-(iii) of that definition are at once established. Also, from
Lemma X.4.1 and Lemma II.6.2 it follows, as |x| → ∞, that

∫

S2

|v(x) + v∞| ≤
∫

S2

|u(x)|+
∫

S2

|V (x) + v∞| = O(1/
√
|x|) (X.4.34)

and so (X.4.18)1 is proved. Finally, from (X.4.33) we obtain

1

R(∇v,∇ψk) + (v · ∇v,ψk) = − [f ,ψk] . (X.4.35)

We have
v · ∇v = u · ∇v+ (V + v∞) · ∇v − v∞ · ∇v .

Thus, recalling that u, (V +v∞) ∈ L6(Ω), by the Hölder inequality it follows
that

v · ∇v ∈ L3/2(Ω) + L2(Ω) .

3 Specifically, one has to follow the part of the proof that goes from (IX.3.15)
to (IX.3.20). In these formulas, for the case at hand, the integration has to be
performed over the bounded domain Ωk.
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Since any function ϕ ∈ D(Ω) can be approximated in the W 1,s-norm by linear
combinations of ψk for all s ≥ 2, the issue (v) follows from this latter property
and (X.4.35). Let us next show the estimate for the pressure field p, whose
existence is guaranteed by Lemma X.1.1. In particular, by this lemma,

p ∈ L2
loc(Ω). (X.4.36)

Fix R > δ(Ωc) and add to p the constant

C = C(R) = − 1

|ΩR|

∫

ΩR

p,

so that ∫

ΩR

(p +C) = 0. (X.4.37)

Successively, choose ψ such that

∇ ·ψ = p+C in ΩR

ψ ∈W 1,2
0 (ΩR)

‖ψ‖1,2 ≤ c5‖p+ C‖2,ΩR.

(X.4.38)

Because of (X.4.36) and (X.4.37), Theorem III.3.1 guarantees the existence of
ψ and it is clear that we can replace this function into identity (X.1.3). Thus,
from (X.1.3), and the Schwarz and Hölder inequalities, we find

‖p+ C‖2
2,ΩR

≤ c6[(|v|1,2 + R|f |−1,2)|ψ|1,2 + R‖v‖4,ΩR|v|1,2,ΩR‖ψ‖4,ΩR].
(X.4.39)

Recalling that W 1,2(ΩR) ↪→ L4(ΩR), and using (X.4.38)3, from the above
relation we prove (X.4.18)2. To show the theorem completely, we have to prove
the generalized energy inequality (X.4.19). To this end, we observe that, by
(i) and (ii) of Lemma X.4.1, we have

V · ∇V ∈ L6/5(Ω), (X.4.40)

and since, by the Sobolev inequality (II.3.7),

‖um‖6 ≤ γ |um|1,2 ≤M (X.4.41)

we deduce (along a subsequence, at least)

lim
m→∞

(V · ∇V ,um) = (V · ∇V ,u). (X.4.42)

Moreover, for fixed R > δ(Ωc), by the Hölder inequality,

|(um · ∇V ,um)− (u · ∇V ,u)|
≤ |(um − u) · ∇V ,um)| + |(u · ∇V ,um − u)|
≤ (‖um‖4,ΩR + ‖u‖4,ΩR)‖um − u‖4,ΩR|V |1,2

+(‖um‖6 + ‖u‖6)|V |1,3/2,ΩR.

(X.4.43)
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Again by (i) of Lemma X.4.1, for a given ε > 0 we may choose R so that

|V |1,3/2,ΩR < ε,

while, by (X.4.30) (possibly along a new subsequence),

lim
m→∞

‖um − u‖4,ΩR = 0

and so from (X.4.43) and (X.4.41), it follows that

lim sup
m→∞

|(um · ∇V ,um) − (u · ∇V ,u)| ≤ 4M2ε

which, in turn, by the arbitrariness of ε furnishes

lim
m→∞

(um · ∇V ,um) = (u · ∇V ,u). (X.4.44)

Since, clearly,

lim
m→∞

(∇V ,∇um) = (∇V ,∇u) (X.4.45)

from (X.4.22), (X.4.23), (X.4.42), (X.4.44), (X.4.45), and Theorem II.1.3 we
conclude

1

R|u|21,2 ≤ 1

R lim
m→∞

|um|21,2

= −(u · ∇V ,u) − 1

R(∇V ,∇u) − (V · ∇V ,u) − [f ,u] .

Recalling that v = u + V , we then recover (X.4.19) and the proof of part
(i) is complete. In order to show part (ii), we notice that from (X.4.27) for
Φ ≤ 1/(2R) and η = 1/(4R), we deduce

|um|1,2 ≤ 4R|f |−1,2 + 4|V |1,2 + 4Rc1‖V ‖1,2,ΩR

+
8R√

3

(
‖V + v∞‖3,ΩR|V |1,2 + |v∞| |V |1,6/5

)
.

(X.4.46)

Passing to the limit m → ∞ in (X.4.46) and employing Theorem II.1.3 and
the estimates (X.4.6) for V , we infer the validity of (X.4.20), which concludes
the proof of the theorem. ut

Remark X.4.3 If the number s of compact regions Ωi is one, existence is
proved under the following condition on Φ:

Φ ≡ |Φ1|
4πr0

<
1

R ;

cf. Remark X.4.1. �
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Remark X.4.4 We would like to make some comments about the extension
of Theorem X.4.1 to the two-dimensional case. Taking into account Remark
X.4.2, we verify at once that, for Ω ⊂ R2, with Ω 6= R2, under the assumption
that the flux of v∗ through ∂Ω satisfies the following restriction

s∑

i=1

|Φi| <
2π

R , (X.4.47)

there is at least one field v satisfying conditions (i)-(iii) and (v) of Definition
X.1.1.4 Nevertheless, with the information derived so far, we are not able to
draw any conclusion about the behavior at infinity of v. This is because, unlike
the three-dimensional case, we have no Sobolev-like (or weighted) inequality
which ensures some type of decay for v + v∞ as |x| → ∞. A fundamental
problem is then to analyze what is the behavior at infinity of vector fields
satisfying merely (i)-(iii) and (v) of Definition X.1.1, when Ω is a planar
domain. This will be the object of Section XII.3. Let us now consider the
case Ω = R2. In such a circumstance the procedure adopted in Theorem
X.4.1 does not produce any kind of existence. Actually, we can still construct
an approximating sequence {um} and show that it satisfies estimate (X.4.28).
Therefore, we can find a field u ∈ D1,2

0 (R2) for which (X.4.29) holds. However,
we can not establish (X.4.30) and, as a consequence, (X.4.32). In fact, in view
of the example given in Exercise II.7.3, we know that condition (X.4.28) alone
is not sufficient to ensure any kind of convergence of {um} to u in any space
Lq(BR), q ≥ 1, R > 0. Because of this, we are not able to show (X.4.32) and,
as a consequence, we can not prove that the field u (≡ v) satisfies the identity
(X.1.2) �

Remark X.4.5 In dimension n ≥ 4, existence of generalized solutions to
(X.0.8), (X.0.4) can be proved along the same lines of Theorem X.4.1 provided

v∗ ∈W 1−1/s,s(∂Ω), Φ(n) < 1/R,

where Φ(n) is defined in Remark X.4.2. In such a case, the asymptotic estimate
(X.4.18)2 becomes

∫

Sn−1

|v(x) + v∞| = O(1/|x|n/2−1) as |x| → ∞.

�

Remark X.4.6 If v∗ ≡ v∞ ≡ 0, Theorem X.4.1, with the exception of
(X.4.18)3, holds without requiring any regularity of the domain. This is be-
cause, the only point in the proof where regularity is needed is in the con-
struction of the extension V which, in this case, can be taken as identically
zero. �

4 The first proof of this result is due to Russo (2009).
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X.5 On the Asymptotic Behavior of Generalized
Solutions: Preliminary Results and Representation
Formulas

In the present section we begin to study the asymptotic behavior of a gener-
alized solution v to the Navier–Stokes equation in a three-dimensional exte-
rior domain (we postpone the analogous two-dimensional case until Chapter
XII). Specifically, we shall prove that if the body force has a certain degree
of summability at infinity, then v behaves essentially as the corresponding
solution of the linearized approximations (cf. Theorem V.3.1 and Theorem
VII.6.1), that is, we have

lim
|x|→∞

|v(x) + v∞| = 0

lim
|x|→∞

|Dαv(x)| = 0, 1 ≤ |α| ≤ s,

uniformly, where s is related to the degree of summability of the derivatives
of f . An analogous property is shown for the pressure field p associated to v
by Lemma X.1.1. Successively, we prove that, as in the linear problem, v and
p admit an integral representation valid for almost all points in Ω. We have
the following theorem.

Theorem X.5.1 Let v be a generalized solution to the Navier–Stokes prob-
lem in an exterior three-dimensional domain Ω. Assume that for some R >
δ(Ωc) and some q ∈ (3/2,∞),

f ∈ Lq(ΩR). (X.5.1)

Then
lim

|x|→∞
|v(x) + v∞| = 0 (X.5.2)

uniformly. Furthermore, if for m ≥ 0 and some r ∈ (3,∞), q ∈ (3/2, 2]

f ∈Wm,r(ΩR) ∩ Lq(ΩR), (X.5.3)

then
lim

|x|→∞
|Dαv(x)| = 0, 1 ≤ |α| ≤ m+ 1, (X.5.4)

uniformly. Finally, under assumption (X.5.3) there is p1 ∈ R such that

lim
|x|→∞

|Dα(p(x) − p1)| = 0, 0 ≤ |α| ≤ m, (X.5.5)

uniformly, where p is the pressure field associated to v by Lemma X.1.1.

Proof. We shall consider throughout the case v∞ = 0, since the case v∞ 6= 0
is treated in a completely analogous way. Moreover, to simplify notation, we
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shall put R = 1 throughout the proof. From Lemma V.3.1 we have for a.a.
x ∈ ΩR with dist (x, ∂ΩR) > d

vj(x) =

∫

Bd(x)

U
(d)
ij (x− y)[fi(y) + vlDlvi(y)]dy

−
∫

β(x)

H
(d)
ij (x− y)vi(y)dy

≡ I1(x) + I2(x) + I3(x).

(X.5.6)

As in the proof of Theorem V.3.1 we show, for q > 3/2,

|I1(x)| ≤ c1‖f‖q,Bd(x). (X.5.7)

Furthermore, recalling that

|U (d)
ij (x− y)| ≤ c2|x− y|−1, y ∈ Bd(x),

we find
|I2(x)| ≤ c3‖v/|x− y|‖2,Bd(x)|v|1,2,Bd(x).

On the other hand, by Theorem II.6.1,

‖v/|x− y|‖2,Bd(x) ≤ c4|v|1,2

and therefore
|I2(x)| ≤ c5|v|1,2,Bd(x). (X.5.8)

Finally, as in the proof of Theorem V.3.1,

|I3(x)| ≤ c6‖v‖6,Bd(x) (X.5.9)

and so, recalling that, by Theorem II.6.1,

v ∈ L6(ΩR) (X.5.10)

the property (X.5.2) follows from (X.5.1) and (X.5.6)–(X.5.10). Let us now
show (X.5.4). We begin to notice that, by the regularity Theorem X.1.1, we
have

v ∈ L∞(ΩR,R1 ) for all R1 > R,

which, because of (X.5.1), implies

v ∈ L∞(ΩR). (X.5.11)

As a consequence, from the inequality

‖v · ∇v‖t ≤ ‖v‖2t/(2−t)|v|1,2, 1 ≤ t ≤ 2,

with a view at (X.5.10), (X.5.11) we obtain
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v · ∇v ∈ Ls(ΩR), for all s ∈ [3/2, 2]. (X.5.12)

The assumption on f and (X.5.12) lead to

(f + v · ∇v) ∈ Lq(ΩR), for some q ∈ [3/2, 2],

and thus, by Theorem V.5.2, it follows that

v ∈ D2,q(ΩR1), p ∈ D1,q(ΩR1 ), R1 > R. (X.5.13)

Using (X.5.13) and Theorem II.6.1 yields

v ∈ D1,3q/(3−q)(ΩR1 ) (X.5.14)

and from (X.5.11), (X.5.14) we conclude that

v · ∇v ∈ L3q/(3−q)(ΩR1 ). (X.5.15)

Next, recalling that I3 ∈ C∞(R3), from (X.5.6) with F = f + v · ∇v we find

Dkvj(x) = Dk

∫

Bd(x)

U
(d)
ij (x− y)Fi(y)dy −

∫

β(x)

DkH
(d)
ij (x− y)vi(y)dy.

(X.5.16)
Using the definition of generalized differentiation we easily show that

Dk

∫

Bd(x)

U
(d)
ij (x− y)Fi(y)dy =

∫

Bd(x)

(DkU
(d)
ij (x − y))Fi(y)dy (X.5.17)

and so, bearing in mind that

|DkU
(d)
ij (x− y)| ≤ c7|x− y|−2, y ∈ Bd(x),

we recover, by (X.5.17) and the Hölder inequality,

I(x) ≡
∣∣∣∣∣Dk

∫

Bd(x)

U
(d)
ij (x− y)Fi(y)dy

∣∣∣∣∣

≤ c8(‖|x− y|‖r′,Bd(x)‖f‖r,Bd(x)

‖|x− y|−2‖3q/(4q−3),Bd(x)‖v · ∇v‖3q/(3−q),Bd(x)).

Since both r′ and 3q/(4q − 3) are strictly less than 3/2, from (X.5.15) and
(X.5.2) we obtain

I(x) → 0 as |x| → ∞. (X.5.18)

Since ∣∣∣∣∣

∫

β(x)

DkH
(d)
ij (x− y)vi(y)dy

∣∣∣∣∣ ≤ c9‖v‖6,Bd,
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from this inequality, and from (X.5.16) and (X.5.18) we infer (X.5.4) for |α| =
1. Let us now pass to higher-order derivatives. To this end, we begin to show

v · ∇v ∈W 1,r(ΩR) (X.5.19)

for all sufficiently large R.1 By (X.5.11) and the fact that v is a generalized
solution, we find

v · ∇v ∈ Ls(ΩR) for all s ≥ 2 (X.5.20)

and therefore
f + v · ∇v ∈ Lr(ΩR).

From Theorem V.5.3 we then deduce

v ∈ D2,r(ΩR) p ∈ D1,r(ΩR) (X.5.21)

and so, since
Dk(v · ∇v) = (Dkv) · ∇v+ v ·Dk∇v (X.5.22)

from (X.5.20), (X.5.11), and (X.5.21) we prove, in particular, (X.5.19). With
the help of Lemma V.3.1 we then have

DkDtvj(x) = Dk

∫

Bd(x)

U
(d)
ij (x− y)Dt[fi(y) + vlDlvi(y)]dy

−
∫

β(x)

DkDtH
(d)
ij (x− y)Dαvi(y)dy,

and since
Dt[f + v · ∇v] ∈ Lr(ΩR) r > 3,

we reason as in the case where |α| = 1 and conclude that

lim
|x|→∞

|Dαv(x)| = 0 |α| = 2 (X.5.23)

uniformly. Relation (X.5.23) implies

D2v ∈ L∞(ΩR). (X.5.24)

On the other hand, from (X.5.19), (X.5.21), and Lemma V.4.3, it follows that
in particular

v ∈ D3,r(ΩR) (X.5.25)

and so, differentiating one more time (X.5.22) and employing (X.5.19), (X.5.21),
(X.5.24), and (X.5.25) we obtain

1 In the remaining part of the proof the number R need not be the same for all
formulas. However, it is understood that the indicated property holds for “suffi-
ciently large” R.
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v · ∇v ∈W 2,r(ΩR), r > 3.

Consequently, by the same reasoning previously used, we prove (X.5.2) with
|α| = 3. Iterating this procedure as many times as needed, we then show
(X.5.4) in the general case. Let us now turn to the pressure p. Collecting
(X.5.13) and (X.5.21) under assumption (X.5.3) we obtain

p ∈ D1,r(ΩR) ∩D1,q(ΩR) (X.5.26)

where, we recall, r > 3 and 2 > q. Theorem II.9.1 then implies (X.5.5) with
α = 0. The proof of the general case (for m ≥ 1) is a direct consequence of
the momentum equation, that is,

∇p = −f +∆v+ v · ∇v. (X.5.27)

In fact, if (X.5.3) holds with some m ≥ 1, then from the embedding Theorem
II.3.4, it follows that

Dαf (x) → 0 as |x| → ∞, for all |α| ∈ [0, m− 1]. (X.5.28)

By means of (X.5.2), (X.5.4), (X.5.27), and (X.5.28) we thus conclude that as
|x| → ∞

Dα[−f(x) +∆v(x) + v(x) · ∇v(x)] → 0

uniformly for all multi-index α with |α| = m − 1. The theorem is therefore
proved. ut

Remark X.5.1 The arguments used in the proof of the preceding theorem
fail in dimension n ≥ 4. In fact, they do not ensure pointwise decay even for
v itself. The reason is that, in such a case, we cannot increase the term I2(x)
by a function vanishing at large distances. However, it is probably true that
results of the type presented in Theorem X.5.1 continue to hold, at least, for
n = 4. �

We shall now derive representation formulas for v and p analogous to those
derived in the linear case. Specifically, we have the following theorem.

Theorem X.5.2 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) in an exterior three-dimensional domain Ω of class C2

with

v ∈W 2,r
loc (Ω), r ∈ (1,∞).

Then if for some R > δ(Ωc)

f ∈ Lq(ΩR) ∩Ls
loc(Ω), (X.5.29)

with q ∈ (1, 3/2) and s ∈ (1,∞), the following representations hold for all
x ∈ Ω: if v∞ = 0
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vj(x) = R
∫

Ω

Uij(x− y)fi(y)dy + R
∫

Ω

Uij(x− y)vl(y)Dlvi(y)dy

+

∫

∂Ω

[vi(y)Til(uj , qj)(x− y)

− Uij(x− y)Til(v, p)(y)]nldσy,

(X.5.30)

and

vj(x) = R
∫

Ω

Uij(x− y)fi(y)dy −R
∫

Ω

vl(y)vi(y)DlUij(x− y)dy

+

∫

∂Ω

[vi(y)Til(uj , qj)(x− y) − Uij(x− y)(Til(v, p)(y)

−Rvl(y)vi(y))]nldσy;

(X.5.31)

if v∞ 6= 0 (v∞ = (1, 0, 0)), setting u = v + v∞

uj(x) = R
∫

Ω

Eij(x− y)fi(y)dy + R
∫

Ω

Eij(x− y)ul(y)Dlui(y)dy

+

∫

∂Ω

[ui(y)Til(wj , ej)(x− y) −Eij(x− y)Til(u, p)(y)

−Rui(y)Eij(x− y)δ1l ]nldσy

(X.5.32)

and

uj(x) = R
∫

Ω

Eij(x− y)fi(y)dy −R
∫

Ω

ul(y)ui(y)DlEij(x− y)dy

+

∫

∂Ω

[ui(y)Til(wj , ej)(x− y)

−Eij(x− y)(Til(u, p)(y) −Rul(y)ui(y))

−Rui(y)Eij(x− y)δ1l ]nldσy;

(X.5.33)

where U , q andE, e are Stokes and Oseen fundamental solutions, respectively,
while uj and wj are defined in (IV.8.11)1 and (VII.6.3). All volume integrals
in (X.5.30)–(X.5.33) are absolutely convergent.

Furthermore, if
f ∈ Lr(ΩR) ∩Lt

loc(Ω),

for some r ∈ (1, 3/2) and t ∈ (3,∞), then, denoting by p the pressure field
associated to v by Lemma X.1.1, we have for a.a. x ∈ Ω: if v∞ = 0

p(x) = p0 −R
∫

Ω

qi(x− y)fi(y)dy −R
∫

Ω

qi(x− y)vl(y)Dlvi(y)dy

+

∫

∂Ω

[qi(x− y)Til(v, p)(y) − 2vi(y)
∂

∂xl
qi(x− y)]nldσy ;

(X.5.34)
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if v∞ 6= 0

p(x) = p′0 −R
∫

Ω

ei(x− y)fi(y)dy −R
∫

Ω

ei(x − y)ul(y)Dlui(y)dy

+

∫

∂Ω

{ei(x− y)Til(u, p)(y) − 2ui(y)
∂

∂xl
ei(x− y)

−R[e1(x− y)ul(y) − ui(y)ei(x− y)δ1l ]nldσy,

(X.5.35)

where p0 and p′0 are constants. All volume integrals in (X.5.34), (X.5.35) are
absolutely convergent.

Proof. We show (X.5.30), (X.5.31) and (X.5.34), since the proof of (X.5.32),
(X.5.33) and (X.5.35) is somehow similar and, therefore, left to the reader as
an exercise. From the assumptions made and (V.3.6) with α = 0, we obtain
for R > δ(Ωc)

vj(x) = R
∫

Ω

U
(R)
ij (x− y)Fi(y)dy−

∫

Ω

H
(R)
ij (x− y)vi(y)dy + si(x), (X.5.36)

where
F = f + v · ∇v

and s(x) is the surface integral in (X.5.30). We recall that

|U(x− y)|, |U(R)(x− y)| ≤ c|x− y|−1, x, y ∈ R3, x 6= y

and so, taking into account (V.3.2), (V.3.3) we have

∫ ∣∣∣[U (R)
ij (x− y) − Uij(x− y)]Fi(y)dy

∣∣∣ ≤ c

∫

ΩR/2,R(x)

|F (y)|
|x− y|dy

with
ΩR/2,R(x) = {y ∈ Ω : R/2 < |x− y| < R} .

Since
∫

ΩR/2,R(x)

|F (y)|
|x− y|dy ≤ ‖|x− y|−1‖q′,ΩR/2,R(x)‖f‖q,ΩR/2,R(x)

+ ‖v/|x− y|‖2,ΩR/2,R(x)|v|1,2,ΩR/2,R(x),

from Theorem II.6.1 and the assumption made on f we derive for all x ∈ Ω

lim
R→∞

∫

Ω

U
(R)
ij (x− y)Fi(y)dy =

∫

Ω

Uij(x− y)Fi(y)dy (X.5.37)

in the sense of absolute convergence. Furthermore, bearing in mind that

H
(R)
ij (x−y) is identically vanishing outside ΩR/2,R(x), from (V.3.5) and The-

orem II.6.1 we recover in the limit R → ∞
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∣∣∣∣
∫

Ω

H
(R)
ij (x− y)vi(y)dy

∣∣∣∣ ≤ c‖v‖6,ΩR/2,R
→ 0. (X.5.38)

Formula (X.5.30) then follows from (X.5.36)–(X.5.38). To prove (X.5.31) we
notice that
∫

Ω

U
(R)
ij (x− y)vl(y)Dlvj(y)dy =

∫

Ω

vl(y)vj (y)DlU
(R)
ij (x− y)dy

+

∫

∂Ω

Uij(x− y)vl(y)vi(y)nldσy.

(X.5.39)

Since

|∇U(x− y)|, |∇U(R)(x− y)| ≤ c|x− y|−2, x, y ∈ R,

we find
∣∣∣∣
∫

Ω

vl(y)vj (y)(DlU
(R)
ij (x− y) −DlUij(x− y))dy

∣∣∣∣ ≤ c‖v/|x− y|‖2
2,ΩR,2R

and so

lim
R→∞

∫

Ω

vl(y)vj(y)DlU
(R)
ij (x− y)dy =

∫

Ω

vl(y)vj (y)DlUij(x− y)dy

in the sense of absolute convergence. This latter relation, together with
(X.5.39) and (X.5.30), proves (X.5.31). Let us now consider representation
(X.5.34) for the pressure field. Setting p̃ = p − p1 with p1 given in Theorem
X.5.1, from (IV.8.19) it follows, for all sufficiently large R, that

p̃(x) = p0R −R
∫

ΩR(x)

qi(x− y)Fi(y)dy +

∫

∂BR(x)

[qi(x− y)Til(v, p)(y)

−2vi(y)
∂ql(x− y)

∂xi
]nl(y)dσy + σ(x),

(X.5.40)
where ΩR(x) = Ω ∩BR(x), σ(x) is the surface integral in (X.5.34) and p0R is
a constant, possibly depending on R. Recalling that

|qi(x− y)| ≤ |x− y|−2

|Dlqi(x− y)| ≤ c|x− y|−3

from Theorem X.5.1 and the assumption on f we immediately deduce for all
x ∈ Ω that

lim
R→∞

∫

∂BR(x)

[qi(x−y)Til(v, p)(y)−2vi(y)Dlqi(x−y)]nl(y)dσy = 0. (X.5.41)

Furthermore, for d < dist (x, ∂Ω), setting Ωd(x) = Ω − Bd(x) we have
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∫

Ω

|qi(x− y)fi(y)|dy ≤ c (‖|x− y|−2‖t′,Bd(x)‖f‖t,Bd(x)

+ ‖|x− y|−2‖r′,Ωd(x)‖f‖r,Ωd(x))

(X.5.42)

and, by Theorem II.6.1,

∫

Ω

|qi(x− y)vl(y)Dlvi(y)(y)|dy ≤ c (‖|x− y|−2‖t′,Bd(x)‖v · ∇v‖t,Bd(x)

+‖v/|x− y|‖2,Ωd(x)|v|1,2,Ωd(x))

≤ c1(‖v · ∇v‖t,Bd(x) + |v|1,2,Ωd(x)).
(X.5.43)

By the hypothesis on f and Theorem X.1.1,

v ∈ W 2,t(Bd(x)), t > 3

and so, the embedding Theorem II.3.4 yields

v, ∇v ∈ L∞(Bd(x)). (X.5.44)

From (X.5.42)–(X.5.44) we conclude that the integral

∫

Ω

qi(x− y)Fi(y)dy

is absolutely convergent and therefore

lim
R→∞

∫

ΩR(x)

qi(x − y)Fi(y)dy =

∫

Ω

qi(x− y)Fi(y)dy. (X.5.45)

Combining (X.5.40), (X.5.41), and (X.5.45) furnishes for a.a. x ∈ Ω

p̃(x) = p0 −R
∫

Ω

qi(x− y)Fi(y)dy + σ(x) (X.5.46)

with
lim

R→∞
p0R = p0,

and (X.5.34) is proved. ut

Employing the same type of arguments used to show the asymptotic for-
mulas (V.3.19), (V.3.20) and (VII.6.18), (VII.6.19) (see also Exercise VII.6.3),
from Theorem X.5.2 we obtain the following result whose proof is left to the
reader as an exercise.

Theorem X.5.3 Let v be a generalized solution to the Navier–Stokes equa-
tions in a domain Ω of class C2, with

v ∈W 2,r(ΩR), for some R > δ(Ωc) and r ∈ (1,∞),
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and let p be the associated pressure field. Then if f is of bounded support
and

f ∈ Ls(Ω) for some s ∈ (1,∞),

the following asymptotic representation formulas hold as |x| → ∞. If v∞ = 0:

vj(x) = TiUij(x) + R
∫

Ω

Uij(x− y)vl(y)Dlvi(y)dy + σ
(1)
j (x)

vj(x) = T ′
i Uij(x) −R

∫

Ω

vi(y)vl(y)DlUij(x− y)dy + σ
(2)
j (x)

p(x) = p0 − Tiqi(x) −R
∫

Ω

qi(x− y)vl(y)Dlvi(y)dy + η(x)

(X.5.47)

where p0 ∈ R,

Ti = −
∫

∂Ω

Til(v, p)nl + R
∫

Ω

fi

T ′
i = −

∫

∂Ω

(Til(v, p) −Rvivl)nl + R
∫

Ω

fi

(X.5.48)

and, for all |α| ≥ 0,

Dασ
(k)
j (x) = O(|x|−2−|α|), k = 1, 2

Dαη(x) = O(|x|−3−|α|).
(X.5.49)

If v∞ 6= 0 (v∞ = (1, 0, 0)), setting u = v − v∞:

uj(x) = MiEij(x) + R
∫

Ω

Eij(x− y)ul(y)Dlui(y)dy + s
(1)
j (x)

uj(x) = miEij(x) −R
∫

Ω

ui(y)ul(y)DlEij(x− y)dy + s
(2)
j (x)

p(x) = p′0 −M∗
i ei(x) −R

∫

Ω

ei(x− y)ul(y)Dlui(y)dy + h(x)

(X.5.50)

where p′0 ∈ R

Mi = −
∫

∂Ω

Til(u, p)nl + Rδ1lui]nl + R
∫

Ω

fi

mi = −
∫

∂Ω

(Til(u, p) + R(δ1lui − uiul)nl + R
∫

Ω

fi

M∗
i = −

∫

∂Ω

{Til(u, p)nl + R[δ1lui − δ1iul]}nl + R
∫

Ω

fi

(X.5.51)

and, for all |α| ≥ 0, all q ∈ (3/2,∞] and j = 1, 2,
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Dαs
(k)
j (x) = O(|x|−(3+|α|)/2),

s
(k)
j ∈ Lq(Ω)

Dαh(x) = O(|x|−3−|α|).

(X.5.52)

Global Summability of Generalized Solutions when
v∞ 6= 0

A fundamental step in deriving the asymptotic structure of generalized solu-
tions is to establish “good” summability properties at large distances, that
is, in a domain ΩR, for sufficiently large R. In this direction, in the three-
dimensional case, the only information that we have at the outset is that the
velocity field v satisfies (v + v∞) ∈ D1,2(Ω) ∩ L6(Ω).

The objective of the present section is to show that if v∞ 6= 0 and if, for
some q0 > 3, it is assumed that

f ∈ Lq(Ω), for all q ∈ (1, q0]

v∗ ∈W 2−1/q0,q0 (∂Ω)
(X.6.1)

then
v + v∞ ∈ Lr(Ω) for all r > 2 (X.6.2)

and, likewise,1

∂v

∂x1
∈ Ls(Ω), for all s > 1

v ∈ D1,t(Ω), for all t > 4/3

p ∈ Lσ(Ω), for all σ > 3/2.

(X.6.3)

Conditions (X.6.2) and (X.6.3) tell us, in particular, that under the assump-
tion (X.6.1) on the data, any corresponding generalized solution and associ-
ated pressure field have at large distances the same summability properties of
the Oseen fundamental solution E, e, or, what amounts to the same thing, of
the solution of the Oseen problem with the same data f and v∗. Moreover,
as in the linearized theory, if f ≡ v∗ ≡ 0 and v∞ 6= 0, we show that

v + v∞ 6∈ Lr(Ω), for all r ∈ (1, 2]. (X.6.4)

Taking into account that for our model of liquid the density is a constant,
relation (X.6.4) with r = 2 shows that the kinetic energy in a steady motion
of a liquid in which a body moves with a constant velocity is, in general,
infinite, a fact first pointed out by Finn (1960).

1 p is possibly modified by addition of a constant.
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In order to show all the above, we introduce the following function space

Xq(Ω) =
{

(u, φ) ∈L1
loc(Ω) : u ∈ D2,q(Ω) ∩D4q/(4−q)(Ω) ∩ L2q/(2−q)(Ω) ;

∂u

∂x1
∈ Lq(Ω); φ ∈ D1,q(Ω) ∩L3q/(3−q)(Ω)

}
, q ∈ (1, 2) .

(X.6.5)
It is readily checked that Xq becomes a Banach space when endowed with the
“natural” norm

‖(u, φ)‖Xq := ‖u‖2q/(2−q)+|u|1,4q/(4−q)+

∥∥∥∥
∂u

∂x1

∥∥∥∥
q

+|u|q+‖φ‖3q/(3−q)+|φ|1,q .

(X.6.6)
The following result holds

Lemma X.6.1 Let Ω be a C2-smooth exterior three-dimensional domain,
and assume, for some q ∈ (1, 2), that

f ∈ Lq(Ω) ∩ L3/2(Ω) , v∗ ∈W 2−1/q,q(∂Ω) ∩W 4/3,3/2(∂Ω) . (X.6.7)

Then, every generalized solution v to the Navier–Stokes problem correspond-
ing to f , v∗ and to v∞ 6= 0, and the associated pressure field p2 satisfy
(v + v∞, p) ∈ Xq(Ω).

Proof. Without loss, we assume v∞ = e1. Also, since the actual value of
R is irrelevant in the proof, we set R = 1, for simplicity. Recalling that
v ∈ D1,2(Ω), we may find a sequence of second-order tensors {Gk} with
components in C∞

0 (Ω) such that Gk → ∇v in L2(Ω). Consider now the
problem

∆u+
∂u

∂x1
= u ·Ak + ∇φ+ F k

∇ · u = 0





in Ω

u = u∗ := v∗ + e1 at ∂Ω ,

(X.6.8)

where Ak := ∇v−Gk, F k := v ·Gk +f , while the integer k will be specified
successively. Clearly, (v + e1, p) is a solution to (X.6.8), for all k ∈ N. Our
plan is to show the existence of a solution to (X.6.8) in the class Xq(Ω),
and then prove that such a solution coincides with (v + e1, p). To this end,
we begin to observe that, in view of the assumption on f and the fact that
(v + e1) ∈ L6(Ω), it follows that F k ∈ Lq(Ω) ∩ L3/2(Ω), for all k ∈ N. We
now set Xq,3/2(Ω) = Xq(Ω) ∩X3/2(Ω), endowed with the norm ‖ · ‖Xq,3/2

:=
‖ · ‖Xq + ‖ · ‖X3/2

, and consider the map

M : (w, τ ) ∈ Xq,3/2(Ω) → (u, φ) := M(w, τ )

where (u, φ) satisfies:

2 Possibly modified by the addition of a constant.
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∆u+
∂u

∂x1
= w ·Ak + ∇φ+ F k

∇ · u = 0





in Ω

u = u∗ at ∂Ω .

(X.6.9)

Observing that, by the Hölder inequality and the fact that v ∈ D1,2(Ω),

‖w ·Ak‖s ≤ ‖w‖2s/(2−s)‖Ak‖2 <∞ , s ∈ (1, 2) , (X.6.10)

with the help of Theorem VII.7.1 we deduce, on the one hand, that the map
M is well-defined and, on the other hand, that there exists a (unique) solution
(u, φ) ∈ Xq,3/2(Ω) to (X.6.9) obeying the estimate (with q1 = q, q2 = 3/2)

‖(u, φ)‖Xq,3/2
≤ c

2∑

i=1

(
‖Ak‖2‖w‖2qi/(2−qi) + ‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)

≤ c

(
‖Ak‖2‖(w, τ )‖Xq,3/2

+

2∑

i=1

(
‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)
)
.

(X.6.11)
Thus, if we choose k such that

‖Ak‖2 ≤ 1/(2c) (X.6.12)

and define

δ := 2c

2∑

i=1

(
‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)
,

from (X.6.11) it follows at once that M maps the closed ball {(u, φ) ∈
Xq,3/2(Ω) : ‖(u, φ)‖Xq,3/2

≤ δ} into itself. Moreover, in view of the linear-
ity of the map M and of (X.6.12), from (X.6.11) with ‖F k‖qi = 0, i = 1, 2,
we deduce that M is a contraction and, therefore, there exists one and only
one (u, φ) ∈ Xq,3/2 solution to (X.6.8). Next, set (w, τ ) := (u−v−e1, φ−p).
We thus find

∆w+
∂w

∂x1
= w ·Ak + ∇τ

∇ ·w = 0





in Ω

w = 0 at ∂Ω .

(X.6.13)

Recalling that, by the assumption on v and (X.6.10), it is g := w · Ak ∈
L3/2(Ω), with the help of Theorem VII.7.1 we infer that the problem

∆w̃+
∂w̃

∂x1
= g + ∇τ̃

∇ · w̃ = 0





in Ω

w̃ = 0 at ∂Ω .

(X.6.14)
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has a (unique) solution (w̃, τ̃ ) in the class X3/2(Ω). We claim that (w̃, τ̃) =
(w, τ ). In fact, the fields z := w̃ −w and χ := τ̃ − τ solve the homogeneous
Oseen problem (X.6.14) with g ≡ 0. Furthermore, z ∈ L6(Ω), because w̃,u ∈
X3/2(Ω), while v + e1 ∈ L6(Ω) by assumption. Therefore, from Theorem
VII.6.2 and Exercise VII.6.2 we obtain z ≡ ∇χ ≡ 0. Consequently, w ∈
X3/2(Ω), and so, again by Theorem VII.7.1 applied to (X.6.13), we obtain

‖(w, φ)‖X3/2
≤ c ‖w ·Ak‖3/2 ≤ c ‖Ak‖2‖(w, φ)‖X3/2

.

Thus, by using (X.6.12) into this latter inequality, we deduce w ≡ ∇τ ≡ 0,
that is (u, φ) = (v + e1, p+C), for some C ∈ R, and the proof of the lemma
is complete.

ut

Combining the result of the previous lemma with those of Theorem X.5.1
we prove the following.

Theorem X.6.4 Let Ω be a C2-smooth, exterior three-dimensional domain
and assume that

f ∈ Lq(Ω), v∗ ∈W 2−1/q0,1/q0(∂Ω), v∞ 6= 0,

for some q0 > 3, and all q ∈ (1, q0]. Then every corresponding generalized
solution v to the Navier–Stokes problem (X.0.8), (X.0.4) satisfies the following
summability properties

(v + v∞) ∈ Lr(Ω) ,
∂v

∂x1
∈ Ls(Ω) , v ∈ D1,t(Ω) , p ∈ Lσ(Ω),

for all r ∈ (2,∞], s ∈ (1,∞], t ∈ (4/3,∞] and σ ∈ (3/2,∞] where p is (up to
a constant) the pressure field associated to v by Lemma X.1.1. If in addition,
Ω is of class C3, and f ∈ W 1,q0(Ω), v∗ ∈ W 3−1/q0,1/q0(∂Ω), then we have
also

v ∈ D2,τ (Ω) , p ∈ D1,τ (Ω) , (X.6.15)

for all τ ∈ (1,∞].

Proof. The stated summability properties, in the domain ΩR, follow at once
from Lemma X.6.1 and Theorem X.5.1. On the other hand, in the domain
ΩR, they are a consequence of Theorem IV.5.1. ut

Remark X.6.2 It is worth emphasizing that Theorem X.6.4 does not require
the vanishing of the flux of v∗ through the boundary ∂Ω. �

Remark X.6.3 Summability properties at large distances for higher order
derivatives can be likewise obtained by using Theorem VII.7.1, with f re-
placed by f + (v + v∞) · ∇v. To show this, let us assume, for simplicity, f
of bounded support in Ω. Observing that, by Theorem X.6.4 and by (X.6.15)
for sufficiently large R > δ(Ωc), we have
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N ≡ (v + v∞) · ∇v ∈W 1,τ(ΩR),

from Theorem VII.7.1, it follows that

v ∈ D3,τ (ΩR), p ∈ D2,τ (ΩR),

for all τ > 1. Then
N ∈W 2,τ(Ω)

for all τ > 1, and so on. Therefore, we can conclude, by iteration,

v ∈ Dm+2,τ (ΩR), p ∈ Dm+1,τ (ΩR),

for all m ≥ 0 and all τ > 1. �

The remaining part of this section is devoted to investigate the finiteness
of the kinetic energy of the liquid. To this end, we begin to observe that, from
Theorem X.5.3, it follows that for f ∈ Ls(Ω), s > 1, of bounded support in
Ω, the field u = v + v∞ (v∞ = e1) admits the following representation:

uj(x) = Eij(x)mi −R
∫

Ω

ul(y)ui(y)DlEij(x− y)dy + sj(x) (X.6.16)

where

mi = −
∫

∂Ω

[Til(u, p) + R (δ1lui − ului)]nl + R
∫

Ω

fi (X.6.17)

and
s ∈ Lτ (ΩR), for all τ > 3/2, (X.6.18)

see Exercise VII.6.3. Observing that, by (VII.3.21) and (VII.3.33),

∇E ∈ Lr(R3) for all r ∈ (4/3, 3/2),

and that, by Theorem X.6.4,

uiul ∈ Ls(Ω) for all s > 1,

from Young’s theorem on convolutions it follows that

∫

Ω

ul(y)ui(y)DlEij(x − y)dy ∈ Lt(Ω), for all t > 4/3. (X.6.19)

In view of (X.6.16)–(X.6.19), we then conclude that, for sufficiently large R,

u ∈ Lq(ΩR), q ∈ (3/2, 2] (X.6.20)

if and only if
Eijmj ∈ Lq(ΩR), q ∈ (3/2, 2]. (X.6.21)
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Consider now the quadratic form

Q ≡ Eij(x)Eij(x)mimk.

Starting from (VII.3.20) and using the symmetry properties of the tensor field
Eij(x), it is not hard to show that, for any ρ > 0,

∫

∂Bρ

Eij(x)Eik(x) = 0, j 6= k,

and so, the integrability of Q is reduced to that of

Q′ = m2
1E

2
11 +m2

2E
2
22 +m2

3E
2
33 + (m2

1 +m2
2)E

2
12

+(m2
1 +m2

3)E
2
13 + (m2

2 +m2
3)E

2
23.

(X.6.22)

However, as we know from (VII.3.30), for mi 6≡ 0, no term in the sum (X.6.22)
is integrable over ΩR and so (X.6.21) with q = 2 can not hold unless mi ≡ 0.
In fact, we can say more. Actually, since E(x) tends to zero as |x| → ∞,
(X.6.21) cannot hold for any of the specified values of q, unless mi ≡ 0. We
thus conclude that property (X.6.20) can hold if and only if some restrictions
are imposed on the motion itself and which are described by the conditions

mi ≡ −
∫

∂Ω

[Til(u, p) + R(δ1lui − ului)]nl + R
∫

Ω

fi = 0, i = 1, 2, 3.

(X.6.23)
From the physical point of view, (X.6.23) means that there is no net external
force applied to the “body” Ωc. This circumstance occurs in the case of steady
flow around a body which, for instance, propels itself either by maintaining a
momentum flux across portion of its boundary or by moving tangentially por-
tions of its boundary (as by belts). However, the existence theory related to
problems of this kind may be completely different than that developed so far
for the “classical” problem (X.0.3)–(X.0.4), in that the solution must obey the
extra conditions expressed by (X.6.23). As a consequence, one has to introduce
another unknown into the problem which, as suggested by physics, can be ei-
ther the velocity at the boundary, or the (nonzero) velocity at infinity. This
type of questions has been considered by several authors. Among others, we
refer to Sennitskii (1978, 1984) for flow around symmetric self-propelled bod-
ies, and to Galdi (1999a, 2002) for a general existence and uniqueness theory.
The asymptotic behavior of velocity and pressure fields has been investigated
in full detail by Pukhnacev (1989).

Another worth of mentioning circumstance where (X.6.23) occurs is the
case when Ω = R3 and f has zero average on Ω. In such a situation we thus
obtain, in particular, that the kinetic energy of the liquid is finite. For this
type of problems we refer to the papers of Bjorland & Schonbek (2009) and
Silvestre (2009), this latter also considering a more general choice of v∞.

However, there is also a very significant case where (X.6.23) can not hold
and, as a consequence, the total kinetic energy of the liquid is infinite. Specif-
ically, consider the situation when Ω is exterior to just one compact body B
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(say)3 and that v∗ ≡ f ≡ 0. Physically, this means that B is steadily moving
into the liquid with velocity v∞. In such a case (X.6.23) is equivalent to

∫

∂Ω

T (u, p) ·n = 0. (X.6.24)

On the other hand, in Theorem X.7.1 of the following section it will be proved
that v and p obey the energy equation

∫

Ω

∇v : ∇v = v∞ ·
∫

∂Ω

T (u, p) ·n , (X.6.25)

and , being v∞ 6= 0, from (X.6.24) and (X.6.25) it follows v ≡ 0 in Ω, which
gives an absurd conclusion. Therefore, (X.6.24) cannot hold and, consequently,
u (≡ v+v∞) cannot satisfy (X.6.20) for any of the specified values of q, which
proves, in particular, that the kinetic energy of the liquid is infinite.

The above considerations are collected in the following.

Theorem X.6.5 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) in a three-dimensional exterior domain of class C2 with
v∞ 6= 0 (v∞ = e1). Assume that, for some r, s > 1

v ∈W 2,r
loc (Ω) f ∈ Ls(Ω),

with f of bounded support and let ΩR ⊃ supp (f ). Then,

u ≡ v + v∞ ∈ Lq(ΩR), for some q ∈ (3/2, 2] (X.6.26)

if and only if

mi ≡ −
∫

∂Ω

[Til(u, p) + R (δ1lui − ului)]nl + R
∫

Ω

fi = 0, i = 1, 2, 3.

Moreover, if f ≡ v∗ ≡ 0, it follows that mi 6≡ 0, and therefore (X.6.26) can
not hold. Thus, in particular, under these latter conditions on the data, the
total kinetic energy of the liquid is infinite.

Exercise X.6.1 Under the assumptions of Theorem X.6.5, prove that if

v + v∞ ∈ Lq(Ω), for some q ∈ (1, 2], (X.6.27)

then mi ≡ 0. Thus, if f ≡ v∗ ≡ 0, (X.6.27) can not hold.

Exercise X.6.2 Let the assumptions of Theorem X.6.5 be satisfied. Suppose, also,

that f ≡ 0, v∗ ≡ v0 = const. Show that (X.6.27) holds if and only if v ≡ v0 ≡ e1.

3 This restriction is, of course, unnecessary. As assumed so far, Ω can be exterior
to s ≥ 1 compact bodies.
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X.7 The Energy Equation and Uniqueness for
Generalized Solutions when v∞ 6= 0

Our objective here is two-fold. On one hand, we show that, under suitable
regularity assumption on the data, weak solutions corresponding to v∞ 6= 0

satisfy the energy equation, and, on the other hand, that if the data are
“sufficiently small”, they are unique in their own class.

We begin to give a sufficient condition for the validity of the energy equal-
ity.

Theorem X.7.1 Let Ω be a C2-smooth exterior three-dimensional domain,
and let v be a generalized solution to the Navier–Stokes problem (X.0.8),
(X.0.4) corresponding to the data

f ∈ L4/3(Ω) ∩ L3/2(Ω) , v∗ ∈W 4/3,3/2(∂Ω) , v∞ 6= 0 . (X.7.1)

Then v verifies the energy equation (X.2.29), where p is the pressure field
associated to v by Lemma X.1.1.

Proof. Under the assumption (X.7.1), from Lemma X.6.1 we have, in partic-
ular,

v + v∞ ∈ L4(Ω), v∞ · ∇v ∈ L4/3(Ω),

so that (X.2.11) holds with q = 4. Thus, the result follows from Remark X.2.6
and Exercise X.2.2. ut

An important corollary to Theorem X.7.1 is the following result of Liouville-
type.

Theorem X.7.2 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) in R3 corresponding to f ≡ 0 and v∞ 6= 0. Then
v(x) = −v∞ for all x ∈ R3.

Remark X.7.1 Theorem X.7.2 necessitates the condition v∞ 6= 0. It is not
known if the result continues to be valid when v∞ = 0. In this respect, cf.
Remark X.9.4. �

We shall now investigate the uniqueness problem. To this end, we begin
to show that if f (at large distances) and v∗ have some property in addition
to those required in Theorem X.7.1, and if the data are suitably “small,” the
corresponding generalized solution satisfies conditions (X.3.3) and (X.3.5).

Lemma X.7.1 Let the assumptions of Theorem X.7.1 be satisfied and as-
sume, in addition, that

f ∈ L6/5(Ω)

R‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω) <
a1

R min

{
1

4c2
,

√
3

4c

}
(X.7.2)
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where
c = c (Ω,B) for all R ∈ [0, B]

and
a1 = min{1,R1/2}.

Then any generalized solution corresponding to f , v∗, and v∞ satisfies (v +
v∞) ∈ L3(Ω)1 along with the inequality

‖v + v∞‖3 <

√
3

2R . (X.7.3)

Proof. We begin to show that under hypothesis (X.7.2) there exists a gener-
alized solution w′, say, verifying the condition

‖w′ + v∞‖3 <

√
3

2R (X.7.4)

To this end, we may employ, for example, the method of successive approxima-
tions. We introduce a sequence of approximating solutions {wk, πk}, defined
by w0 ≡ π0 ≡ 0 and, for k ≥ 1,

∆wk + R∂wk

∂x1
= Rwk−1 · ∇wk−1 + ∇πk + Rf

∇ ·wk = 0





in Ω

lim
|x|→∞

wk(x) = 0,

wk = v∗ + v∞ at ∂Ω.

(X.7.5)

By Theorem VII.7.1 with m = 0 and q = 6/5, we know that, for k = 1, there
is a solution w1, π1 such that

w1 ∈ L3(Ω) ∩D1,12/7(Ω) ∩D2,6/5(Ω),

π1 ∈ D1,6/5(Ω),

and obeying the estimate

a1‖w1‖3 + a2|w1|1,12/7+ |w1|2,6/5 + |π1|1,6/5

≤ c1 (R‖f‖6/5 + ‖v∗ − v∞‖7/6,6/5(∂Ω))

≡ c1 D,
(X.7.6)

where c1 = c1(q, Ω) is independent of R for R ∈ (0, B] and

1 Observe that this property follows from the assumptions on the data and Lemma
X.6.1.
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a1 = min{1,R1/2} , a2 = min{1,R1/4}.

Since, by Theorem II.6.1,

|w1|1,2 ≤ c2|w1|2,6/5, (X.7.7)

(X.7.6) furnishes, in particular,

a1‖w1‖3 + |w1|1,2 + |w1|2,6/5 + |π1|1,6/5 ≤ cD, (X.7.8)

with c = c(Ω,B) independent of R ∈ (0, B]. We next show, by induction, that
the following inequality is verified for all k ∈ N

a1‖wk‖3 + |wk|1,2 + |wk|2,6/5 + |πk|1,6/5 ≤ 2cD, (X.7.9)

provided D is “small enough.” Thus, assuming wk, πk obey (X.7.9), by The-
orem VII.7.1 we recover

a1‖wk+1‖3 + |wk+1|1,2 + |wk+1|2,6/5+ |πk+1|1,6/5

≤ c
(
D + R‖wk · ∇wk‖6/5

)
.

(X.7.10)

Now we have
‖wk · ∇wk‖6/5 ≤ ‖wk‖3|wk|1,2

and, by induction hypothesis,

‖wk · ∇wk‖6/5 ≤ 4c2D2/a1,

so that (X.7.10) shows that if

D < a1/4c
2R, (X.7.11)

then inequality (X.7.9) is satisfied for all k ∈ N. It is now easy to prove that
{wk, πk} is a Cauchy sequence in the space

S ≡
(
L3(Ω) ∩ Ḋ1,2(Ω) ∩ Ḋ2,6/5(Ω)

)
× Ḋ1,6/5(Ω).

In fact, from (X.7.5) we deduce that

a1‖wk+1 −wk‖3 + |wk+1 −wk|1,2 + |wk+1 −wk|2,6/5 + |πk+1 − πk|1,6/5

≤ cR‖wk · ∇wk −wk−1 · ∇wk−1‖6/5,

and since

‖wk · ∇wk −wk−1 · ∇wk−1‖6/5 ≤ ‖wk −wk−1‖3|wk|1,2

+‖wk‖3|wk −wk−1|1,2 ,

in view of (X.7.9) we conclude, for all k ≥ 1,
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a1‖wk+1 −wk‖3 + |wk+1 −wk|1,2

+ |wk+1 −wk|2,6/5 + |πk+1 − πk|1,6/5

≤ (4c2RD/a1)(a1‖wk −wk−1‖3 + |wk −wk−1|1,2).

From this inequality we receive, for all k ≥ 1,

a1‖wk+1 −wk‖3 + |wk+1 −wk|1,2

+|wk+1 −wk|2,6/5 + |πk+1 − πk|1,6/5 ≤ (4c2RD/a1)
k+1,

which, by (X.7.11) and virtue of a standard argument, implies that the se-
quence {wk, πk} is a Cauchy sequence in the space S. Denoting by w, π the
limiting field, we then have

w ∈ L3(Ω) ∩D1,2(Ω) ∩D2,6/5(Ω)

π ∈ D1,6/5(Ω)

and, moreover, w, π obey the estimate (X.7.9). In addition, setting

w′ = w + v∞, (X.7.12)

and recalling that, in particular, w is a generalized solution, from Lemma
X.6.1 we find

w′ + v∞ ∈ L4(Ω) , v∞ · ∇w′ ∈ L4/3(Ω) (X.7.13)

and, if the data satisfy (X.7.2)2, we also have that w′ obeys (X.7.4). Now
let v denote any generalized solution corresponding to f , v∗, and v∞. From
Lemma X.6.1 we find

v + v∞ ∈ L4(Ω)

v∞ · ∇v ∈ L4/3(Ω)
(X.7.14)

and, by Theorem X.7.1, we obtain that

v verifies the generalized energy equality (X.2.28) (X.7.15)

for any extension A of v∗ and v∞.2 Observing that f ∈ L6/5(Ω) implies f ∈
D−1,2

0 (Ω) (as a consequence of Sobolev inequality (II.3.11)), the uniqueness
Theorem X.3.1, together with (X.7.12)–(X.7.15)3 and (X.7.4), furnishesw = v

a.e. in Ω. The lemma is proved. ut

From Lemma X.7.1 and Theorem X.7.1 we immediately obtain the follow-
ing uniqueness theorem for generalized solutions corresponding to v∞ 6= 0.

2 Actually, v satisfies the energy equation (X.2.29) in its classical form.
3 See footnote 1 in this section.
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Theorem X.7.3 Let Ω be a three-dimensional exterior domain of class C2.
Further, let

f ∈ L6/5(Ω) ∩L4/3(Ω), v∗ ∈W 5/4,4/3(∂Ω), v∞ 6= 0.

Then if (X.7.2)2 is satisfied, v is the only generalized solution achieving these
data.

X.8 The Asymptotic Structure of Generalized Solutions
when v∞ 6= 0

In this section we conclude the study of the asymptotic behavior of generalized
solutions with v∞ 6= 0, by showing that they have the same structure as the
corresponding solutions to the Oseen problem. In particular, they exhibit a
“downstream” paraboloidal wake region and the rate of convergence of the
velocity field v to −v∞ is more rapid outside the wake than inside.

For the reader’s convenience, we collect the estimates on the tensor field E
derived in (VII.3.24), (VII.3.32), and Exercise VII.3.1, which will be frequently
used in the sequel:

|Eij(x− y)| ≤ c |x− y|−1

|∇Eij(x− y)| ≤ c |x− y|−3/2

∫

∂BR(x)

|∇Eij(x− y)| ≤ cR−1/2.

(X.8.1)

Our first objective is to recover an appropriate uniform estimate for u(x) =
v(x)+v∞, for large values of |x|, where, as usual and without loss of generality,
we take v∞ = e1. For simplicity, we shall assume that the body force f is of
bounded support. Let Ω denote, temporarily, the exterior of Bρ, where ρ is
taken large enough to satisfy Bρ ⊃ supp (f). By Theorem X.1.1 we then have
that v, p ∈ C∞(Ω) and that v, p enjoy the summability properties proved in
Theorem X.6.4. From the asymptotic formulas (X.5.50)–(X.5.52) we have

u(x) = N [u(x)] +O(1/|x|) as |x| → ∞ (X.8.2)

where

Nj = (N [u(x)])j =

∫

Ω

Eij(x− y)ul(y)Dlui(y)dy.

We wish to give a uniform estimate for N . To this end, setting |x| = 2R, we
may write

Nj =

∫

ΩR

Eij(x− y)ul(y)Dlui(y)dy +

∫

ΩR

Eij(x− y)ul(y)Dlui(y)dy

≡ N1 + N2.
(X.8.3)
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Recalling (X.8.1)1, it follows that

|N1| ≤
c

R
‖u‖3,ΩR |u|1,3/2,ΩR

≤ 2c

|x|‖u‖3|u|1,3/2.

This inequality and Theorem X.6.4 yield

|N1| ≤ c1|x|−1. (X.8.4)

Furthermore, from Theorem II.6.1 (cf. (II.6.20)) and (X.8.1)1 we also have

|N2| ≤
(∫

ΩR

u2

|x− y|2
)1/2(∫

ΩR

∇u : ∇u
)1/2

≤ c

∫

ΩR

∇u : ∇u (X.8.5)

with c2 independent of u and R. Setting

G(R) ≡
∫

ΩR

∇u : ∇u (X.8.6)

from (X.8.2)–(X.8.5) we deduce that estimating the nonlinear term N [u(x)]
is reduced to estimating the functions G(R), R = |x|/2. This latter question
will be analyzed in the next two lemmas. We begin with a simple but very
useful result.

Lemma X.8.1 Suppose that for all t > a ≥ 0,

(i) y ∈ C1([a, t]),
(ii) y(t) ≥ 0,
(iii) y′(t) ≤ 0,

and that, for some β ∈ [0, 1),

∫ ∞

a

y(s)s−βds <∞.

Then, for all t ≥ a,

y(t)t1−β ≤ (1 − β)

∫ ∞

a

y(s)s−βds+ y(a)a1−β .

Proof. The assertion is an immediate consequence of the identity

y(t)t1−β =

∫ t

a

d

ds
[y(s)s1−β ]ds+ y(a)a1−β

and of the assumptions made on y. ut

Lemma X.8.1 allows us to prove the following estimate for G(R).
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Lemma X.8.2 Let v be a generalized solution to the Navier–Stokes problem
inΩ = R3−Bρ corresponding to f = 0 and v∞ 6= 0. Then, setting u = v+v∞,
for all R > ρ, it holds that

G(R) ≤ cR−1+ε (X.8.7)

where G is defined in (X.8.6), ε is an arbitrary positive number and c is
independent of R.

Proof. As usual, we assume v∞ = e1. We recall that v and the corresponding
pressure p are in C∞(Ω). Multiplying (X.0.8) by u and integrating over ΩR,R∗ ,
(R∗ > R), it follows that

∫

ΩR,R∗
∇u : ∇u =

∫

∂BR∪∂BR∗

{
u · ∂u

∂n
− R

2
u2v · n− p(u · n)

}
. (X.8.8)

From Theorem X.6.4 we derive, in particular,

Ψ ≡ |u|3 + |∇u|3/2 + |u|5/2 + |p|5/3 ∈ L1(Ω). (X.8.9)

Therefore, there exists a sequence {Rk} tending to infinity as k tends to
infinity, such that ∫

∂BRk

Ψ(Rk, ω)dω = o(R−1
k ). (X.8.10)

Using Young’s inequality several times and the Hölder inequality, we deduce
(with r denoting either R or R∗)

F (r) ≡
∫

∂Br

[
u · ∂u

∂n
− R

2
u2v · n− p(u ·n)

]

≤ c

{∫

∂Br

[
u3 + |∇u|3/2 + u5/2 + p5/3

]
+ r2/q′

(∫

∂Br

u2q

)1/q
}

(X.8.11)
where q is an arbitrary number greater than one. Taking in (X.8.11) r ≡ R∗ =
Rk, q = 3/2 and using (X.8.9), (X.8.10), it follows that

lim
k→∞

F (Rk) = 0,

and(X.8.8) furnishes

G(R) = F (R). (X.8.12)

For any ε ∈ (0, 1), by Young’s inequality,

H(R) ≡ R−εR2/q′
(∫

∂BR

u2q

)1/q

≤ c

(
R−εq′+2 +

∫

∂BR

u2q

)
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and so, taking q < 3/(3−ε), and recalling that, by Theorem X.6.4, u ∈ Ls(Ω)
for all s > 2, we have

H ∈ L1(ρ,∞). (X.8.13)

Collecting (X.8.9), (X.8.11), and (X.8.13) yields

R−εF (R) ∈ L1(ρ,∞) (X.8.14)

and, since

G′(R) = −
∫

∂BR

∇u : ∇u < 0, (X.8.15)

from (X.8.12), (X.8.14), and (X.8.15), with the help of Lemma X.8.1, we
obtain (X.8.7), and the proof is complete. ut

Using (X.8.3)–(X.8.5), together with the results of Lemma X.8.2, we then
have the following uniform estimate for the nonlinear term:

|N [u(x)]| ≤ c|x|−1+ε, for any ε ∈ (0, 1], (X.8.16)

for some c = c(ε) (c → ∞ as ε → 0). From (X.8.2) and (X.8.16) we thus
obtain the following.

Lemma X.8.3 Let v be a generalized solution to the Navier–Stokes problem
in a three-dimensional exterior domain Ω with f of bounded support and
v∞ 6= 0. Then, for all sufficiently large |x|, the following uniform estimate
holds:

v(x) + v∞ = O(1/|x|1−ε), for any ε ∈ (0, 1].

With this result in hand, we can now show the following theorem which
furnishes the asymptotic structure of any generalized solution corresponding
to a body force of bounded support.

Theorem X.8.1 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8)–(X.0.4) in a three-dimensional exterior domain of class C2, cor-
responding to v∞ 6= 0, f of bounded support in Ω, and, moreover, with

f ∈ Lq(Ω), v∗ ∈ W 2−1/q0,1/q0(∂Ω),

for some q0 > 3 and all q ∈ (1, q0]. Then for all sufficiently large |x|, v admits
the following representation:

v(x) + v∞ = m ·E(x) + V(x) (X.8.17)

where E is the Oseen fundamental tensor,

mi = −
∫

∂Ω

[Til(u, p) + R (δ1lui − uiu`)]nl + R
∫

Ω

fi, (X.8.18)

with u := v + v∞, and V(x) satisfies the estimate

V(x) = O(|x|−3/2+δ) for any δ > 0. (X.8.19)
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Proof. In view of Theorem X.5.3, formula (X.5.50)2, it suffices to show the
uniform estimate

∣∣∣∣
∫

Ω

ul(y)ui(y)DlEij(x− y)dy

∣∣∣∣ = O(|x|−3/2+δ). (X.8.20)

Setting |x| = R sufficiently large, we divide the region Ω into three parts:

ΩR/2, ΩR/2,3R, Ω3R

and denote the corresponding integrals over these regions by I1, I2, and I3,
respectively. Using (X.8.1)2 and the Hölder inequality, we find

|I1| ≤
c

R3/2

∫

ΩR/2

u2 ≤ c1R
3(1/q′−1/2)‖u‖2

2q

and so, choosing q = 3/(3− δ), from Theorem X.6.4 it follows that

|I1| ≤ c2|x|−3/2+δ. (X.8.21)

Furthermore, recalling Lemma X.8.3, we have

|I2| ≤ c3R
−2+2ε

∫

ΩR/2,3R

|E(x− y)| dy ≤ c3R
−2+2ε|E|1,1,B4R(x)

and so, in view of (X.8.1)3, choosing ε = δ/2, we recover

|I2| ≤ c4|x|−3/2+δ. (X.8.22)

Finally, from Lemma X.8.3 and an obvious majoration it follows that

|I3| ≤ c5

∫

Ω3R

|y|−2+2ε|∇E(x− y)|dy ≤ c5

∫

B2R(x)

|y|−2+2ε|∇E(x − y)|dy ,

where we have used the fact that |x| = R. Now, for any y ∈ B2R(x) we find
|x− y| ≤ |y| + R ≤ 2|y|, so that the above inequality leads to the following
one

|I3| ≤ c6

∫

B2R(x)

|x− y|−2+2ε|∇E(x− y)|dy ,

which, in turn, by (X.8.1)3 furnishes

|I3| ≤ c7

∫ ∞

2R

r−2+2εr−1/2dr ≤ c8R
−3/2+2ε .

This latter, with the choice ε = δ/2, implies

|I3| ≤ c9|x|−3/2+δ. (X.8.23)

The validity of (X.8.20) is a consequence of (X.8.21)–(X.8.23) and the theorem
is proved. ut
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Remark X.8.1 From (X.8.17) and the properties of the tensor field E (cf.
(VII.3.24)–(VII.3.26)), we deduce, in particular, that any generalized solution
of Theorem X.8.1 exhibits a paraboloidal wake region in the direction of v∞(=
e1). Specifically, for all sufficiently large |x| we have the uniform estimate

v(x) + v∞ = O(1/|x|). (X.8.24)

On the other hand, denoting by ϕ the angle made by a ray starting from the
origin (in Ωc, say) with the negatively directed x1-axis, for all x satisfying1

|x|(1 + cosϕ) ≥ |x|2σ, σ ∈ (0, 1/2], (X.8.25)

we have
v(x) + v∞ = O(1/|x|1+α) (X.8.26)

where
α = min(2σ, 1/2− δ). (X.8.27)

Relations (X.8.24)–(X.8.27) then show the mentioned behavior of v. Compar-
ing (X.8.26) with the analogous estimate for E given in (VII.3.26) or, what
amounts to the same thing, with the estimate for the velocity field of the cor-
responding Oseen linearized problem given by (VII.6.18), we recognize that
(X.8.26) is apparently weaker, because we cannot take α = 2σ, for σ ≥ 1/4.
This latter circumstance is due to the fact that, in the proof of Theorem X.8.1,
we have given a uniform bound for the nonlinear term

N(x) ≡
∫

Ω

ul(y)ui(y)DlEij(x− y)dy.

However, also for N , we can prove estimates whose decay order is faster than
(X.8.21) if x belongs to the region Rσ described by (X.8.25). This will, in turn,
furnish more accurate estimates for the remainder V(x), defined in (X.8.17),
for x ∈ Rσ. For example, Finn (1959b, Theorem 8) has shown the following
asymptotic bound for V(x):

V(x) = O
(
|x|−3/2+δ−2σ

)
, for all x ∈ Rσ.

Sharper estimates for V(x) can be found in the work of Finn (1965a, Theo-
rem 5.1) and Vasil’ev (1973) and, under suitable restriction on m, in that of
Babenko & Vasil’ev (1973). �

An immediate consequence of Theorem X.8.1 is that the uniform estimate
(X.8.24) is sharp in the sense specified by the following result, whose first
formulation traces back to the work of Udeschini (1941), Berker (1952), and
Finn (1959b).2

1 See Remark IX.3.1.
2 See also Exercise X.8.1.



X.8 The Asymptotic Structure of Generalized Solutions when v∞ 6= 0 715

Corollary X.8.1 Let the assumptions of Theorem X.8.1 be satisfied for some
v∞ 6= 0. Then

v + v∞ = o (1/|x|)
if and only if the vector m defined in (X.8.18) is zero.3

Proof. We can take, as usual, v∞ = e1. By Theorem X.8.1 we have at once
that, ifm is zero, then v+v∞ satisfies the stated property. Conversely, assume
that such a property holds. On the ray x2 = x3 = 0, x1 > 0, from (VII.3.20),

E21(x) = E31(x) = 0 |E11(x)| > c|x|−1

and so, by Theorem X.8.1 it follows that m1 = 0. A similar argument proves,
in turn, m2 = m3 = 0, and the corollary follows. ut

Exercise X.8.1 Let the assumptions of Corollary X.8.1 hold. Suppose, further,

that f ≡ 0 and v∗ ≡ v0 = const. Show that v + v∞ = o(1/|x|) if and only if

v ≡ v0 ≡ −v∞.

Let us now turn our attention to the behavior at infinity of the first
derivatives of the velocity field. Our starting point is again the representa-
tion (X.5.50)2. However, we cannot differentiate this formula under the sign
of integration because of the singularity of the term DlEij(x−y). Nevertheless,
observing that

∫

Ω

ul(y)Dlui(y) DkEij(x− y)dy

= −
∫

Ω−B1(x)

ul(y)ui(y)DlDkEij(x− y)dy

+

∫

B1(x)

DkEij(x− y)ul(y)Dlui(y)dy

+

∫

∂B1(x)

DkEij(x− y)ul(y)ui(y)nl(y)dσy

+

∫

∂Ω

DkEij(x − y)ul(y)ui(y)nl(y)dσy

we may use this identity in (X.5.50)1 to find

Dkuj(x) = miDkEij(x) +Dks
(2)
j (x) −R (Nj(x) + Ij(x) − ıj(x)) (X.8.28)

where

3 Compare this result with that of Theorem X.6.5.
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Nj(x) =

∫

Ω−B1(x)

ul(y)ui(y)DkDlEij(x− y)dy

Ij(x) =

∫

B1(x)

DkEij(x − y)ul(y)Dlui(y)dy

ıj(x) =

∫

∂B1(x)

DkEij(x− y)ul(y)ui(y)nl(y)dy

and s(2) satisfies (X.5.52)1,2. Clearly, in view of (VII.3.32) and (X.5.52)1 we
need to estimate only the term in brackets in (X.8.28). To this end, we recall
the following bounds (cf. (VII.3.35) and Exercise VII.3.1),

|DkDlE(x − y)| ≤ c |x− y|−2

∫

∂BR(x)

|DkDlE(x − y)| ≤ cR−1.
(X.8.29)

Setting |x| = R and splitting Nj as the sum of three integrals, n1, n2, and
n3, over ΩR/2, ΩR/2,2R − B1(x), and Ω2R, respectively, from (X.8.29)1 and
Theorem X.6.4 we deduce

|n1| ≤
1

R2

∫

ΩR/2

u2 ≤ cR3/q′−2‖u‖2
2q ≤ c1|x|−2+ε (X.8.30)

where ε is a positive number that can be taken arbitrarily close to zero (at
the cost, of course, of increasing the value of c1). The other two terms, n2 and
n3, are estimated exactly as the integrals I2 and I3 introduced in the proof of
Theorem X.8.1 (cf. (X.8.22), (X.8.23)) using, this time, (X.8.29)2 in place of
(X.8.1)3. We then obtain

|n2| + |n3| ≤ c2|x|−2+ε. (X.8.31)

Moreover, bearing in mind that v satisfies the uniform estimate (X.8.24), from
(X.8.1)2 we recover

|ıj| ≤ c3|x|−2. (X.8.32)

It remains to give an upper bound to Ij(x). To this purpose, we notice that
from Lemma VII.6.3 it follows for all sufficiently large |x|

Dkuj(x) = −
∫

Bd(x)

(
ul(y)Dlui(y)DkE

(d)
ij (x− y)−ui(y)DkH(d)

ij (x− y)
)
dy

(X.8.33)
and since, by Theorem X.5.1,

|∇u(x)| ≤M

for sufficiently large |x| and with M independent of x, we recover



X.8 The Asymptotic Structure of Generalized Solutions when v∞ 6= 0 717

|∇u(x)| ≤ c4|x|−1. (X.8.34)

Thus, from (X.8.1)2, (X.8.24), and (X.8.34) we conclude that

|Ij(x)| ≤ c5|x|−2. (X.8.35)

Therefore, identity (X.8.28) along with (VII.3.32), (X.5.52)1, (X.8.30)–(X.8.32),
and (X.8.35), allows us to deduce the following theorem.

Theorem X.8.2 Let the assumptions of Theorem X.8.1 hold. Then for all
sufficiently large |x|, Dkv(x), k = 1, 2, 3, admits the following representation:

Dkv(x) = m ·DkE(x) + Dk(x) (X.8.36)

where E is the Oseen fundamental tensor, m is given in (X.8.18) and Dk(x)
satisfies the estimate

Dk(x) = O(|x|−2+ε), (X.8.37)

where the positive number ε can be taken arbitrarily close to zero.

Remark X.8.2 Taking into account the asymptotic properties of DkE(x),
cf. (VII.3.31), (VII.3.32), from (X.8.28) it is possible to derive sharper esti-
mates for the gradient of the velocity, according to whether we are or are not
in the paraboloidal wake region. In this regard, it should be observed that the
uniform estimate (X.8.37) can also be slightly improved. For example, Finn
(1959b, Theorem 9) has proved the following bound

|Dk(x)| ≤
{
c |x|−2, uniformly in x ∈ Ω

c |x|−2−4σ, x in the region (X.8.25),
(X.8.38)

for all σ < σ. For more accurate bounds, we refer the reader to Finn (1965a,
Theorem 5.3) and to Babenko & Vasil’ev (1973, Section 3.3). �

Remark X.8.3 It should be emphasized that the method adopted in the
proof of Theorem X.8.2 does not apply to higher-order derivatives in the
sense that it does not furnish for such derivatives improved bounds at large
distances. For example, consider D2v(x). We would expect that as |x| → ∞

D2v(x) = m ·D2E(x) +O(|x|−2−α),

for some α > 0. Now, differentiating twice (X.5.50)1 and suitably manipulat-
ing the volume integral as we did in the proof of Theorem X.8.2, we obtain
the following relation
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DkDsuj(x) =miDkDsEij(x) +DkDss
(2)
j

−R
∫

Ω−B1(x)

ul(y)ui(y)DlDkDsEij(x− y)dy

+R
∫

∂B1(x)

ul(y)Dlui(y)DsEij(x− y)nk(y)dσy

+R
∫

B1(x)

Dk(ul(y)Dlui(y))DsEij(x− y)dy

−R
∫

∂B1(x)

ul(y)ui(y)DkDsEij(x− y)nl(y)dσy.

(X.8.39)

Using Lemma VII.6.3 and the estimate

|∇u(x)| = O(|x|−3/2), (X.8.40)

we can show

|D2u(x)| = O(|x|−3/2). (X.8.41)

Employing (X.8.40), (X.8.41) into (X.8.39) together with the asymptotic
bounds for E and s(2), and recalling that

v + v∞ = O(|x|−1), (X.8.42)

we can show

DkDsuj(x) = miDkDsEij(x) + O(|x|−5/2+ε)

−R
∫

∂B1(x)

ul(y)ui(y)DkDsEij(x− y)nl(y)dσy ,

where ε is a positive number arbitrarily close to zero. However, for the last
term on the right-hand side of this relation we can only say that it behaves as
|x|−2 for large |x|, and so no improved bound can be deduced on the second
derivatives of v.

The problem of the asymptotic structure of the second derivatives of a
generalized solution has been taken up and sharply solved by Deuring (2005).
In particular, this author proves that, similarly to v and ∇v, also DkDsv

behaves “almost” like the corresponding quantities calculated for the Oseen
tensor E. More precisely, he shows the following estimate as |x| → ∞

DkDsv(x) = α · (DkDsE(x)) + O
(
|x|−5/2 ln2 |x|

)
,

where α ∈ R3 is suitable. In the same paper, an estimate of the asymptotic
behavior of ∇p is also provided. �
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Our next objective is to obtain an asymptotic formula for the pressure
field p associated to the generalized solution v. The starting point is the
representation (X.5.50)3, which can be written as

p(x) = p′0 − M∗ · e(x) + R
3∑

i=1

Pi(x) + h(x) (X.8.43)

with M∗ and h(x) given by (X.5.51)3 and (X.5.52)3, respectively, and

P1(x) = −R
∫

ΩR/2

ei(x− y)ul(y)Dlui(y)dy

P2(x) = −R
∫

ΩR/2,2R

ei(x− y)ul(y)Dlui(y)dy

P3(x) = −R
∫

Ω2R

ei(x− y)ul(y)Dlui(y)dy

where R = |x|. From the inequality

|ei(x− y)| ≤ c|x− y|−2

(cf. (VII.3.17)), from (X.8.42) and the uniform bound on the gradient of v
given by (X.8.36), (X.8.38), we easily obtain

|P1(x)| ≤
c

|x|2 ‖u‖3|u|1,3/2 ≤ c1|x|−2

|P2(x)| ≤
c2

|x|3
∫

ΩR/2,2R

|e(x− y)|dy ≤ c3|x|−2

|P3(x)| ≤ c4

∫ ∞

2R

ρ−3dρ ≤ c5|x|−2 ,

(X.8.44)

where we have employed the summability properties of u, ∇u as established
in Theorem X.6.4. Collecting (X.8.43), (X.8.44) and recalling the asymptotic
properties of e and h we then have the following.

Theorem X.8.3 Let the assumptions of Theorem X.8.1 hold and let p be the
pressure field associated to v by Lemma X.1.1. Then there exists a constant p′0
such that, for all sufficiently large |x|, p(x) admits the following representation:

p(x) = p′0 − M∗ · e(x) + P(x) (X.8.45)

where e is the Oseen fundamental pressure field (VII.3.14), M∗ is defined in
(X.5.51)3 and P(x) satisfies the estimate

P(x) = O(|x|−2).
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Remark X.8.4 Also for the pressure field one can give an asymptotic esti-
mate that is sharper than (X.8.45). For example, Finn (1959b, Theorem 10)
has shown that, provided M∗ is modified by adding to it a suitable (constant)
vector, one has

|P(x)| ≤
{
c|x|−2 uniformly in x ∈ Ω

c|x|−2−2σ x in the region (X.8.25)

for all σ < σ. Further asymptotic estimates on the pressure can be found in
Finn (1965a, Theorem 5.4). �

We end this section by describing the asymptotic structure of the vorticity
fieldω = ∇×v associated to a solution v to (X.0.8), (X.0.4) with v∞ 6= 0. This
problem has been studied in full detail by several authors; cf. Clark (1971),
and Babenko & Vasil’ev (1973, §4). The main result states, essentially, that
if f is of bounded support and v satisfies an estimate of the form

v(x) + v∞ = O(|x|−1/2−ε) (X.8.46)

for some ε > 0, then the principal term in the representation of ω at large
distances is the curl of the principal term of the representation (X.8.17) for v.
However, as we know from Theorem X.8.1, every generalized solution obeys
(X.8.46) and so the vorticity field of every generalized solution satisfies the
preceding property. Thus, in particular, combining Theorem X.8.1 and a the-
orem of Clark (1971, Theorem 3.5) one can show the following result, whose
rather long proof will be omitted.

Theorem X.8.4 Let the assumptions of Theorem X.8.1 be satisfied. Then
the vorticity field ω = ∇× v obeys the following representation for all suffi-
ciently large |x|

ω(x) = ∇G(x) ×m+ H(x),

where

G(x) ≡ e−ρ

4πR|x| , ρ =
R
2

(|x|+ x1),

m is defined in (X.5.51), and

H(x) = O(e−ρ|x|−2 log |x|).

From this theorem it follows, in particular, that the vorticity field of any
generalized solution decays exponentially fast in the region (X.8.25) with σ =
1/2, i.e., outside any semi-infinite straight cone of finite aperture having the
axis coincident with the negative x1-axis.
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X.9 On the Asymptotic Structure of Generalized
Solutions when v∞ = 0

The methods we used to investigate the asymptotic structure of a generalized
solution corresponding to v∞ 6= 0, no longer apply when v∞ = 0. The reason
is basically due to the different properties possessed at infinity by solutions
to the Oseen and Stokes problems, respectively. More specifically, what we
cannot do when v∞ = 0 is to show (under suitable assumptions on the body
force) an analog of Lemma X.6.1 that would ensure that the velocity field v
belongs to Lq(ΩR) for some q < 6. As a matter of fact, existence of solutions
corresponding to v∞ = 0 and to data of arbitrary “size”, in the class Lq in a
neighborhood of infinity, with q ∈ (1, 6), is, to date, an open question.

Nevertheless, by using a completely different approach due to Galdi
(1992c), we can still draw some interesting conclusion on the asymptotic
structure of generalized solutions corresponding to v∞ = 0 which, further,
satisfy the energy inequality (X.4.19). (As we know from the existence Theo-
rem X.4.1, this class of solutions is certainly not empty.) Specifically, we shall
show that, provided a certain norm of the data is sufficiently small compared
to R−2 (namely, to the square of the kinematic viscosity), every corresponding
generalized solution v satisfying the energy inequality behaves for large |x| as
|x|−1. Moreover, employing a simple scaling argument due to Šverák & Tsai
(2000), we can prove that, if f is of bounded support,1 the derivatives Dαv,
behave like |x|−|α|−1, while the derivatives, Dαp, of the corresponding pres-
sure field p, decay like |x|−|α|−2. In other words, v, p possess the asymptotic
properties of the fundamental Stokes tensor U , e. The question of whether
such a result continues to hold for large data also remains open.

It must be also emphasized that, as shown by Deuring & Galdi (2000),
even though v behaves, for large |x|, like U , it does not admit an asymptotic
expansion where the leading term is of the form m · U , for some (constant)
non-zero vector m. This issue has been taken up by Nazarov & Pileckas (2000)
and, successively, by Korolev & Šverák (2007, 2011). In particular, the latter
authors have demonstrated that the leading term coincides with a suitable
exact (and singular) solution of the full nonlinear problem obtained by Landau
(1944); see Remark X.9.3.

The proof of the main result is based on a certain number of steps. To
render the presentation simpler, we shall restrict ourselves to the case where
v∗ ≡ 0 and shall suppose that the body force f can be written in divergence
form, namely, f = ∇ ·F , with F a second-order tensor field.2 For G a vector
or second order tensor field, we recall the notation:

[|G|]β ≡ sup
x∈Ω

[
(1 + |x|β)|G(x)|

]
.

1 Concerning this assumption, see footnote 4.
2 This latter condition is not, in fact, a restriction, provided we give some regularity

on f ; cf. Exercise III.3.1. See also Lemma VIII.5.1.
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We begin with the following.

Lemma X.9.1 Let Ω ⊆ R3 be an exterior domain of class C2. Suppose that
the second order tensor field F in Ω satisfies

(1 + |x|2)F ∈ L∞(Ω).

Then there exists a positive constant A = A(Ω, q) such that if

[|F |]2 < A/R2 (X.9.1)

there is at least one generalized solution v to the Navier–Stokes problem
(X.0.8), (X.0.4) with v∗ ≡ v∞ ≡ 0 and f = ∇ · F 3 such that

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω) for each q > 3/2,

[|v|]1 <∞.

Moreover, for any q > 3/2, this solution satisfies the following estimate

[|v|]1 + |v|1,q + ‖p‖q ≤ BR[|F |]2, (X.9.2)

with B = B(Ω, q).

Proof. The solution can be determined (for instance) by the successive approx-
imation method. Thus, we look for a sequence of solutions to the sequence of
problems, m ∈ N,

1

R(∇vm,∇ψ) + (vm−1 · ∇vm−1,ψ) − (pm,∇ · ψ) − (F ,∇ψ) = 0

vm ∈ D1,q
0 (Ω), pm ∈ Lq(Ω)

(X.9.3)

where v0 ≡ 0 and ψ is arbitrary from C∞
0 (Ω). By the existence theory for the

Stokes problem of Theorem V.8.1, we know that (X.9.3) with m = 1 admits
a unique solution {v1, p1} such that for all q > 3/2

[|v1|]1 + |v1|1,q + ‖p‖q ≤ 2cR[|F |]2 (X.9.4)

where c = c(q, Ω) is the constant entering the estimate (V.8.25). Let us show,
by induction, the existence of {vm, pm} satisfying (X.9.4) for all n ∈ N. Thus,
assume {vm−1, pm−1} obeys (X.9.4). Since

vm−1 · ∇vm−1 = ∇ · (vm−1 ⊗ vm−1)

[|v2
m−1|]2 ≤ [|vm−1|]21 <∞,

from Theorem V.8.1 we establish the existence of vm, pm obeying (X.9.3)
along with the estimate

3 In the weak sense.
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[|vm|]1 + |vm|1,q + ‖pm‖q ≤ cR
(
[|F |]2 + [|vm−1|]21

)
. (X.9.5)

However, by the induction hypothesis,

[|vm−1|]21 ≤ 4c2R2[|F |]22,

and from (X.9.5) we find

[|vm|]1 + |vm|1,q + ‖pm‖q ≤ cR[|F |]2
(
1 + 4c2R2[|F |]2

)
. (X.9.6)

Therefore, if (X.9.1) holds with A = 1/4c2, the approximating solution satis-
fies, for all m ∈ N, the following inequality

[|vm|]1 + |vm|1,q + ‖pm‖q ≤ 2cR[|F |]2. (X.9.7)

Notice that this inequality coincides with (X.9.2) with vm in place of v and
B = 2c. It is now a standard procedure, which we already employed several
times, and which we therefore omit here (see, for instance, the proof of Theo-
rem IX.5.3), to show that if (X.9.7) is verified then vm, pm converges strongly
in D1,q

0 (Ω) × Lq(Ω) to functions v, p such that

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω).

Moreover,

[|v|]1 <∞
and (X.9.2) is satisfied. The theorem is thus proved. ut

Remark X.9.1 Lemma X.9.1, under the same assumptions, remains valid in
any number of dimensions n ≥ 4, the only change in its statement being that
the restriction from below on q becomes q > n/2. �

Exercise X.9.1 (Finn (1965a)) Show that, for sufficiently small R, the solution
constructed in Lemma X.9.1 can be expanded as a power in R:

v(x) = v0(x) +
∞X

k=1

Rkvk(x), x ∈ Ω, (X.9.8)

where v0(x) is a solution to the following Stokes problem

∆v0 = ∇p0 + RF
∇ · v0 = 0

)
in Ω

v0 = 0 at ∂Ω

lim
|x|→∞

v0(x) = 0.

Hint: A solution of the form (X.9.8) can be constructed by recurrence, that is,
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∆vm+1 =
Pm

j=0 vm−j · ∇vj + ∇pm+1

∇ · vm+1 = 0

)
in Ω

vm+1 = 0 at ∂Ω

lim
|x|→∞

vm+1(x) = 0

m = 0, 1, 2, . . . . This sequence of problems can then be solved with the help of
Theorem V.8.1. Moreover,

Vm+1 ≤ c

mX

j=0

Vm−jVj (X.9.9)

where c = c(Ω) and Vm = [|vm|]1 + |vm|1,q. By (X.9.9) and the Cauchy product
formula for the series, the series

∞X

k=0

RkVk

is converging whenever R < 1/4cV0, that is, since V0 ≤ cR[|F |]2, whenever R satisfies

a restriction of the type (X.9.1). Finally, the uniqueness Theorem X.3.2 implies that

(X.9.8) coincides with the solution constructed in Lemma X.9.1.

Lemma X.9.2 Let v be a generalized solution to the Navier–Stokes problem
(X.0.8), (X.0.4) corresponding to v∗ ≡ v∞ ≡ 0 and f of bounded support. If
v(x) = O(|x|−1), as |x| → ∞, then

Dαv(x) = O(|x|−|α|−1) ,

Dα(p(x) − p0) = O(|x|−|α|−2)

for some p0 ∈ R and for all |α| ∈ N .

Proof. To show the decay of the velocity field, we follow the scaling argument
of Šverák & Tsai (2000).4 Fix x ∈ Ω, set R = |x|/3 sufficiently large so that
supp (f) ⊂ ΩR, and define

vR(y) := R v(Ry + x) , pR(y) := R2 p(Ry + x) , (X.9.10)

where p is the pressure field associated to v by Lemma IX.1.2. Since, by
Theorem X.1.1, v, p ∈ C∞(ΩR), and satisfy in ΩR (X.0.8)1,2 with f ≡ 0, it
easily follows that vR, pR is a smooth solution to the following system

∆vR = RvR · ∇vR + ∇pR

∇ · vR = 0

}
in B2 . (X.9.11)

We now apply to (X.9.11) the interior estimate for the Stokes problem given
in (IV.4.20) to obtain, in particular,

4 Actually, the result of Šverák & Tsai only requires that f decays sufficiently
rapidly (depending on |α|) as |x| → ∞.
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‖vR‖1,s,B1 ≤ c
(
‖vR‖s,B2 + ‖vR‖2

2s,B2

)
. (X.9.12)

In view of the assumption on v, we may take s is arbitrary in (1,∞), and thus
obtain

‖vR‖1,s,B1 ≤M , (X.9.13)

for all s ∈ (1,∞) for a constant M independent of R. We then use (IV.4.4),
Remark IV.4.1 along with the embedding Theorem II.3.4 to find

‖vR‖2,s,Ba ≤ c
(
‖vR‖1,s,B1 + ‖vR‖2

1,s,B1

)
,

where a < 1. This inequality combined with (X.9.13) yields

‖vR‖2,s,Ba ≤M1 (X.9.14)

with M1 independent of R, and then by the embedding Theorem II.3.4,

max
y∈Ba

|∇vR(y)| ≤M2

with M2 independent of R. Therefore, from (X.9.10) it follows that

R2|∇v(x)| ≤M2

which shows the result for k = 1. The estimate of the higher order deriva-
tives is obtained by a simple boot-strap argument. Thus, for example, from
(IV.4.4), Remark IV.4.1, the embedding Theorem II.3.4, and (X.9.14) we de-
duce ‖vR‖3,s,Bb ≤M3, b < a, which, by (X.9.10), and Theorem II.3.4 in turn
implies R3|D2v(x)| ≤M4, and so forth. We next come to the estimate for the
pressure. For |α| ≥ 1 they immediately follow from the estimate just proved
for v and from (X.0.8)1 (with f ≡ 0). In order to show the stated decay for
|α| = 0, we notice that from (X.5.47)3, (VII.3.14) and (X.5.47)2 we find, for
some p0 ∈ R, and all sufficiently large |x| := 3R

p(x) = p0 −R
∫

ΩR

qi(x− y)vl(y)Dlvi(y)dy +O(1/|x|2)

= −R
∫

ΩR,2R

qi(x− y)vl(y)Dlvi(y)dy −R
∫

Ω2R

qi(x− y)vl(y)Dlvi(y)dy

+O(1/|x|2)
:= R I1(R) + R I2(R) +O(1/|x|2) .

(X.9.15)
Recalling that |q(ξ)| ≤ c |ξ|−2, the asymptotic estimates for v, and that |x| =
3R we at once obtain

|I1(R)| ≤ c1

R2

∫

ΩR,2R

|v · ∇v| ≤ c2
R5

|ΩR,2R| ≤
c3

|x|2

|I2(R)| ≤ c4
|x|

∫

R3

dy

|x− y|2|y|2 ≤ c5

|x|2 ,
(X.9.16)
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where, in the last inequality, we have used Lemma II.9.2. The desired estimate
for the pressure then follows from (X.9.15), (X.9.16), which completes the
proof of the lemma. ut

Collecting the results of Lemma X.9.1 and Lemma X.9.2, we prove the
following result that provides, at least for “small” data, the asymptotic be-
havior of a weak solution corresponding to v∞ = 0 and verifying the energy
inequality.

Theorem X.9.1 Let Ω be as in Lemma X.9.1 and let v be a generalized
solution to the Navier–Stokes problem (X.0.8), (X.0.4) corresponding to v∗ ≡
v∞ ≡ 0 and f = ∇ ·F 5 with

(1 + |x|2)F ∈ L∞(Ω).

Assume, further, that v obeys the energy inequality

|v|21,2 ≤ R(F ,∇v).
Then:

(i) If

[|F |]2 <
1

R2
min{A, 1/2B} (X.9.17)

with A and B given in (X.9.1) and (X.9.2), respectively, we have

v ∈ D1,q
0 (Ω), p ∈ Lq(Ω) for each q > 3/2,

(1 + |x|)v ∈ L∞(Ω).

(ii) If, in addition to (X.9.17), f is of bounded support then

Dαv(x) = O(|x|−|α|−1) ,

Dαp(x) = O(|x|−|α|−2)
(X.9.18)

for all |α| ∈ N .

Proof. In view of (X.9.17), by Lemma X.9.1 we can construct a generalized
solution w (say) that, together with the associate pressure field π, satisfies

w ∈ D1,q
0 (Ω), π ∈ Lq(Ω) for each q > 3/2,

[|w|]1 <∞,

and
[|w|]1 + |w|1,q + ‖π‖q ≤ BR[|F |]2.

However, again by (X.9.17), with the help of the uniqueness Theorem X.3.2
and Lemma X.1.1, we conclude that v ≡ w, p ≡ π and the first part of the
theorem follows. The second part is an obvious consequence of Lemma X.9.2.

ut
5 In the weak sense.
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Remark X.9.2 By the same argument employed in the proof of Theorem
X.9.1, in view of Remark X.9.1 we can show that in dimension n ≥ 4 ev-
ery generalized solution satisfying the energy inequality and corresponding to
“small” f , behaves at large distances as 1/|x|. �

Let us point out two important consequences of Theorem X.9.1. Observing
that the generalized solution v of Theorem X.9.1 satisfies

v ∈ L4(Ω),

from Theorem X.2.1 we at once obtain the following theorem.6

Theorem X.9.2 Let the assumptions of Theorem X.9.1(i) be satisfied. Then
v obeys the energy equation

|v|21,2 = R(F ,∇v).

Likewise, from Theorem X.3.2, it follows.

Theorem X.9.3 Let the assumptions of Theorem X.9.1(i) be verified. Then
v is the only generalized solution corresponding to f and satisfying the energy
inequality.

The results of Theorem X.9.1(i) show that every generalized solution obey-
ing the energy inequality and corresponding to “small” data of bounded sup-
port has the same asymptotic behavior as the Stokes fundamental solution
(U , e). It is then natural to wonder whether, in analogy with the case v∞ 6= 0

(see (X.8.17)), the velocity field v admits an asymptotic expansion of the type

v(x) = α ·U(x) + O(1/|x|1+β) as |x| → ∞ , (X.9.19)

for some α ∈ R3 and β > 0. This problem has been considered by Deuring &
Galdi (2000), who showed that, in fact, an expansion like (X.9.19) is possible
only if α = 0. More precisely, we have the following result for whose proof we
refer to Theorem 3.1 of the paper by Deuring & Galdi.

Theorem X.9.4 Let v be a generalized solution to the Navier–Stokes prob-
lem (X.0.8), (X.0.4) corresponding to v∞ ≡ 0 and f ∈ L2

loc(Ω). Assume there
is R > δ(Ωc) such that for all x ∈ ΩR the following conditions hold:

(i) |f(x)| ≤ C1/|x|γ for some γ > 3, and C1 > 0 ;
(ii) |v(x)| ≤ C2/|x| for some C2 > 0 .

Then, if there is a constant M > 0 such that

|x|1+β |v(x) − α ·U(x)| ≤M ,

for some α ∈ R3, some β > 0 and all x ∈ ΩR, necessarily α = 0.

6 See also Exercise X.9.2.
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Remark X.9.3 Theorem X.9.4 leaves open the intriguing question of whether
a generalized solution satisfying the assumption (ii) of Theorem X.9.4 can still
admit an asymptotic expansion of the type (X.9.19), but with α·U(x) replaced
by some other vector field that behaves like 1/|x| as |x| → ∞.

Such a question finds an answer in the work of Nazarov & Pileckas (2000,
Theorem 3.2 and Remark 3.3) who proved the following result.7 Under the
assumptions that Ω, v∗, f are sufficiently smooth with v∗ and f sufficiently
small in suitable norms, and f of bounded support, there exists a (unique)
corresponding (smooth) solution (v, p) to the Navier–Stokes problem (X.0.8),
(X.0.4) with v∞ = 0, such that the following asymptotic representation holds:

v(x) =
V

|x| +O(1/|x|1+β),

p(x) =
P

|x|2 + O(1/|x|2+β) ,

(X.9.20)

where V and P are functions defined on the unit sphere S2, and β ∈ (0, 1).
This interesting result has been further clarified by Šverák (2006) and,

successively, its proof simplified by Korolev & Šverák (2007, 2011). Specif-
ically, these authors show that the terms of order |x|−1 in the expansion
(X.9.20) must coincide with a specific velocity and pressure field of the family
of solutions to the Navier–Stokes equations obtained by Landau (1944) and,
independently, by Squire (1951); see (X.9.21). More precisely, let b ∈ R3−{0},
and let (r, θ, φ) be a system of polar coordinates, with polar axis oriented in
the direction b/|b| which, without loss, we may take coinciding with the pos-
itive x1−direction. The Landau solution (U b, P b) corresponding to b is then
defined as follows

U b
r =

2

r

[
A2 − 1

(A− cos θ)2
− 1

]
,

U b
θ = − 2 sin θ

r(A − cos θ)
,

U b
φ = 0 ,

P b =
4(A cos θ − 1)

r2(A− cos θ)2
,

(X.9.21)

where A ∈ (1,∞) is a parameter chosen in such a way that

7 As a matter of fact, the time line of the events goes as follows. I learned the main
ideas of the proof of Nazarov & Pileckas result in April 1996, after a conversation
I had with Professor Serguei Nazarov, while he was visiting Professor Padula
and me at the University of Ferrara. I then got the feeling of the invalidity of
(X.9.19) with α 6= 0 and discussed the matter with Professor Paul Deuring, at
an Oberwolfach meeting in August 1997. However, both papers of Nazarov &
Pileckas and Deuring & Galdi were published only later on, in the year 2000.
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16π

(
A +

1

2
A2 log

A − 1

A + 1
+

4A

3(A2 − 1)

)
= b (X.9.22)

By direct inspection, we find that the function on the left-hand side is mono-
tonically decreasing in A ∈ (1,∞) and that its range covers the entire positive
line (0,∞). Therefore, for any given b (> 0) we find one and only one A sat-
isfying (X.9.22), namely, one and only one Landau solution (U b, P b).

Suppose now (v, p) is a regular solution to (X.0.8)1,2 with Ω sufficiently
smooth, and set

b := −
∫

∂Ω

T (v, p) · n ,

Then in Theorem 1 of Korolev & Šverák (2007, 2011) it is proved that for
each β ∈ (0, 1) there exists ε > 0 such that, if v satisfies the assumption of
Theorem X.9.4(ii) with a (sufficiently small) C2 = C2(ε), necessarily v and p
have the following asymptotic behavior as |x| → ∞

v(x) = U b(x) +O(1/|x|1+β),

p(x) = P b(x) +O(1/|x|2+β) .

Whether or not in these formulas (or in (X.9.20)) we may take β = 0 remains
open. �

Remark X.9.4 An interesting problem of the Liouville type that is left open
is the following: Are there nonidentically vanishing smooth solutions v, p to
the Navier–Stokes problem8

∆v = v · ∇v + ∇p
∇v = 0

}
in R3

lim
|x|→∞

v(x) = 0

(X.9.23)

such that ∫

R3

∇v : ∇v <∞.9 (X.9.24)

Even though an answer to this question is not yet available, we can look for
conditions on v under which (X.9.23) admits the null solution only. In this
respect, we have the following theorem.

Theorem X.9.5 Suppose v is a smooth solution10 to (X.9.23) such that 11

8 Temporarily, we set R = 1.
9 We recall that the analogous question when the limiting velocity at infinity is

nonzero admits a complete answer; cf. Theorem X.7.2.
10 We may equivalently require v ∈ L3

loc(R
3). Actually, by Theorem X.1.1 this would

imply v, p ∈ C∞(R3) as required. Notice that condition (X.9.24) is not needed.
11 In view of (X.9.23)3 and of the smoothness of v, for (X.9.25) to hold we may

equivalently assume
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v ∈ L9/2(R3) (X.9.25)

then v ≡ 0.

Proof. For R > 0, let ψR be a real nonincreasing smooth function defined in
R3 such that ψR(x) = 0 for |x| ≥ 2R, ψR(x) = 1 for |x| ≤ R and satisfying

|∇ψR(x)| ≤M/R,

for some (positive) constant M independent of x ∈ R3 and R. Setting B(R) =
B2R\BR, from this latter inequality it follows that

Ψ ≡
∫

B(R)

|∇ψR|3 ≤ C

for some C independent of R. Multiplying (X.9.23)1 by ψRv, integrating by
parts over R3 and taking into account (X.9.23)2 yields

∫

R3

ψR∇v : ∇v =

∫

R3

{
−∇ψR · ∇v · v +

1

2
v2v · ∇ψR + pv · ∇ψR

}

≡ I1 + I2 + I3.
(X.9.26)

We have
|I1| ≤ Ψ1/3|v|1,9/4,B(R)‖v‖9/2,B(R)

|I2| ≤ Ψ1/3‖v‖3
9/2,B(R)

|I3| ≤ Ψ1/3‖p‖9/4,B(R)‖v‖9/2,B(R).

(X.9.27)

Observing that

v · ∇v ∈ D
−1,9/4
0 (R3),

from Theorem IV.2.2, Theorem V.3.2, and Theorem V.3.5, it follows that

∇v ∈ L9/4(R3), p ∈ L9/4(R3),

and so from inequality (X.9.27) we find

lim
R→∞

Ii = 0, i = 1, 2, 3. (X.9.28)

Relations (X.9.26) and (X.9.28) imply, by the monotone convergence theorem,
∇v ≡ 0. Since v satisfies (X.9.25), this latter condition delivers v ≡ 0 and the
proof of the theorem is complete. ut

v ∈ Lq(R3) for some q ∈ [1, 9/2].
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It is worth noticing that, in view of the Sobolev inequality (II.3.7), a
generalized solution v to (X.9.23) (in dimension 3) satisfies only

v ∈ L6(R3)

which, in the sense of the behavior at large distances, is weaker than (X.9.25).
Theorem X.9.5 can be extended, with formal changes in the proof, to the

n-dimensional case, n ≥ 4, provided we replace (X.9.25) with the assumption
that

v ∈ L3n/(n−1)(Rn). (X.9.29)

Now if v satisfies (X.9.24), from the Sobolev inequality (II.3.7) we deduce

v ∈ L2n/(n−2)(Rn), (X.9.30)

and since v is smooth and obeys the vanishing condition (X.9.23)3, it follows
that (X.9.30) implies (X.9.29) and we may conclude that every smooth solu-
tion to (X.9.23) in Rn with n ≥ 4, satisfying (X.9.24) is identically zero.12 As
we shall see in Chapter XII (cf. Theorem XII.3.1), this property continues to
hold also for n = 2 (plane flows), so that the three-dimensional case is the
only one that remains open. �

Exercise X.9.2 (Kozono, Sohr & Yamazaki 1997) Let v be a generalized solution

to (X.0.8), (X.0.4) corresponding to v∗ ≡ v∞ ≡ 0 and f ∈ D−1,2
0 (Ω). Show that

if, in addition, v ∈ L9/2(Ω), then v satisfies the energy equality (X.2.4). Hint: Use

Theorem V.5.1, along with the argument adopted in the proof of Theorem X.9.5.

X.10 Limit of Vanishing Reynolds Number: Transition
to the Stokes Problem

The aim of this section is to show that every generalized solution v to the
Navier–Stokes problem (X.0.8)–(X.0.4), corresponding to sufficiently smooth
data, tends in an appropriate sense, as the Reynolds number R → 0, to the
solution v0 of the linearized Stokes system corresponding to the same data.

If the limiting velocity v∞ is zero, such a problem has been already con-
sidered in Exercise X.9.1. Actually, from the results of this exercise, it follows
that any generalized solution can be expressed (for small R) as a perturbation
series in R around v0, that is,

v(x) = v0(x) +
∞∑

k=1

Rkvk(x). (X.10.1)

We shall, therefore, turn our attention to the more involved case where v∞ 6=
0. As a matter of fact, in such a situation an expansion of the type (X.10.1) is

12 In dimension n = 4, this also follows from Remark X.2.4.
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no longer expected, as we are going to show. Actually, assume that we try to
express v in the form (X.10.1), with v0 solving the following Stokes problem1

∆v0 = ∇p0

∇ · v0 = 0

}
in Ω

v0 = v∗ at ∂Ω , lim
|x|→∞

v0(x) = e1.

(X.10.2)

Then, at first order in R, we should have

∆v1 = v0 · ∇v0 + ∇p1

∇ · v1 = 0

}
in Ω

v1 = 0 at ∂Ω

(X.10.3)

and
lim

|x|→∞
v1(x) = 0. (X.10.4)

In view of the asymptotic properties established in Theorem V.3.2 (cf. also
Exercise V.3.4), we have

v0 · ∇v0 ∈ Lq(Ω), for q > 3/2,

whereas
v0 · ∇v0 6∈ Lq(Ω), for q ≤ 3/2.

Thus, from Theorem V.4.7 we infer the existence of a solution v1, p1 to the
system (X.10.3) such that

v1 ∈ D2,q(Ω), for q > 3/2.

However, this property is not enough to control the behavior of v1 at large dis-
tances and, consequently, we cannot prove the validity of (X.10.4). The situa-
tion just described is a form of the so-called Whitehead paradox; cf. Whitehead
(1888) and Oseen (1927, p. 163).

In view of all this, we expect that v0, p0 should approximate v, p as R → 0
in a form weaker than that required by the expansion (X.10.1). We shall, in
fact, prove that this approximation holds in the sense of uniform convergence;
cf. Theorem X.10.1.

In order to reach our objective, we need several preliminary results. For the
sake of formal simplicity, we assume that there are no body forces acting on the
liquid. For the same reason, the assumption we shall make on the regularity
of Ω and v∗ will be somewhat stronger than that actually needed. Weakening
of these hypotheses will be left to the interested reader as an exercise.

1 For the sake of simplicity, we assume that there are no body forces acting on the
liquid.
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Lemma X.10.1 Let Ω be an exterior domain of R3 of class C4 and let v be
a generalized solution to (X.0.8), (X.0.4) corresponding to v∞ = e1, f ≡ 0
and R ∈ (0, B], for some B > 0. Then, if

v∗ ∈W 11/2,2(∂Ω),

there exists C = C(Ω, v∗, B, R) > 0 such that

‖p‖2,ΩR + |v|1,2 + ‖v‖2,∞ ≤ C (X.10.5)

for all R > δ(Ωc).

Proof. Throughout the proof, by the letter C we mean any positive constant
depending on Ω, v∗, B, and R, but otherwise independent of R. The value
of C may, however, change within the same context. By Theorem X.4.1 and
Theorem X.7.3, we know that there is a B > 0 such that

‖v‖1,2,ΩR + ‖p‖2,ΩR + |v|1,2 ≤ C (X.10.6)

where p has been modified by the addition of a suitable constant. From The-
orem IV.5.1 we easily derive, for all R > r > δ(Ωc),

‖v‖m+2,q,Ωr ≤ C(‖v · ∇v‖m+2,q,ΩR + ‖v‖1,q,ΩR + ‖p‖q,ΩR + 1)

with m = 0, 1, 2, q > 1 and so, by (X.10.6), it follows that

‖v‖m+2,q,Ωr ≤ C(‖v · ∇v‖m+2,q,ΩR + 1). (X.10.7)

Since

‖v · ∇v‖m+2,q,ΩR ≤ ‖(v − v∞) · ∇v‖m+2,q,ΩR + ‖v∞ · ∇v‖m+2,q,ΩR ,

with the aid of the Hölder inequality and the inequality

‖v − v∞‖6 ≤ γ1|v|1,2 (X.10.8)

(cf. Theorem II.6.1), we obtain

‖v · ∇v‖3/2,ΩR
≤ ‖v − v∞‖6|v|1,2 ≤ C,

where use has been made of (X.10.6). Inserting this information into (X.10.7)
with m = 0, q = 3/2, and r = R1 furnishes

‖v‖2,3/2,ΩR1
≤ C.

With the help of the embedding Theorem II.5.2, we then easily prove

‖v · ∇v‖2,ΩR1
≤ C

and (X.10.7) implies
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‖v‖2,2,ΩR2
≤ C,

for R2 < R1. Again using Theorem II.5.2, together with this latter relation,
we show

‖v · ∇v‖1,2,ΩR2
≤ C

and (X.10.7) then yields
‖v‖3,2,ΩR3

≤ C,

for R3 < R2. Iterating this procedure one more time, we finally arrive at

‖v‖4,2,ΩR ≤ C,

for allR > δ(Ωc). This condition with the aid of Theorem II.3.4 then furnishes

‖v‖2,∞,ΩR ≤ C. (X.10.9)

Now, from Theorem X.5.1 we have, for sufficiently large R,

‖v‖2,∞,ΩR ≤ C, (X.10.10)

and the lemma is thus a consequence of (X.10.6), (X.10.9), and (X.10.10). ut

Lemma X.10.2 Let the assumptions of Lemma X.10.1 be satisfied. Then for
all R ∈ (0, B] and all q ∈ [3/2, 2] we have

‖(v − v∞) · ∇v‖2,q ≤ C,

where C = C(q, Ω, v∗, B).

Proof. Throughout the proof, by the letter C we mean any positive constant
depending, at most, on q, Ω, v∗, and B. Set

u = v − v∞.

From Lemma V.4.3 it follows, in particular, with m = 0, 1, 2, that

|v|m+2,2 ≤ C(‖u · ∇v‖m+2,2 + ‖v‖2,ΩR + ‖p‖2,ΩR + 1).

Using Lemma X.10.1 in this inequality we find

|v|m+2,2 ≤ C(‖u · ∇v‖m+2,2 + 1). (X.10.11)

Again employing Lemma X.10.1 we find

‖u · ∇v‖2 ≤ C

so that (X.10.11) furnishes
|v|2,2 ≤ C. (X.10.12)

Using this inequality, together with Lemma X.10.1, we infer that
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‖u · ∇v‖1,2 ≤ C

and, therefore, (X.10.11) implies

|v|3,2 ≤ C. (X.10.13)

With the help of this estimate and Lemma X.10.1, we derive

‖u · ∇v‖2,2 ≤ C. (X.10.14)

From (X.10.8) and Lemma X.10.1, we find

‖u · ∇v‖3/2 ≤ ‖u‖6|v|1,2 ≤ C. (X.10.15)

Moreover, by Theorem II.6.1 and (X.10.11), it follows that

|v|1,6 ≤ γ1|v|2,2 ≤ C (X.10.16)

and so, by Lemma X.10.1 and interpolation, we derive

|v|1,3 ≤ C.

Consequently,
|u · ∇v|1,3/2 ≤ |v|21,3 + ‖u‖6|v|2,2 ≤ C. (X.10.17)

In addition, from (X.10.8), (X.10.12), (X.10.13), and (X.10.16) we obtain

|u · ∇v|2,3/2 ≤ 3|v|1,6|v|2,2 + ‖u‖6|v|3,2 ≤ C. (X.10.18)

Collecting (X.10.15)–(X.10.17) we find

‖u · ∇v‖2,3/2 ≤ C,

and the lemma becomes a consequence of this inequality, (X.10.14), and the
elementary Lq convexity inequality (II.2.7). ut

Lemma X.10.3 Let the assumptions of Lemma X.10.1 be satisfied. Denote
by u0, π0 the solution to the following Oseen problem

∆u0 −R∂u0

∂x1
= ∇π0

∇ · u0 = 0





in Ω

lim
|x|→∞

u0(x) = 0

u0 = v∗ − e1 ≡ u∗ at ∂Ω.

(X.10.19)

Then, there exists B > 0 such that for any R ∈ (0, B], all q ∈ [3/2, 2], all
t ∈ [12/5, 3), and all s ∈ (2, 3) we have
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|v− u0|1,3q/(3−q) + ‖D2(v − u0)‖2,q+ ‖p− π0‖3q/(3−q)

+ ‖∇(p− π0)‖2,q ≤ CR
‖v − u0 − e1‖3t/(3−t) ≤ CR2−3/t

|u0|1,3q/(3−q) + ‖D2u0‖2,q + ‖∇π0‖2,q ≤ C

‖u0‖s ≤ CR1−3/s ,

(X.10.20)

where C = C(Ω, v∗, B, q, t, s).

Proof. Setting u = v − e1, w = u− u0, and π = p − π0 we deduce

∆w −R ∂w

∂x1
= R(u · ∇v) + ∇π

∇ ·w = 0





in Ω

lim
|x|→∞

w(x) = 0

w = 0 at ∂Ω.

Thus, (X.10.20)1 follows directly from Theorem II.6.1, Theorem VII.7.1, and
Lemma X.10.2. Since from Lemma X.10.2 we have

u · ∇v ∈ L3/2(Ω),

Theorem VII.7.1 in turn furnishes

|w|1,12/5 ≤ CR3/4.

Thus, by (X.10.20)1 and the interpolation inequality (II.2.7), we deduce with
θ = 4(3− t)/t

|w|1,t ≤ |w|θ12/5|w|(1−θ)
3 ≤ CR2−3/t.

As a consequence, the estimate (X.10.20)2 follows from this inequality and
Theorem II.6.1. Moreover, (X.10.20)3 is an immediate consequence of Theo-
rem II.6.1 and Theorem VII.7.1. In the rest of the proof the letter C will have
the same meaning as in Lemma X.10.2. Let us denote by E(x;R) the Oseen
tensor corresponding to the Reynolds number R. From Exercise VII.3.5 we
know that E obeys the homogeneity condition

E(x;R) = RE(Rx; 1). (X.10.21)

We next notice that, in view of Theorem VII.6.2, we have

u0j(x) =

∫

∂Ω

[u∗iTil(wj , ej)(x− y) − Eij(x− y)Til(u0, π0)(y)

+ Ru∗j(y)Eij(x − y)δ1l ]nl(y)dσy.
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Therefore, assuming, without loss, that Ωc ⊂ B1/2, it follows that

|u0(x)| ≤ CD{ sup
y∈Ω1/2

|E(x− y;R)| + sup
y∈Ω1/2

[|e(x− y)| + |∇xE(x − y;R)|]}.

(X.10.22)
where

D = ‖u0‖1,1,∂Ω + ‖π0‖1,∂Ω.

From (X.10.21) and (X.10.22) we deduce

‖u0‖s
s,Ω1 ≤ CDsRs−3

∫

|y|≥R
sup

|z|≤R/2

{
|E(y − z; 1)|s + Rs[|e(y − z)|s

+|∇yE(y − z; 1)|s]
}
dy.

(X.10.23)
To estimate the first integral on the right-hand side of this inequality, we
observe that

∫

|y|≥R
sup

|z|≤R/2
|E(y − z; 1)|sdy ≤

∫

2≥|y|≥R
sup

|z|≤B/2
|E(y − z; 1)|sdy

+

∫

|y|≥2

sup
|z|≤B/2

|E(y − z; 1)|sdy .

(X.10.24)
From (VII.3.21) we have

|E(y − z; 1)| ≤ c(|y − z|−1 + 1), |y|, |z| ≤ 2

and since

|z| ≤ R/2, |y| ≥ R implies |y− z| ≥ 1
2 |y|, (X.10.25)

recalling that s < 3, we find

∫

2≥|y|≥R
[ sup
|z|≤R/2

|E(y − z; 1)|]sdy ≤ C. (X.10.26)

Furthermore, by the mean value theorem,

|(Eij(y − z) − Eij(y))| = |zl
∂

∂xl
Eij(y − βz)|, β ∈ (0, 1),

and so, from (VII.3.32) it follows for all |y| sufficiently large (≥ |y0|, say) that

∫

|y|≥|y0|
sup

|z|≤B/2

|E(y − z; 1)|sdy ≤ C

∫

|y|≥|y0|

(
|E(y; 1)|s + |y|−3s/2

)
dy.

(X.10.27)
Taking into account that s > 2, from (X.10.27), the local regularity of E, and
(VII.3.28), we have
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∫

|y|≥2

sup
|z|≤B/2

|E(y − z; 1)|sdy ≤ C. (X.10.28)

In addition, from (VII.3.14) and (X.10.25) we infer that

Rs

∫

|y|≥R
sup

|z|≤R/2

|e(y − z)|sdy ≤ CRs{
∫

2≥|y|≥R
|y|−2sdy

+

∫

|y|≥2

sup
|z|≤B/2

|y− z|−2s}

≤ C (1 + R3−s).

(X.10.29)

Likewise,

∫

|y|≥R
sup

|z|≤R/2
|∇yE(y − z; 1)|sdy ≤

∫

2≥|y|≥R
sup

|z|≤B/2
|∇yE(y − z; 1)|sdy

+

∫

|y|≥2

sup
|z|≤B/2

|∇yE(y − z; 1)|sdy .

(X.10.30)
Since, from (VII.3.21),

|∇E(y − z; 1)| ≤ C|y − z|−2, |y|, |z| ≤ 2,

by virtue of (X.10.25), it follows that

∫

2≥|y|≥R
sup

|z|≤R/2

|∇yE(y − z; 1)|sdy ≤ C

∫

2≥|y|≥R
|y|−2sdy ≤ C(1 + R3−2s).

(X.10.31)
Also, we use the asymptotic properties of ∇E(y; 1), cf. (VII.3.31), together
with the following ones on the second derivatives

|D2E(y)| ≤ c|y|−2,

cf. (VII.3.35), to establish, as we did for (X.10.28), the following estimate:

∫

|y|≥2

sup
|z|≤B/2

|∇yE(y − z; 1)|sdy ≤ C. (X.10.32)

Thus, from (X.10.30)–(X.10.32) we recover

Rs

∫

|y|≥R
sup

|z|≤R/2
|∇yE(y − z; 1)|sdy ≤ C(1 + R3−s). (X.10.33)

Collecting (X.10.23), (X.10.26), (X.10.28), (X.10.29), and (X.10.33) we find

‖u0‖s,Ω1 ≤ DR1−3/s. (X.10.34)
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On the other hand, by Theorem VII.2.1 and Theorem VII.6.2, and with the
help of the embedding Theorem II.3.4, we find

‖π0‖1,2,Ω2 + ‖u0‖s,Ω2 + |u0|1,2 ≤ C (X.10.35)

where π0 has been modified by the addition of a suitable constant. Moreover,
from Theorem IV.4.1 and Theorem IV.5.1 we obtain, in particular,

‖u0‖2,2,Ω1 ≤ C (‖u0‖1,2,Ω2 + ‖π0‖1,2,Ω2) . (X.10.36)

Use of the trace Theorem II.4.4 yields

D ≡ ‖u0‖1,1,∂Ω + ‖π0‖1,∂Ω ≤ C (‖u0‖2,2,Ω1 + ‖π0‖1,2,Ω1)

and so this inequality, together with (X.10.35), (X.10.36), implies

D ≤ C.

Estimate (X.10.20)4 then follows from this relation and (X.10.34), (X.10.35),
and the lemma is proved. ut
Lemma X.10.4 Let the assumptions of Lemma X.10.1 be satisfied. Denote
by v0, p0 the solution to the following Stokes problem

∆v0 = ∇p0

∇ · v0 = 0

}
in Ω

v0 = v∗ at ∂Ω
lim

|x|→∞
v0(x) = e1

(X.10.37)

and by u0, π0 the solution to (X.10.19). Then there exists B > 0 such that
for any R ∈ (0, B], all q ∈ [3/2, 2] and all s ∈ (2, 3) we have

‖u0 − v0 + e1‖3s/(3−s) + ‖π0 − p0‖s + |u0 − v0|1,3q/(3−q)

+‖D2(u0 − v0)‖2.q + ‖∇(π0 − p0)‖2,q ≤ CR2−3/s

where C = C(Ω, v∗, B, q, s).

Proof. Setting
z = u0 − v0 + e1, τ = π0 − p0,

we find

∆z = R∂u0

∂x1
+ ∇τ

∇ · z = 0





in Ω

lim
|x|→∞

z(x) = 0

z = 0 at ∂Ω.
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By Lemma X.10.3 we have, in particular, for all s ∈ (2, 3)

∥∥∥∥
∂u0

∂x1

∥∥∥∥
−1,s

≤ CR1−3/s.

Therefore, with the help of Theorem V.5.1, we obtain

‖z‖3s/(3−s) + |z|1,s + ‖τ‖s ≤ CR2−3/s. (X.10.38)

In addition, from Lemma V.4.3 and Lemma X.10.3, we have

|z|1,3q/(3−q) + ‖D2z‖2,q + ‖∇τ‖2,q ≤ C (R + ‖z‖2,ΩR + ‖τ‖2,ΩR) ,

and the proof becomes a consequence of this latter inequality and (X.10.38).
ut

We are now in a position to prove the following main result.

Theorem X.10.1 Let Ω be an exterior domain of R3 of class C4 and let v
be a generalized solution to (X.0.8), (X.0.4) corresponding to v∞ = e1 and
to f ≡ 0. Moreover, let v0, p0 be the solution to the Stokes problem (X.10.1).
Then, if

v∗ ∈W 11/2,2(∂Ω),

there exist B > 0 and C = C(Ω, v∗, B, ε) > 0 such that

‖v − v0‖C2(Ω) + ‖p− p0‖C1(Ω) ≤ CR1−ε

where p is the pressure field associated to v and ε is a positive number that
can be taken arbitrarily close to zero.2.

Proof. Set
z = u0 − v0 + e1, τ = π0 − p0

with u0, π0 and v0, p0 solving (X.10.19) and (X.10.37). Then, by Lemma
X.10.4 and a repeated use of Theorem II.6.1 we have

‖∇z‖1,3q/(3−q) ≤ CR2−3/s

and so, being 3q/(3− q) > 3, by the embedding Theorem II.3.4 and taking s
arbitrarily close to 3, we deduce

‖∇z‖C1(Ω) ≤ CR1−ε, (X.10.39)

where ε satisfies the property stated in the lemma. Likewise, again by Lemma
X.10.4 and Theorem II.3.4, we have

‖∇τ‖C(Ω) ≤ CR1−ε. (X.10.40)

2 C → ∞ as ε→ 0.
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Next, in view of (X.10.39) and Lemma X.10.4, it follows that

‖z‖1,3s/(3−s) ≤ CR1−ε

for all s arbitrarily close to 3. Therefore, with the help of Lemma X.10.4 and
Theorem II.3.4, we find

‖z‖C(Ω) ≤ CR1−ε. (X.10.41)

Likewise, we prove
‖τ‖C(Ω) ≤ CR1−ε. (X.10.42)

In a similar way, making use of the results of Lemma X.10.3, we have

‖v − u0 − e1‖C2(Ω) + ‖p− π0‖C1(Ω) ≤ CR1−ε. (X.10.43)

Since

‖v − v0‖C2(Ω) ≤ ‖v − u0 − e1‖C2(Ω) + ‖u0 − v0 + e1‖C2(Ω)

‖p− p0‖C1(Ω) ≤ ‖p− π0‖C1(Ω) + ‖π0 − p0‖C1(Ω)

the result follows from (X.10.39)–(X.10.43). ut

Remark X.10.1 If Ω is the complement of a bounded domain, Fischer,
Hsiao, & Wendland (1985, Theorem 1) have performed a more detailed anal-
ysis than that of Theorem X.10.1 of the way in which v approaches v0. Such
an analysis is based on boundary integrals and pseudo-differential operators
and leads to the following main result.

Theorem X.10.1′. Let Ω be a smooth exterior domain in R3 bounded by a
simple closed surface and let v, p and v0, p0 be solutions to (X.0.8), (X.0.4)
and (X.10.2), respectively, corresponding to v∗ ≡ f ≡ 0. Then,

v(x) = v0(x) + q(x;R),

where
q(x;R) = O(R), as R → 0, uniformly in Ω.

Moreover, there existsw = w(x) defined inΩ such that, for any given compact
subset K of Ω,

v(x) = v0(x) + Rw(x) +O(R2 lnR−1), as R → 0,

holds uniformly on K. �

Theorem X.10.1 allows us to draw some interesting conclusions of the way
in which the force D exerted by the liquid on the boundary ∂Ω of the region
of flow in the nonlinear motion described by (X.0.8), (X.0.4) approaches the
same quantity D0 calculated in the Stokes approximation (X.10.1). To show
this, we observe that since
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D = −
∫

∂Ω

T (v, p) · n, D0 = −
∫

∂Ω

T (v0, p0) ·n,

with T the Cauchy stress tensor (IV.8.6) and n outer unit normal at ∂Ω,
under the assumptions of Theorem X.10.1, it follows at once that

|D − D0| ≤ CR1−ε, (X.10.44)

where C = C(Ω, v∗, B) and R ∈ (0, B].

Remark X.10.2 Under the same assumptions of Theorem X.10.1′, one can
show more detailed versions of (X.10.44), cf. Babenko (1976, eq. (6.7)), Fis-
cher, Hsiao, & Wendland (1985, Theorem 2). �

X.11 Notes for the Chapter

Section X.1. The variational formulation of the exterior problem in the way
used here has been introduced by Ladyzhenskaya (1959b).

The introduction of the pressure field p associated to a generalized solution
in the first part of Lemma X.1.1, as a member of L2

loc , can be deduced from
the paper of Solonnikov & Ščadilov (1973). Nevertheless, from this paper
no summability properties for p in a neighborhood of infinity are directly
obtainable. In fact, the second part of Lemma X.1.1 is due to me.

The special case q = 2 and v∞ = 0 of the results stated in Exercise X.1.1
can be found in Kozono & Sohr (1992a, Theorem 3(i)). Their proof, different
than that indicated in Exercise X.1.1, employs an interpolation theorem of
Aronszajn-Gagliardo.

Differentiability properties of generalized solutions were first determined
by Ladyzhenskaya (1959b, Chapter II).

Section X.2. The validity of the energy equation in exterior domains was
established by Finn (1959b, §III). However, the assumptions made there on the
body force and on the asymptotic behavior of solutions are a priori stronger
than those stated in Theorem X.2.1 and Theorem X.2.2. In particular, the
latter refer to the so-called physically reasonable solutions we mentioned in
the Introduction to this chapter. For general properties of these solutions, we
refer the reader to the review articles of Finn (1965b, 1973); cf. also Finn
(1961b, 1963, 1970).

Section X.3. The connection between generalized solutions satisfying the
energy inequality and their uniqueness was first pointed out by H. Kozono
and H. Sohr in a preprint in 1991, published later as their paper (1993).
However, Theorem X.3.1 and Theorem X.3.2 are placed in a different context
and have been independently obtained by Galdi (1992a, 1992c).

Section X.4. The first existence result for the Navier–Stokes problem in
exterior domains is due to Leray (1933).
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Lemma X.4.1 is based on an idea of Finn (1961a, §2c) and it is due to me.
The proof of existence of generalized solutions satisfying the energy inequality
(X.4.19) is also due to me; cf. Theorem X.4.1.

Existence in weighted Sobolev spaces has been investigated by Farwig
(1990, 1992a, 1992b) and, successively, by Farwig and Sohr (1995, 1998), in
the case where v∞ 6= 0. A similar approach when v∞ = 0 is not known.

An interesting question, that has been addresses by several authors, is
the existence of q-weak solutions for q 6= 2 and v∞ = 0;1 see Galdi & Padula
(1991), Kozono & Sohr (1993), Borchers & Miyakawa (1995), Miyakawa (1995,
1999), Kozono, Sohr, & Yamazaki (1997), Kozono & Yamazaki (1998). Now,
if q > 2, the answer is positive and quite trivial, in the light of the asymp-
totic results of Theorem X.5.1, and provided f satisfies suitable summability
properties at large distances. On the other hand, if q ∈ (1, 2) the situation is
more involved, as we are going to explain. Take v∗ ≡ 0 (for simplicity) and
assume f ∈ D−1,2

0 (Ω)∩D−1,q
0 (Ω). By a simple argument one shows that, due

to the structure of the nonlinear term, in order to prove existence by a fixed
point approach we have to choose q = 3/2, in the three-dimensional case;2 see
Kozono & Yamazaki (1998). However, existence of such a (3/2)-weak solution

means v ∈ D1,3/2
0 (Ω) ∩ D1,2

0 (Ω), and, therefore, p ∈ L3/2(Ω) ∩ L2(Ω).3 In
turn, this implies, at once, that the solution (v, p), if exists, must obey the
following nonlocal compatibility condition

∫

∂Ω

(T (v, p) + F ) · n = 0 , (∗)

where T is the Cauchy stress tensor, and, without loss of generality, we have
written f = ∇·F in the weak sense, where F ∈ L3/2(Ω)∩L2(Ω); see Theorem
II.8.2.4 Condition (∗) is immediately formally obtained by integrating (X.0.8)1
(with f ≡ ∇ · F ) over ΩR, then letting R → ∞, and showing that, due to
the summability properties of v and p the surface integrals converge to zero,
along a sequence of surfaces, at least. From the physical viewpoint, (∗) means
that the total net force exerted on the “obstacle”, Ωc, must vanish. Clearly,
if Ω ≡ R3, (∗) is automatically satisfied and, in fact, one shows existence
(and uniqueness) for small data; Kozono & Nakao (1996) and also Maremonti
(1991). On the other hand, if Ωc 6= ∅ and sufficiently smooth, one can show

that such solutions can exist only for f in a subset of D−1,2
0 (Ω)∩D−1,3/2

0 (Ω)
with empty interior; see Galdi (2009). In other words, for a generic F with
the specified summability properties, the above (3/2)-weak solution does not

1 If v∞ = 0, we know that generalized solutions are, in fact, q-solutions as well,
under suitable assumptions on the data; see Section X.5.

2 In general, q = n/2 for n ≥ 3.
3 This property for p can be easily established by the same argument used in the

proof of Lemma X.1.1.
4 Of course, (∗) has to be understood in the trace sense, according to Theorem

III.2.2.
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exist. Finally, we wish to observe that, as shown by Kozono & Yamazaki

(1998), if the space D1,3/2
0 (Ω) is restricted to a suitable larger homogeneous

Sobolev space of Lorenz type, the compatibility condition (∗) is no longer
necessary, and existence of corresponding solutions, with velocity field in this
latter space, can be still recovered.

Section X.5. In his paper of 1933, Leray left out the question of whether a
generalized solution tends, uniformly and pointwise, to the prescribed vector
v∞, in the case when v∞ 6= 0; cf. Leray (1933, pp. 57-58). The general case
was successively proved by Finn (1959a, Theorem 2) and, independently, by
M. D. Faddeyev in his thesis published at Leningrad University in 1959; cf.
Ladyzhenskaya (1969, Chapter 5, Theorem 8). Convergence of higher-order
derivatives for the velocity field and for the pressure field was first investigated
by Finn (1959b). In the same paper, Finn shows representation formulas of
the type derived in Theorem X.5.2, for solutions having suitable behavior at
large distances.

Section X.6. The first study of the global summability properties of a gener-
alized solution, v, when v∞ 6= 0, goes back to Babenko (1973). In this paper,
the crucial step is to show that

v + v∞ ∈ L4−ε(Ω) (∗∗)

for some small positive ε. Actually, once this condition is established, it is
relatively simple to prove that v enjoys the same summability properties (and
hence has the same asymptotic structure) of the Oseen fundamental solution;
see Babenko (1973, pp. 11-21). I regret that some steps of Babenko’s proof
remain obscure to me.

The proof of global summability properties of generalized solutions devel-
oped in Lemma X.6.1 and Theorem X.6.4 is due to me, and is inspired by the
paper of Galdi & Sohr (1995).

Theorem X.6.5 with q = 2 is due to Finn (1960).

Section X.8. Employing the key property (∗∗), Babenko (1973) showed that
every generalized solution corresponding to v∞ 6= 0 is “physically reason-
able” in the sense of Finn, that is, it behaves asymptotically as the Oseen
fundamental solution; cf. also the Introduction to this chapter. As remarked
previously, however, some steps of Babenko’s proof of (∗) remain unclear to
me. The proof given here, cf. Theorem X.8.1, is completely independent of
Babenko’s and is taken from the work of Galdi (1992b). Another proof has
been successively provided by Farwig & Sohr (1998)

The proofs of Theorem X.8.2 and Theorem X.8.3 rely on ideas of Finn
(1959b).

Section X.9. Lemma X.9.1 is due to Galdi & Simader (1994). Theorem
X.9.1, Theorem X.9.2(i), and Theorem X.9.3 are due to Galdi (1992a, 1992c).
Theorem X.9.5 is due to me. In this connection, see also Novotný & Padula
(1995)
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Section X.10. The relation between Navier–Stokes and Stokes problems in
exterior domains, in the limit of vanishing Reynolds number, was first inves-
tigated by Finn (1961a). The approach followed in this section is due to me.
For related questions, see also Arai (1995).





XI

Steady Navier–Stokes Flow in

Three-Dimensional Exterior Domains.
Rotational Case

F.F. CHOPIN, Polonaise op. 53, bars 1–2.

Introduction

This chapter is devoted to the study of the mathematical properties of so-
lutions to the exterior boundary-value problem (X.0.1)–(X.0.2), in the case
ω 6= 0, so that in general, v∞ = v0 + ω × x. As we observed in the In-
troduction to Chapter VIII, this study has an important bearing on those
applied fields involving the free motion of rigid bodies in viscous liquids, such
as sedimentation and self-propulsion phenomena.

Without loss of generality, we take ω = ω e1 (ω > 0), whereas v0 = v0 e,
with e a unit vector (unrelated, in principle, to e1) and v0 ≥ 0. Then, we
may use the Mozzi–Chasles transformation (VIII.0.5)–(VIII.0.6) in (X.0.1)–
(X.0.2), so that our task reduces to the study of the following boundary-value
problem:

ν∆v = v · ∇v+ 2ωe1 × v + ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

(XI.0.1)
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along with the side condition

lim
|x|→∞

(v(x) + v∞) = 0 , v∞ := v0(e · e1)e1 + ω e1 × x. (XI.0.2)

Our investigation of problem (XI.0.1)–(XI.0.2) will be limited to the three-
dimensional case only, in that no general results are available, to date, for a
two-dimensional domain, with the exception of very special cases.1 Further-

more, for the sake of simplicity, we assume that
◦
Ωc is connected .

The fundamental challenge with (XI.0.1)–(XI.0.2) consists in the fact that
the velocity field becomes unbounded at large distances from ∂Ω. An immedi-
ate consequence of this circumstance is that problem (XI.0.1)–(XI.0.2) cannot
by any means be viewed as a perturbation to the analogous problem with
ω = 0, which we analyzed in the previous chapter.

Notwithstanding this difficulty, thanks to the remarkable fact that the
total power of the “rotational term”

∫
Ω

(e1 × x · ∇u − e1 × u) · u vanishes
identically along differentiable vector functions u compactly supported in Ω,
one can prove that all solutions (in a suitable class) to problem (XI.0.1)–
(XI.0.2) satisfy an a priori estimate analogous to (X.0.5), that is,

∫

Ω

∇(v + v∞) : ∇(v + v∞) ≤M , (XI.0.3)

with M depending only on the data. As a consequence, by appropriately
modifying the procedure used for the proof of Theorem X.4.1, we can prove the
existence of a generalized solution, that is, D-solutions, for data of arbitrary
“size,” also in the case ω 6= 0. This fact was first pointed out by Leray (1933,
Chapter III); see also Borchers (1992, Korollar 4.1).

Now, though it is a simple job to show that to every generalized solution v
one can associate a locally integrable pressure field p and that the pair (v, p)
is smooth (for as long as the data and the domain may allow), the question
whether a generalized solution is also physically reasonable appears to be a
much more challenging task. In accordance to what we discussed in the In-
troduction to the previous chapter, by “physically reasonable” (PR) we mean
a solution that satisfies the energy equation (X.0.6), that for “small” data
is unique, and that moreover, under suitable circumstances, shows a “wake-
like” behavior, namely, a region outside which the velocity field converges to
its asymptotic value much more rapidly than inside. As we know from the
study of the case ω = 0, the proof of all these properties can be achieved if
a solution has “good” behavior at large distances. However, for a D-solution,
in addition to (XI.0.3), the only other information we have at the outset on
its asymptotic behavior is

∫

Ω

|v + v∞|6 ≤M1 , (XI.0.4)

1 For example, if Ω is the exterior of a rotating circle, the solution assumes the
very simple form given in (V.0.8)1, (V.0.9).
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as a consequence of (XI.0.3) and Theorem II.6.1.
The question of existence of PR solutions was initiated by Galdi (2003)

for the case R′ = 0 (rotation without translation, that is), and continued and,
to some extent, completed in the general case, by Galdi & Silvestre (2007a,
2007b). Specifically, by an entirely different approach from that one adopted
by Finn (1965a) for the case ω = 0, in those papers it is proved that if the
data f and v∗ are “small” in a suitable sense, then problem (XI.0.1)–(XI.0.2)
possesses one (and, in fact, only one) PR solution. As in the case ω = 0, while
it is immediate to show that these solutions are also D-solutions, the converse
property is in no way obvious, even for “small” data.

The problem of whether a D-solution is also physically reasonable has
been recently investigated by Galdi & Kyed (2010, 2011a). Their main results
heavily rely on the analysis of the generalized Oseen problem performed in
Chapter VIII, and can be summarized as follows.

Suppose, at first, v0 6= 0 and e · e1 6= 0, namely,

v0 · ω 6= 0 , (XI.0.5)

and let (v, p) be a solution to (XI.0.1) with f mildly regular and of bounded
support,2 and v satisfying (XI.0.3), (XI.0.4). Then, there exists a semi-infinite
cone, C, whose axis is directed along the ±e1-direction according to whether

v0 · ω<>0, and such that for all sufficiently large |x| and δ > 0,

v(x) + v∞(x) =

{
O(|x|−1) uniformly ,

O(|x|−3/2+δ) if x 6∈ C ,

∇ (v(x) + v∞(x)) =

{
O(|x|−3/2) uniformly ,

O(|x|−2+δ) if x 6∈ C .

(XI.0.6)

Furthermore, there is p0 ∈ R, such that

p̃(x) − p0 = O(|x|−2 ln |x|) , (XI.0.7)

where p̃(x) = p(x) + ω2

2 (x2
2 + x2

3).
3 Notice that the asymptotic properties

given in (XI.0.6) coincide with those of the same quantity in the case ω = 0

and v0 6= 0, given in Theorem X.8.1 and Theorem X.8.2. However, the main,
and in principle substantial, difference between the cases ω = 0 and ω 6= 0

relies on the fact that in the rotational case it is not known, to date, whether
there existence a leading term in the asymptotic behavior of the velocity
field, while in absence of rotation we proved that such a term exists and
coincides with the Oseen fundamental tensor E, in the sense specified in
Theorem X.8.1 and Theorem X.8.2. As a consequence, it is not known whether

2 This latter assumption can be fairly weakened, by imposing only that f decays
“sufficiently fast” at large distances.

3 Observe that the field ep is, in fact, the real pressure of the liquid; see Section I.2.
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the asymptotic estimates given in (XI.0.6) are optimal. In particular, it is not
known whether the kinetic energy of the liquid when v∗ ≡ f ≡ 0 is infinite,4

as in the irrotational case, or else is finite.
It is interesting to give an interpretation of the above results and of condi-

tion (XI.0.5), in the case in which v0 is the translational velocity of the center
of mass G and ω is the angular velocity of the “body” B ≡ Ωc, moving in a
viscous liquid that is quiescent at spatial infinity. In such a case, we recall5

that condition (XI.0.5) ensures that with respect to an inertial frame I, the
velocity η of G has a nonzero component η1 in the direction e1 of ω. On
physical grounds, we thus expect the formation of a wake region behind the
body in the direction opposite to η1. The cone C is then exactly representative
of this wake region. We also would like to emphasize that, again on physical
grounds, condition (XI.0.5) is necessary for the formation of the wake. In fact,
if v0 ·ω = 0, then the motion of B in I reduces to a pure rotation6 where, of
course, no wake region is expected.

In the process of proving the estimates (XI.0.6) and (XI.0.7) we also find,7

on the one hand, that every D-solution is unique in its own class if the data
are “sufficiently small,” and on the other hand, that every D-solution satisfies
the energy equation.

If v0 = 0 or e · e1 = 0, namely,

v0 · ω = 0 , (XI.0.8)

the picture is less clear, and the corresponding results resemble those found
in the previous chapter when v∞ = 0. More precisely, following Galdi &
Kyed (2010), we show that every D-solution satisfying the energy inequality,
that is, (X.0.6) with “=” replaced by “≤”,8 and corresponding to “sufficiently
small” data, has asymptotic behavior similar to that of the fundamental Stokes
solution. More precisely,

Dα(v(x)+ω×x) = O(|x|−|α|−1) , Dα(p̃(x)−p0) = O(|x|−|α|−2) , |α| = 0, 1 ,
(XI.0.9)

for some p0 ∈ R. The proof of (XI.0.9) is similar, in principle, to that of
Theorem X.9.1 in the case ω = 0. However, unlike this latter, the proof of
the appropriate summability properties of the pressure field associated to a
D-solution is quite elaborate.

The question whether the above results continue to hold for data of “ar-
bitrary” size, as in the case v0 ·ω = 0, remains open. However, on the bright

4 This happens, for example, in the very important situation of a rigid body B
translating and rotating in a viscous liquid when the walls of B are fixed and
impermeable; see also the comments in the next paragraph.

5 See footnote 14 of Chapter I.
6 See footnote 14 of Chapter I.
7 Under more general assumptions on the body force f ; see Theorem XI.5.1 and

Theorem XI.5.3.
8 This class is proved to be not empty.
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side, unlike the case v0 · ω 6= 0, for the case at hand, Farwig, Galdi & Kyed
(2010), relying on the previous work of Galdi (2003) and Farwig and Hishida
(2009), were able to show, for small data at least, the existence of a leading
term in the pointwise asymptotic behavior of a generalized solution. In par-
ticular, regarding the velocity, one shows that it coincides with the velocity
field of a suitable Landau solution.9

We conclude this introductory section by rewriting (XI.0.1), (XI.0.2) in a
suitable nondimensional form. If v0 ·ω 6= 0, we scale the velocity by v0e·e1 and
the length by d := δ(Ωc), so that by a simple computation, (XI.0.1) becomes

∆v = Rv · ∇v + 2T e1 × v + ∇p+ f

∇ · v = 0

}
in Ω

v = v∗ at ∂Ω ,

(XI.0.10)

where R and T are defined in (VIII.0.6)4 and (VIII.0.3)2, respectively. If, on
the other hand, v0 ·ω = 0, then we scale the velocity with ω d, which amounts
to setting (formally) in (XI.0.10) R = T . As far as (XI.0.2) is concerned, we
have

lim
|x|→∞

(v(x) + v∞(x)) = 0 , v∞(x) :=

{
e1 + T

R e1 × x , if v0 · ω 6= 0 ,

e1 × x , if v0 · ω = 0 .
(XI.0.11)

Throughout this chapter, we will focus on the study of the boundary-value
problem (XI.0.10)–(XI.0.11).

XI.1 Generalized Solutions. Existence of the Pressure
and Regularity Properties

The weak formulation of the boundary-value problem (XI.0.10), (XI.0.11) is
given with a by now standard procedure that is the natural generalization of
its irrotational counterpart. Specifically, if we formally multiply (XI.0.10)1 by
ϕ ∈ D(Ω) and integrate by parts over Ω, we obtain
∫

Ω

∇v : ∇ϕ+ R
∫

Ω

v · ∇v ·ϕ + 2T e1 ×
∫

Ω

v ·ϕ = −
∫

Ω

f · ϕ. (XI.1.1)

As usual, we shall consider the more general situation in which the right-
hand side of (XI.1.1) is defined by a linear functional f ∈ D−1,2

0 (Ω).
Thus, in complete analogy with Definition X.1.1 (and Definition VIII.1.1),

we give the following.

Definition XI.1.1. Let Ω be an exterior domain of R3.1 A vector field v :
Ω → R3 is called a weak (or generalized) solution to the Navier–Stokes problem
(XI.0.10), (XI.0.11) if

9 See Remark X.9.3 for the definition of a Landau solution.
1 We recall that we will assume throughout that Ωc is connected.
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(i) v ∈ D1,2(Ω);
(ii) v is (weakly) divergence-free in Ω;
(iii) v satisfies the boundary condition (XI.0.10)3 (in the trace sense) or, if

v∗ ≡ 0, then ϑv ∈ D1,2
0 (Ω), where ϑ ∈ C1

0(Ω), and ϑ(x) = 1 if x ∈ ΩR/2

and ϑ(x) = 0 if x ∈ ΩR, R > 2δ(Ωc);

(iv) lim
|x|→∞

∫

S2

|v(x) + v∞| = 0 ;

(v) v satisfies the identity

(∇v,∇ϕ) + R(v · ∇v,ϕ) + 2T (e1 × v,ϕ) = − [f ,ϕ] (XI.1.2)

for all ϕ ∈ D(Ω).

Remark XI.1.1 Remark V.1.1 with q = 2, and Remark IX.1.1 equally apply
to generalized solutions of Definition XI.1.1. �

We shall next investigate the existence and the properties of the pressure
field associated to a generalized solution. While existence is a simple task,
the proof of global summability properties requires more effort, and heavily
relies on the properties of weak solutions to the generalized Oseen problem
established in Section VIII.2. We begin with the following.

Lemma XI.1.1 Let v be a generalized solution to (XI.0.10), (XI.0.11). Then,
if

f ∈W−1,2
0 (Ω′) (XI.1.3)

for every bounded domain Ω′ with Ω′ ⊂ Ω, there exists

p ∈ L2
loc(Ω)

such that

(∇v,∇ψ) + R(v · ∇v,ψ) + 2T (e1 × v,ψ) = (p,∇ · ψ) − [f,ψ] (XI.1.4)

for all ψ ∈ C∞
0 (Ω). Furthermore, if Ω is locally Lipschitz and for some R >

δ(Ωc),
f ∈W−1,2

0 (ΩR),

then we have
p ∈ L2(ΩR).

Proof. The proof of the lemma is completely analogous to that given in
Lemma X.1.1 and will be therefore left to the reader. ut

Lemma XI.1.2 Let v and f be as in Lemma XI.1.1. Suppose, in addition,

f ∈ L2(Ωρ) . for some ρ > δ(Ωc),

Then v ∈ D2,2(Ωr), for all r > ρ.
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Proof. Under the stated assumptions on f , in the following Theorem XI.1.2 it
is shown that (v, p) ∈W 2,2

loc (Ωρ)×W 1,2
loc (Ωρ). Therefore, setting u := v+v∞,

from (XI.1.4), we obtain

∆u+ R ∂u

∂x1
+ T (e1 × x · ∇u− e1 × u) = Ru · ∇u+ ∇p̃+ f

∇ · u = 0





a.e. in Ωρ ,

(XI.1.5)
where2

p̃ :=

{
p+ T 2

2R(x2
2 + x2

3), if v0 ·ω 6= 0

p+ T
2 (x2

2 + x2
3), if v0 · ω = 0 .

(XI.1.6)

We have to show that

D2u (≡ D2v) ∈ L2(Ωρ) . (XI.1.7)

Let ψR be the “cut-off” function used in the proof of Lemma VIII.2.1. By
dot-multiplying both sides of (XI.1.5)1 by −∇× (ψR∇×u), integrating over
Ωρ, and taking into account (VIII.2.4), we derive3

‖√ψR∆u‖2
2 = −(R ∂u

∂x1
+ f , ψR∆u+ (∇× u) ×∇ψR)

−1
2 ((∇× u) ×∇(

√
ψR),

√
ψR∆u)

+T (e1 × u,∇× (ψR∇× u) − (e1 × x · ∇u,∇× (ψR∇× u))

+R(u · ∇u, ψR∆u+ (∇× u) ×∇ψR) .

With the help of (VIII.2.6), (VIII.2.7), (VIII.2.9) and (VIII.2.11), from this
relation we deduce

‖
√
ψR∆u‖2

2 ≤ c (‖f‖2
2+|u|21,2)+R(u ·∇u, ψR∆u+(∇×u)×∇ψR) , (XI.1.8)

with c independent ofR. We now estimate the last two terms on the right-hand
side of (XI.1.8). To this end, we begin by observing that since u belongs to
D1,2(Ω) and satisfies condition (iv) in Definition XI.1.1, by Theorem II.6.1(i)
it follows that u ∈ L6(Ω) and

‖u‖6 ≤ c0|u|1,2 , (XI.1.9)

where c0 = c0(Ω). By the Hölder inequality and (XI.1.9), we have

2 See footnote 3 in the Introduction to this chapter.
3 This formal calculation can be easily made rigorous by a simple approximation

procedure and by the use of the results of Exercise II.4.3. For simplicity, through-
out the proof, we set ‖ · ‖2,Ωρ ≡ ‖ · ‖2, and (·, ·)Ωρ ≡ (·, ·).
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(u · ∇u, ψR∆u) ≤ ‖√ψR∇u‖3‖u‖6‖
√
ψR∆u‖2

= ‖∇(
√
ψRu) − u⊗∇√

ΨR‖3‖u‖6‖
√
ψR∆u‖2

≤ c
(
‖∇(

√
ψRu)‖3 + ‖u⊗∇√

ΨR‖3

)
|u|1,2‖

√
ψR∆u‖2 .

(XI.1.10)
From Nirenberg’s Lemma II.3.3 and Exercise II.7.4, we also obtain

‖∇(
√
ψRu)‖3 ≤ c1‖∇(

√
ψRu)‖1/2

2 ‖D2(
√
ψRu)‖1/2

2

= c1‖∇(
√
ψRu)‖1/2

2 ‖∆(
√
ψRu)‖1/2

2 .
(XI.1.11)

We next observe that by the properties of the function ψR, (XI.1.9), and again
the Hölder inequality, we easily obtain

‖∆(
√
ψRu)‖2 ≤ ‖√ΨR∆u‖2 + 2‖∇u · ∇√

ψR‖2 + ‖u∆√
ψR‖2

≤ ‖√ΨR∆u‖2 + c2|u|1,2 + c3

(∫

Bρ,r

|u|2 +

∫

BR,2R

|u|2
R2

)1/2

≤ ‖√ΨR∆u‖2 + c4(|u|1,2 + ‖u‖6)

≤ ‖
√
ΨR∆u‖2 + c5|u|1,2 ,

(XI.1.12)
with c5 independent of R. By a similar argument, we also obtain

‖∇(
√
ψRu)‖2 ≤ c6

(∫

Bρ,r

|u|2 +

∫

BR,2R

|u|2
R2

)1/2

+ |u|1,2

≤ c7 (‖u‖6 + |u|1,2) ≤ c8|u|1,2 ,

(XI.1.13)

with c8 independent ofR. Thus, inserting the above inequalities into (XI.1.11),
we deduce

‖∇(
√
ψRu)‖3 ≤ c9

(
|u|1/2

1,2 ‖
√
ψR∆u‖1/2

2 + |u|1,2

)
.

Since by an argument similar to that leading to (XI.1.13) we get

‖u⊗∇
√
ψR‖3 ≤ c10

(∫

Bρ,r

|u|3 +

∫

BR,2R

|u|3
R3

)1/2

≤ c11‖u‖6 ≤ c12|u|1,2 ,

from (XI.1.10) we deduce

(u · ∇u, ψR∆u) ≤ c13

(
|u|1/2

1,2 ‖
√
ψR∆u‖1/2

2 + |u|1,2

)
|u|1,2‖

√
ψR∆u‖2 .

If we use Young’s inequality (II.2.5) in this relation, we finally conclude that

(u · ∇u, ψR∆u) ≤ c14

(
|u|61,2 + |u|41,2

)
+ ε‖

√
ψR∆u‖2 , (XI.1.14)
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where ε > 0 is arbitrary and c14 depends on ε, but is otherwise independent
of R. It remains to estimate the last term on the right-hand side of (XI.1.8).
Using one more time the Hölder inequality, (XI.1.9), and Nirenberg’s Lemma
II.3.3, we deduce

(u · ∇u, (∇× u) ×∇ψR) ≤ c12‖u‖6|u|1,2‖
√
ψR∇u‖3

≤ c13|u|21,2‖
√
ψR∇u‖1/2

2 ‖∇(
√
ψR∇u)‖1/2

2

≤ c14|u|5/2
1,2

(
‖D2(

√
ψRu)‖2 + ‖uD2

√
ψR‖2

)1/2
.

Thus, by (XI.1.12), (XI.1.9), the properties of ψR, and Young’s inequality,
from the previous inequality we obtain

(u · ∇u, (∇× u) ×∇ψR) ≤ c15

(
|u|5/2

1,2 ‖
√
ψR∆u‖1/2

2 + |u|31,2

)

≤ c16

(
|u|10/3

1,2 + |u|31,2

)
+ ε‖√ψR∆u‖2

2 ,

(XI.1.15)
where ε > 0 is arbitrary and c16 depends on ε, but is otherwise independent
of R. Collecting (XI.1.8), (XI.1.14), and (XI.1.15), and choosing ε sufficiently
small, we conclude that ‖√ψR∆u‖2 ≤M , with a constant M independent of
R. This inequality formally coincides with (VIII.2.12), so that, arguing as in
the proof of Lemma VIII.2.1, we prove (XI.1.7). ut

The previous lemma has the following interesting consequence.

Corollary XI.1.1 Let v be a generalized solution to (XI.0.10), (XI.0.11)
corresponding to f that satisfies the assumption of Lemma XI.1.2. Then,
v ∈ L∞(Ωr), r > ρ, and moreover,

lim
|x|→∞

(v(x) + v∞(x)) = 0 , uniformly . (XI.1.16)

Proof. Under the given assumptions on f , in Theorem XI.1.2 below it will be
proved that v ∈W 2,2(Ωr,R), for all R > r, and so by the embedding Theorem
II.3.4, v+v∞ ∈ L∞(Ωr,R), for all R > r. Consequently, in order to prove the
corollary, it is enough to prove (XI.1.16). Since v is a generalized solution (see
(XI.1.9)), we know that

u ∈ L6(Ωr) ∩D1,2(Ωr) , (XI.1.17)

where u := v+v∞. Moreover, from Lemma XI.1.2 we also have u ∈ D2,2(Ωr),
which, in turn, by (XI.1.17) and Theorem II.6.1, implies u ∈ D1,6(Ωr).
The property (XI.1.16) then follows from this latter, (XI.1.17), and Theorem
II.9.1 .

ut
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We are now in a position to prove the global summability properties of
the pressure.

Theorem XI.1.1 Let v be a generalized solution to (XI.0.10), (XI.0.11), and
let f satisfy (XI.1.4) and, in addition,

f ∈ L2(Ωρ) ∩ Lq(Ωρ) , some q ∈ (1,∞) and ρ > δ(Ωc) .

Let p be the pressure field associated to v by Lemma XI.1.1, with p̃ defined
in (XI.1.6). Then p̃, possibly modified by the addition of a constant, admits
the following decomposition:

p̃ = p1 + p2 , (XI.1.18)

where

p1 ∈ L6(Ωr) ∩D1,2(Ωr) ∩D1,q(Ωr) , p2 ∈ L3(Ωr) , r > ρ. (XI.1.19)

Moreover, if q ∈ (1, 3), we also have

p1 ∈ L3q/(3−q)(Ωr) . (XI.1.20)

Thus, in particular, if q ∈ (1, 3/2), we conclude that

p̃ ∈ L3(Ωr) . (XI.1.21)

Proof. We set u := v+v∞, and recall that, by Theorem XI.1.2, stated below,
and the assumptions on f , we can take (u, p̃) ∈ W 2,2

loc (Ωρ) ×W 1,2
loc (Ωρ), so

that in particular, (u, p̃) satisfies (XI.1.5). Therefore, we obtain

∆u+ R ∂u

∂x1
+ T (e1 × x · ∇u− e1 × u) = ∇p̃+ f + ∇ · (u ⊗ u)

∇ · u = 0





a.e. in Ωr .

(XI.1.22)
We next notice that by (XI.1.9),

u⊗ u ∈ L3(Ωr) .

This latter property, along with the assumption on f , allows us to conclude, by
Lemma VIII.2.2, the validity of (XI.1.18)–(XI.1.21). The proof of the theorem
is complete. ut

Remark XI.1.2 We notice that in view of Remark VIII.2.1, Theorem XI.1.1
continues to hold if T = 0. �

We conclude this section by summarizing, in the next theorem, the differ-
entiability properties of generalized solutions. Their proof is entirely analogous
(and simpler, since we are in three dimensions) to that of Theorem X.1.1, and
we leave it to the reader.
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Theorem XI.1.2 Let v be a generalized solution to (XI.0.10), (XI.0.11).
Then, if

f ∈Wm,q
loc (Ω), m ≥ 0 , (XI.1.23)

where q ∈ (1,∞) if m = 0, while q ∈ [3/2,∞) if m > 0, it follows that

v ∈Wm+2,q
loc (Ω), p ∈Wm+1,q

loc (Ω),

where p is the pressure associated to v by Lemma XI.1.1. Thus, in particular,
if

f ∈ C∞(Ω),

then
v, p ∈ C∞(Ω).

Assume further that Ω is of class Cm+2 and

v∗ ∈Wm+2−1/q,q(∂Ω), f ∈Wm,q(ΩR) ,

for some R > δ(Ωc) and with the values of m and q specified earlier. Then,
we have

v ∈Wm+2,q(ΩR), p ∈Wm+1,q(ΩR).

Therefore, in particular, if Ω is of class C∞ and

v∗ ∈ C∞(∂Ω), f ∈ C∞(ΩR),

it follows that
v, p ∈ C∞(ΩR).

XI.2 On the Energy Equation and the Uniqueness of
Generalized Solutions

In this section we shall investigate two important properties of generalized
solutions that, as shown in Sections X.2 and X.3 in the irrotational case,
may be somewhat related. We will begin by giving sufficient conditions for a
generalized solution to satisfy the energy equation:

2

∫

Ω

D(v) : D(v) −
∫

∂Ω

[
(v∞ + v∗) · T (v, p̃) −R

2
(v∗ + v∞)2v∗

]
· n

+

∫

Ω

f · (v + v∞) = 0 ,

(XI.2.1)
where v∞ is defined in (XI.0.11), p̃ in (XI.1.6), and T is the Cauchy stress
tensor (IV.8.6). This relation is formally obtained by dot-multiplying both
sides of (XI.0.10) by v + v∞, integrating over ΩR, and assuming that all the
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surface integrals on ∂BR converge to zero as R → ∞. We also notice that,
up to the pressure term, (XI.2.1) coincides with the energy equality (X.2.29)
proved for the irrotational case. The reason is that the total power of the
rotational contribution vanishes identically.

We shall deal directly with the validity of (XI.2.1), leaving the analogous
proof of the “generalized energy equality” (in the sense of Definition X.2.2) as
an exercise to the interested reader. We recall that this latter coincides with
(XI.2.1) for sufficiently smooth domains (for example, of class C2) and data.

We thus have the following.

Theorem XI.2.1 Let Ω be of class C2, and assume

f ∈ L4/3(Ω) , v∗ ∈ W 5/4,4/3(∂Ω) . (XI.2.2)

Then, any generalized solution corresponding to the above data that in addi-
tion satisfies

(v + v∞) ∈ L4(Ω) (XI.2.3)

satisfies the energy equality (XI.2.1).

Proof. Set u := v + v∞. From (IV.8.9), (XI.2.2), and Theorem XI.1.2 we
obtain

∇ · T (u, p̃) + λ1
∂u

∂x1
+ T (e1 × x · ∇u− e1 × u) = λ2u · ∇u+ f

∇ · u = 0





a.e. in Ω ,

(XI.2.4)
with p̃ defined in (XI.1.6), and where λ1 = λ2 = R if v0 ·ω 6= 0 (with v∞ as in
(XI.0.11)1), while λ1 = 0 and λ2 = T if v0 ·ω = 0 (with v∞ as in (XI.0.11)2).
Since v is a weak solution, we have (see (XI.1.9))

u ∈ D1,2(Ω) ∩ L6(Ω) . (XI.2.5)

We analyze first the case v0 · ω 6= 0 (see (XI.0.11)1), and notice that in
particular, by (XI.2.2), (XI.2.3), and the Hölder inequality,

u · ∇u+ f ∈ L4/3(Ω) . (XI.2.6)

Consequently, from this property, (XI.2.2), (XI.2.5), and Theorem VIII.8.1, it
follows that

∂u

∂x1
∈ L4/3(Ω) , p̃ ∈ L12/5(Ω) . (XI.2.7)

Let ψR be the “cut-off” function used in the proof of Theorem X.3.2, and let us
dot-multiply both sides of (XI.2.4) by ψRu. By an easily justified integration
by parts on the resulting equation, and taking into account that u = v∗ +v∞
at ∂Ω (in the trace sense), we obtain
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2(D(u), D(ψRu)) −
∫

∂Ω

[
(v∞ + v∗) · T (v, p̃) − R

2 (v∗ + v∞)2v∗
]
· n

+R
(
∂u

∂x1
, ψRu

)
+ 1

2R(|u|2∇ψR,u) − (p̃u,∇ψR) + (f , ψRu) = 0 ,

(XI.2.8)
where we have used ∇ψR ·(e1×x) = 0. We now recall the following properties
of the function ψR:

lim
R→∞

ψR(x) = 1 , for all x ∈ Ω ,

supp (ψR) ⊂ ΩR,2R , |∇ψR| ≤ C/R
(XI.2.9)

for a constant C independent of x and R. Thus, using this latter along with
(XI.2.3), (XI.2.5), and (XI.2.7), the reader will have no difficulty in proving
the following:

lim
R→∞

(D(u),D(ψRu)) = (D(u),D(u)) , lim
R→∞

(f , ψRu) = (f ,u) ,

lim
R→∞

(|u|2∇ψR,u) = 0 , lim
R→∞

(
∂u

∂x1
, ψRu

)
=

(
∂u

∂x1
,u

)
.

(XI.2.10)
However, as shown in the proof of Theorem X.2.1, we obtain

(
∂u

∂x1
,u

)
= 0 . (XI.2.11)

Finally, by the Hölder inequality and by (XI.2.7), we have

|(p̃u,∇ψR)| ≤ ‖p̃‖12/5,ΩR,2R
‖u‖4,ΩR,2R‖∇ψR‖3,ΩR,2R

≤ C ‖p̃‖12/5,ΩR,2R
‖u‖4,ΩR,2R ,

where in the last inequality, we have used (XI.2.9)3. Thus,

lim
R→∞

(p̃u,∇ψR) = 0 . (XI.2.12)

Consequently, letting R → ∞ in (XI.2.8) and employing (XI.2.10)–(XI.2.12),
we recover (XI.2.1), which is therefore proved in the case (XI.0.11)1. The proof
in the case (XI.0.11)2 is entirely analogous. (We recall that in this situation,
in (XI.2.4) we must take λ1 = 0 and λ2 = T .) It suffices to observe that from
(XI.2.3), (XI.2.6), and Theorem VIII.7.2, it follows that p̃ (up to an inessential
constant) satisfies (XI.2.7). Consequently, following step by step the argument
previously used for the case (XI.0.11)1, we prove the desired property also in
case (XI.0.11)2. The theorem is completely proved. ut

Our next objective is to furnish sufficient conditions for uniqueness of
generalized solutions. We have the following.



760 XI Three-Dimensional Flow in Exterior Domains. Rotational Case

Theorem XI.2.2 Let Ω, f , and v∗ satisfy the assumptions of Theorem
XI.2.1, and let v, v1 be two corresponding generalized solutions satisfying,
in addition, (XI.2.3).1 Then, if (v + v∞) ∈ L3(Ω) with

‖v + v∞‖3 <

√
3

2R , (XI.2.13)

necessarily v(x) = v1(x), a.e. in Ω.

Proof. We shall give the proof when v0 · ω 6= 0, so that v∞ is given in
(XI.0.11)1. In fact, as the reader will immediately realize, it remains basically
unchanged in the case v0 ·ω = 0. Set u := v1 − v, φ := p̃1 − p̃, w := v+ v∞,
w1 := v1 +v∞, where p̃ and p̃1 are the (modified, according to (XI.1.6)) pres-
sure fields associated to v and v1 by Lemma XI.1.1. From (IV.8.9), (XI.2.2),
and Theorem XI.1.2 we thus obtain

∇ · T (u, φ) + R ∂u

∂x1
+T (e1 × x · ∇u− e1 × u)

= R (u · ∇u+w · ∇u+ u · ∇w)

∇ · u = 0





a.e. in Ω ,

u = 0 at ∂Ω .
(XI.2.14)

We now follow exactly the same procedure used in the proof of Theorem
XI.2.1, that is, after dot-multiplying both sides of (XI.2.14)1 by ψRu, inte-
grating by parts over Ω, and taking into account the boundary conditions, we
let R → ∞. Using the fact that both v and v1 satisfy (XI.2.3) we then show
that u obeys the following “perturbed” energy equality:

|u|21,2 = R(u · ∇u,w) , (XI.2.15)

where we have used the relation |u|1,2 =
√

2‖D(u)‖2.
2 By (XI.2.15), the

Hölder inequality, and the Sobolev inequality (II.3.11), we thus obtain

|u|21,2

(
1 −R 2√

3
‖w‖3

)
≤ 0 ,

which, in turn, proves the result under the assumption (XI.2.13). ut

For future use, we need another uniqueness result that generalizes to the
rotational case the one proved in Theorem X.3.2. We shall limit ourselves to
the case v0 ·ω = 0, namely, when v∞ satisfies (XI.0.11)2, in that it will suffice
for our purposes.

Thus, let C be the class of generalized solutions v to (XI.0.10), (XI.0.11)
with v0 ·ω = 0 satisfying the energy inequality

1 The assumption on v1 can be somehow weakened. See Exercise XI.2.1.
2 See Footnote 4 in Chapter X.
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2

∫

Ω

D(v) : D(v) −
∫

∂Ω

[
(v∞ + v∗) · T (v, p̃) −T

2 (v∗ + v∞)2v∗
]
· n

+

∫

Ω

f · (v + v∞) ≤ 0 .

(XI.2.16)
As we shall prove in the following section, under suitable regularity assump-
tions on Ω, f , and v∗, the class C is not empty.

We have the following.

Theorem XI.2.3 Let Ω be of class C2, and let

f ∈ L2(Ω) ∩ L6/5(Ω) , v∗ ∈W 3/2,2(∂Ω) , v0 ·ω = 0.

Suppose v is a corresponding generalized solution such that for all x ∈ Ω,

(1 + |x|)|v(x) + v∞| ≤M , M <
1

2T . (XI.2.17)

Then v is unique in the class C.

Proof. Let v1 be any element in C corresponding to the given data, let p1 be
the associated pressure, and set w := v1 + v∞. From (IV.8.9), (XI.2.2), and
Theorem XI.1.2 we deduce that w satisfies

∇ · T (w, p̃1) + T (e1 × x · ∇w − e1 ×w) = T w · ∇w + f

∇ ·w = 0

}
a.e. in Ω ,

w = v∗ + v∞ ≡ d∗ at ∂Ω,
(XI.2.18)

with p̃1 the modified pressure as in (XI.1.6). Dot-multiplying both sides of
(XI.2.18)1 by u := v + v∞ and integrating by parts over ΩR, we obtain

−2

∫

ΩR

D(w) : D(u) + 2

∫

∂BR

n ·D(w) · u −
∫

∂BR

p̃1(u · n)

−T
∫

ΩR

w · ∇w · u + T
∫

ΩR

(e1 × x · ∇w − e1 ×w) ·u

= −
∫

∂Ω

n · T (w, p̃1) · d∗ +

∫

ΩR

f · u .

(XI.2.19)

Likewise, interchanging the roles of u and w, we get

−2

∫

ΩR

D(w) : D(u) + 2

∫

∂BR

n ·D(u) ·w −
∫

∂BR

φ̃(w ·n)

−T
∫

ΩR

u · ∇u ·w + T
∫

ΩR

(e1 × x · ∇u− e1 × u) ·w

= −
∫

∂Ω

n · T (u, φ̃) · d∗ +

∫

ΩR

f ·w ,

(XI.2.20)
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where φ̃ is the modified pressure, according to (XI.1.6), associated to v. Our
next task is to show that all integrals on ∂BR in (XI.2.19) and (XI.2.20)
converge to zero as R→ ∞, along a sequence at least. To this end, we notice
that in (XI.2.18), written with w ≡ u and p̃1 ≡ φ̃, its right-hand side can be
put in the form T ∇·(u⊗u)+f . Since u decays pointwise in the way specified
in (XI.2.17), and u ∈ D1,2(Ω), it follows that u ⊗ u ∈ L2(Ω) and ∇ · (u ⊗
u) ∈ L2(Ω). Moreover, by assumption, f ∈ L6/5(Ω). As a consequence, from

Lemma VIII.2.2 we deduce φ̃ ∈ L2(ΩR), for sufficiently large R. Moreover, by
Theorem XI.1.2, p̃1 ∈ L3(ΩR). Thus, recalling also that w ∈ L6(Ω), we can
find an unbounded sequence {Rk} such that

lim
k→∞

Rk

∫

∂BRk

(
|p̃1|3 + |∇w|2 + |w|6 + |φ̃|2 + |∇u|2 + |u|2

)
= 0 . (XI.2.21)

Using this property, we shall now show that all surface integrals over ∂BR in
(XI.2.19), (XI.2.20) tend to zero as R→ ∞, at least along the sequence {Rk}.
In fact, setting

[]u[]1 := sup
x∈Ω

(1 + |x|)|u(x)| ,

we have, as k → ∞,

∣∣∣∣∣

∫

∂BRk

n ·D(w) · u
∣∣∣∣∣ ≤ c1 []u[]1

∫

∂BRk

|∇w|
Rk

≤ c2[]u[]1 ‖∇w‖2,∂BRk
→ 0 ,

∣∣∣∣∣

∫

∂BRk

p̃1(u · n)

∣∣∣∣∣ ≤ c3 []u[]1

∫

∂BRk

|p̃1|
Rk

≤ c4[]u[]1R
1
3

k ‖p̃1‖3,∂BRk
→ 0 ,

∣∣∣∣∣

∫

∂BRk

n ·D(u) ·w
∣∣∣∣∣ ≤ c5R

2
3

k ‖∇u‖2,∂BRk
‖w‖6,∂BRk

→ 0 ,

∣∣∣∣∣

∫

∂BRk

φ̃(w · n)

∣∣∣∣∣ ≤ c6R
2
3

k ‖φ̃‖2,∂BRk
‖w‖6,∂BRk

→ 0 .

(XI.2.22)
We next investigate the convergence of the volume integrals in (XI.2.19),
(XI.2.20). To this end, we begin by observing that in view of the assumptions
made on u and Theorem II.6.1(i), we obtain

∣∣∣∣
∫

Ω

w · ∇w · u
∣∣∣∣ ≤ c7[]u[]1 |w|21,2 ,

so that

lim
k→∞

∫

ΩRk

w · ∇w · u =

∫

Ω

w · ∇w · u . (XI.2.23)

By the same token,
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lim
k→∞

∫

ΩRk

u · ∇u ·w =

∫

Ω

u · ∇u ·w . (XI.2.24)

Likewise, since f ∈ L6/5(Ω) and u,w ∈ L6(Ω), we deduce

lim
k→∞

∫

ΩRk

f ·w =

∫

Ω

f ·w , lim
k→∞

∫

ΩRk

f · u =

∫

Ω

f · u . (XI.2.25)

We now observe that by an integration by parts, we can show for allR > δ(Ωc)
that

∫

ΩR

(e1 × x · ∇w− e1 ×w) ·u +

∫

ΩR

(e1 × x · ∇u − e1 × u) ·w

=

∫

∂BR

(e1 × x) ·nw ·u +

∫

∂Ω

(e1 × x) · nd2

=

∫

∂Ω

(e1 × x) · nd2
∗ ,

(XI.2.26)
where in the last step, we have taken into account that on ∂BR, n and x
are parallel. Adding side by side (XI.2.18) and (XI.2.19), using (XI.2.26), and
then passing to the limit k → ∞, with the help of (XI.2.23)–(XI.2.25) we
recover

−4

∫

Ω

D(w) : D(u) = T
∫

Ω

(w · ∇w · u + u · ∇u ·w) +

∫

Ω

(f ·w + f · u)

+

∫

∂Ω

(
n · T (w, p̃1) + n · T (u, φ̃)

)
· d∗

−T
∫

∂Ω

(e1 × x) · nd2
∗ .

(XI.2.27)

However, by (XI.2.17) and Theorem XI.2.1, (u, φ̃) satisfies the energy equality
(XI.2.1), while by assumption, (w, p̃1) satisfies the energy inequality (XI.2.16).
Thus adding, side by side, these two relations and (XI.2.27), and observing
that

‖D(w − u)‖2
2 = ‖D(w)‖2

2 + ‖D(u)‖2
2 − 2(D(w),D(u)) ,

we easily deduce

‖D(z)‖2
2 ≤ T ((w · ∇w,u) + (u · ∇u,w)) − T

∫

∂Ω

d2
∗d∗ ·n , (XI.2.28)

with z := w − u. However, by a slight modification of the reasoning used in
the proof of Theorem X.3.23 we show that

3 Specifically, see the proof of properties (i) and (ii) after (X.3.29) and the argument
that follows.
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(w · ∇w,u) + (u · ∇u,w) = (z · ∇z,u) +

∫

∂Ω

d2
∗d∗ · n ,

and so, placing this latter into (XI.2.27), we conclude that

2‖D(z)‖2
2 ≤ T (z · ∇z,u) .

Using in this relation the assumption (XI.2.17) along with the Schwarz in-
equality, we obtain

2‖D(z)‖2
2 ≤ T M

(∫

Ω

|z|2
|x|2

)1/2

|z|1,2 . (XI.2.29)

We now observe that for ϕ ∈ D(Ω), by dot-multiplying both sides of the
identity ∆ϕ = 2∇ ·D(ϕ) by ϕ and integrating by parts, we have

2‖D(ϕ)‖2
2 = |ϕ|21,2. (XI.2.30)

Moreover, by (II.6.10), we also have that

∫

Ω

|ϕ|2
|x|2 ≤ 4|ϕ|21,2 . (XI.2.31)

Now, z ∈ D1,2(Ω), with ∇ · z = 0. Furthermore, z has zero trace at the
boundary, and so by Theorem III.5.1, z ∈ D1,2

0 (Ω). Then, by a simple density
argument we prove that (XI.2.30) and (XI.2.31) continue to hold for z too.
Thus, placing (XI.2.30) and (XI.2.31) (with ϕ ≡ z) into (XI.2.29), we obtain

|z|21,2 (1 − 2TM) ≤ 0 ,

from which, if M < 1/(2T ), uniqueness follows. ut

Exercise XI.2.1 Show that in the uniqueness Theorem XI.2.2 the hypothesis v1 ∈
L4(Ω) can be replaced by the assumption that vi and the associated pressure p1
satisfy the energy inequality (XI.2.16). As shown in the next section, the class of

such solutions is not empty.

XI.3 Existence of Generalized Solutions

The objective of this section is to prove the existence of a generalized so-
lution to problem (XI.0.10), (XI.0.11). This will be achieved by a suitable
generalization of the arguments used in the proof of Theorem X.4.1.

We begin with the following result.

Lemma XI.3.1 Let Ω be locally Lipschitz and let

v∗ ∈W 1/2,2(∂Ω) , v∞ be given in (XI.0.11) .
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Then, for any η > 0 there exist ε = ε(η, v∗, Ω) > 0 and V = V (ε) : Ω → R3

satisfying properties (i)–(iv) of Lemma X.4.1 with v∞ ≡ v∞. The field V can
be written as follows:

V (x) = V ε(x) + Φσ(x) − v∞(x) , (XI.3.1)

where V ε(x) is of bounded support in Ω, and

Φ :=

∫

∂Ω

v∗ ·n , σ(x) =
1

4π
∇
(

1

|x− x0|

)
, (XI.3.2)

with x0 ∈
◦
Ωc. Moreover, for all u ∈ D1,2

0 (Ω), we have

|(u · ∇(V + v∞),u)| ≤
(
η +

|Φ|
4πr0

)
|u|21,2 , (XI.3.3)

where r0 = dist (x0, ∂Ω). Finally, if ‖v∗‖1/2,2(∂Ω) ≤M , for some M > 0, then
V satisfies the inequalities given in (X.4.6), with v∞ ≡ v∞.

Proof. The proof is a direct consequence of that of Lemma X.4.1 (with v∞ ≡
v∞), and Remark X.4.1.1 ut

We are now in a position to prove the main result of this section.

Theorem XI.3.1 Let Ω be a locally Lipschitz domain of R3, with a con-
nected boundary. Moreover, let

f ∈ D−1,2
0 (Ω), v∗ ∈ W 1/2(∂Ω), v∞ be given in (XI.0.11) .

The following properties hold, with Φ defined in (XI.3.2).

(i) Existence. If |Φ| < 4πr0/R, there is at least one generalized solution v to
the Navier–Stokes problem (XI.0.10), (XI.0.11). Such a solution satisfies
the conditions:

∫

S2

|v(x) + v∞| = O(1/
√
|x|) as |x| → ∞ ,

‖p‖
2,ΩR/R

≤ c (|v|1,2,ΩR + R‖v‖2
1,2ΩR

+ T ‖v‖2,ΩR + |f |1,2) ,

(XI.3.4)
for all R > δ(Ωc), where p is the pressure field associated to v by Lemma
XI.1.1, while c = c(Ω,R) with c→ ∞ as R → ∞.

Furthermore, if Ω is of class C2, f ∈ L2(Ω), and v∗ ∈ W 3/2,2(∂Ω),
then v and the corresponding pressure field p (see Theorem XI.1.2) satisfy
the energy inequality

1 We recall that throughout this chapter, we are assuming for simplicity that
◦

Ωc

is connected.
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2

∫

Ω

D(v) : D(v) −
∫

∂Ω

[(v∞ + v∗) · T (v, p̃) −R
2 (v∗ + v∞)2v∗] · n

+[f , v + v∞] ≤ 0 ,
(XI.3.5)

where p̃ is defined in (XI.1.6), and T the Cauchy stress tensor (IV.8.6).

(ii)Estimate by the data. If v∗ ∈ M
1/2,2
M (∂Ω) (defined in (IX.4.52)) and

|Φ| ≤ 2πr0/R, then the generalized solution determined in (i) satisfies
the following estimate:

|v + v∞|1,2 ≤ 4|f|−1,2 + C ‖v∗‖1/2,2(∂Ω)

[
1 + R

(
1 + ‖v∗‖1/2,2(∂Ω)

)
+ T

]
,

(XI.3.6)
where C = C(Ω,R,M).

Proof. We look for a solution of the form v = u+V , where V is the extension
constructed in Lemma XI.3.1. Placing this latter into (XI.1.2), after a simple
manipulation we obtain, for all ϕ ∈ D(Ω),

(∇u,∇ϕ) +(∇(V + v∞),∇ϕ) + R [(u · ∇u,ϕ) + (u · ∇(V + v∞),ϕ)

−(u · ∇v∞,ϕ) + ((V + v∞) · ∇u,ϕ) − (v∞ · ∇u,ϕ)

+((V + v∞) · ∇(V + v∞),ϕ) − ((V + v∞) · ∇v∞,ϕ)

−(v∞ · ∇(V + v∞),ϕ)] + 2T [(e1 × u,ϕ) + (e1 × (V + v∞),ϕ)]

= −[f ,ϕ] ,
(XI.3.7)

where we have used (∇v∞,∇ϕ) = (e1 × v∞,ϕ) = 0. Taking into account the
identity Ra · ∇v∞ = T e1 × a, and that by a calculation entirely analogous
to that leading to (VIII.1.8),

e1 × x · ∇σ− e1 × σ = 0, (XI.3.8)

with the help of (XI.3.1) we deduce that (XI.3.7) reduces to

(∇u, ∇ϕ) + (∇(V + v∞),∇ϕ) + R [(u · ∇u,ϕ) + (u · ∇(V + v∞),ϕ)

+ ((V + v∞) · ∇u,ϕ) − (v∞ · ∇u,ϕ) + ((V + v∞) · ∇(V + v∞),ϕ)

− (e1 · ∇(V + v∞),ϕ)] + T [(e1 × u,ϕ) + (e1 × V ε − e1 × x · ∇V ε,ϕ)]

= −[f ,ϕ] .
(XI.3.9)

It is clear that if we find u ∈ D1,2
0 (Ω) satisfying (XI.3.9) for all ϕ ∈ D(Ω),

then v := u + V is a generalized solution to (XI.0.10), (XI.0.11). In order
to construct such a u we use the Galerkin method. Let {ϕk} ⊂ D(Ω) be the
basis of D1,2

0 (Ω), introduced in Lemma VII.2.1. A sequence of approximating
solutions {um} is then sought of the form
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um :=

m∑

k=1

ξkmψk

(∇um,∇ϕk) = −(∇(V + v∞),∇ϕk) −R [(um · ∇um,ϕk)

+(um · ∇(V + v∞),ϕk) + ((V + v∞) · ∇um,ϕk) − (v∞ · ∇um,ϕk)

+((V + v∞) · ∇(V + v∞),ϕk) − (e1 · ∇(V + v∞),ϕ)]

−T [(e1 × u,ϕ) + (e1 × V ε − e1 × x · ∇V ε,ϕ)]− [f ,ϕk] := Fk(ξ) ,

(XI.3.10)
k = 1, . . . , m. For each m ∈ N, we may establish existence of a solution
ξ = (ξ1, . . . , ξm) to (XI.3.10) by means of Lemma IX.3.2. In fact, since ∇·v∞ =
∇ · (V + v∞) = 0 and um ∈ D(Ω), by Lemma IX.2.1 we obtain

(um · ∇um,um) = (v∞ · ∇um,um) = ((V + v∞) · ∇um,um) = 0.

We thus deduce

F · ξ = −(∇(V + v∞),∇um) −R[(um · ∇(V + v∞),um)

+((V + v∞) · ∇(V + v∞),um) − (e1 · ∇(V + v∞),um)]

−T [(e1 × V ε − e1 × x · ∇V ε,um)] − [f ,um] .

(XI.3.11)

Using the inequalities of Schwarz, Hölder, and Sobolev (see (II.3.11)), and
recalling that V ε is of bounded support, we deduce

−(∇(V + v∞),∇um) ≤ |V + v∞|1,2|um|1,2

−((V + v∞) · ∇(V + v∞),um) ≤ ‖V + v∞‖3|V + v∞|1,2‖um‖6

≤ c1‖V + v∞‖3|V + v∞|1,2|um|1,2

(e1 · ∇(V + v∞),um) ≤ c2 |V + v∞|1,6/5‖um‖6

≤ c3 |V + v∞|1,6/5|um|1,2

−(e1 × V ε,um) ≤ ‖V ε‖6/5‖um‖6 ≤ c4‖V ε‖6/5|um|1,2

(e1 × x · ∇V ε,um) ≤ c5|V ε|1,6/5‖um‖6 ≤ c6|V ε|1,6/5|um|1,2

−[f ,um] ≤ |f|−1,2|um|1,2 .
(XI.3.12)

Furthermore, by Lemma XI.3.1, for any given η > 0 we can choose V such
that

− (um · ∇(V + v∞),um)| ≤
(
η +

|Φ|
4πr0

)
|um|21,2 . (XI.3.13)

Therefore, if

|Φ| < 4πr0
R , (XI.3.14)
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we may choose η such that η+
|Φ|

4πr0
< 1/R, and from (XI.3.11)–(XI.3.13) and

Lemma IX.3.2 we may conclude that the algebraic system (XI.3.10) has at
least one solution for every m ∈ N. Moreover, from (XI.3.10)–(XI.3.13) it also
follows that
[
1 −R

(
η +

|Φ|
4πr0

)]
|um|1,2 ≤ C [|V + v∞|1,2(1 + R‖V + v∞‖3)

+R|V + v∞|1,6/5 + T ‖V ε‖1,6/5 + |f|−1,2] ,
(XI.3.15)

which shows that under the condition (XI.3.14), the sequence {um} is (uni-
formly) bounded in D1,2

0 (Ω). Thus, we can select a subsequence, denoted again
by {um}, such that as m→ ∞,

um
w→ u in D1,2

0 (Ω). (XI.3.16)

This property along with Theorem II.1.3(i) and (XI.3.15) implies

[
1 −R

(
η +

|Φ|
4πr0

)]
|u|1,2 ≤ C [|V + v∞|1,2(1 + R‖V + v∞‖3)

+R|V + v∞|1,6/5 + T ‖V ε‖1,6/5 + |f |−1,2] ,
(XI.3.17)

where C = C(Ω). Furthermore, since D1,2
0 (Ω) ↪→ W 1,2(ΩR) for all R >

δ(Ωc) (see Lemma II.6.1), from Exercise II.5.8 and the Cantor diagonalization
argument we secure the existence of another subsequence, still called {um},
such that as m→ ∞,

um → u in Lq(ΩR), q ∈ [1, 6) , (XI.3.18)

for any R > δ(Ωc). At this point, we may employ arguments analogous to
those used in the proof of Theorem X.4.1 (in particular, the argument follow-
ing (X.4.29)) to show that the field u satisfies (XI.3.10) with um ≡ u, for all
k ∈ N. The final step is to replace, in this resulting equation, ϕk with an arbi-
trary ϕ ∈ D(Ω). This goal is again achieved by the same procedure employed
in the proof of Theorem X.4.1, thanks to the properties of the linear hull of
the basis {ϕk}; see Lemma VII.2.1. The only term that deserves a little more
attention is the “rotational term” (e1×x·∇u,ϕk)−(e1×u,ϕk). However, the
replacement of ϕk with ϕ ∈ D(Ω) in this latter is carried out exactly as de-
scribed in the proof of Theorem VIII.1.2, after equation (VIII.1.19). We may
then safely conclude that u satisfies (XI.3.9), for all ϕ ∈ D(Ω), that is, the
field v := u + V is a generalized solution to (XI.0.10), (XI.0.11). Moreover,
we prove (see (X.4.34)) that v + v∞ satisfies (XI.3.4). Finally, choosing in
(XI.1.4) the function ψ introduced in (X.4.38) and proceeding as in (X.4.39),
we easily establish the validity of (XI.3.4). We shall next establish the validity
of the energy inequality (XI.3.5). We begin by observing that from (XI.3.10)
and (XI.3.11) it follows that



XI.3 Existence of Generalized Solutions 769

|um|21,2 = −(∇(V + v∞),∇um) −R[(um · ∇(V + v∞),um)

+((V + v∞) · ∇(V + v∞),um) − (e1 · ∇(V + v∞),um)]

−T (e1 × V ε − e1 × x · ∇V ε,um) − [f ,um] .
(XI.3.19)

We would like to letm→ ∞ in this relation (along a subsequence if necessary).
Obviously, in view of (XI.3.16) and (XI.3.18), and the assumption on f , and
recalling that V ε is of bounded support, we obtain

lim
m→∞

{T (e1 × V ε − e1 × x · ∇V ε,um) − [f,um]}
= T (e1 × V ε − e1 × x · ∇V ε,u) − [f,u]

lim
m→∞

(∇(V + v∞),∇um) = (∇(V + v∞),∇u) .

(XI.3.20)

Furthermore, by exactly the same procedure used in the proof of Theorem
X.4.1 to prove the validity of the generalized energy inequality in the irrota-
tional case (see the argument following (X.4.40)), we obtain

lim
m→∞

{(um · ∇(V + v∞),um) + ((V + v∞) · ∇(V + v∞),um)}
= (u · ∇(V + v∞),u) + ((V + v∞) · ∇(V + v∞),u)

lim
m→∞

(e1 · ∇(V + v∞),um) = (e1 · ∇(V + v∞),u) .

(XI.3.21)
Thus, passing to the limit m→ ∞ in (XI.3.19), from (XI.3.20)–(XI.3.21) and
Theorem II.1.3(i), we conclude that

|u|21,2 +(∇(V + v∞),∇u) + R[(u · ∇(V + v∞),u)

+((V + v∞) · ∇(V + v∞),u) − (e1 · ∇(V + v∞),u)]

+T (e1 × V ε − e1 × x · ∇V ε,u) + [f ,u] ≤ 0 .

(XI.3.22)

We next observe that since u = v − V ,

|u|21,2 + (∇(V + v∞),∇u) = |v + v∞|21,2 − (∇(V + v∞),∇(v+ v∞))

= 2
[
‖D(v)‖2

2 − (D(v),D(V ))
]
,

(XI.3.23)
where in the last step, we have used the identity given in footnote 4 of Section
X.2. Moreover,

(u·∇(V +v∞),u)+((V +v∞)·∇(V +v∞),u) = ((v+v∞)·∇(V +v∞), v−V ) .
(XI.3.24)

Thus, collecting (XI.3.22)–(XI.3.24), we deduce that

2‖D(v)‖2
2 −2(D(v),D(V )) + R[((v + v∞) · ∇(V + v∞), v − V )

−(e1 · ∇(V + v∞), v − V )] + T (e1 × V ε − e1 × x · ∇V ε, v− V )

+[f , v − V ] ≤ 0 .
(XI.3.25)
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We now notice that in view of the assumptions made on f and v∗, by Theorem
XI.1.2 we have, on the one hand, that (w := v + v∞, p) ∈ W 2,2(Ωρ) ×
W 1,2(Ωρ), for all ρ > δ(Ωc), and, on the other hand, that (w, p̃), with p̃ given
in (XI.1.6), satisfies (XI.2.4), that is,

∇ · T (w, p̃) + R(v∞ −w) · ∇w− T e1 ×w = f

∇ ·w = 0

}
a.e. in Ω

w|∂Ω = v∗ + v∞ .

(XI.3.26)

Let ψR = ψR(|x|) be a smooth, nonincreasing “cut-off” function that is 0 for
|x| ≤ R and is 1 for |x| ≥ 2R, R > δ(Ωc), with |∇ψR(x)| ≤ M/R, where M
is a constant independent of R and x. If we then dot-multiply both sides of
(XI.3.26)1 by ψR(V + v∞) and integrate by parts over Ω, we obtain
∫

∂Ω

n · T (w, p̃) · (v∗ + v∞) − 2(D(v),D(ψR(V + v∞))) − (p̃∇ψR,V + v∞)

−R
[
(ψRw · ∇w,V + v∞)+

(
∂ψR

∂x1
w,V + v∞

)
+(ψRv∞ · ∇(V + v∞),w)

]

+T (ψRe1 × (V + v∞),w) + R
∫

∂Ω

(v∗ + v∞)2v∞ · n = [f ,V + v∞] ,

(XI.3.27)
where we used e1 ×x ·∇ψR(x) = 0 for all x ∈ Ω. In (XI.3.27) we now employ
the form (XI.3.1) of the extension V along with its summability properties
and the identity (XI.3.8) for σ, and recall that, by Theorem XI.1.1 and the
assumption on f , p̃ ∈ L6(Ω) +L3(Ω). Thus, letting R → ∞, it is not hard to
show that (XI.3.27) leads to

−
∫

∂Ω

n · T (w, p̃) ·(v∗ + v∞) + 2(D(v),D(V ))

+ R[(w · ∇w,V + v∞) + (e1 · ∇(V + v∞),w)]

− T (e1 × V ε − e1 × x · ∇V ε,w) −R
∫

∂Ω

(v∗ + v∞)2v∞ · n

+ [f ,V + v∞] = 0 .
(XI.3.28)

Summing side by side (XI.3.25) and (XI.3.28), and recalling that w = v+v∞,
we obtain

2‖D(v)‖2
2 −
∫

∂Ω

n · T (w, p̃) · (v∗ + v∞) −R
∫

∂Ω

(v∗ + v∞)2v∞ · n

+[f , v + v∞] + R[(w · ∇(V + v∞),w) + (w · ∇w,V + v∞)

+(e1 · ∇(V + v∞),V + v∞)]

−T (e1 × V ε − e1 × x · ∇V ε,V + v∞) ≤ 0 .
(XI.3.29)
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By an easily justified integration by parts that uses the summability properties
of w and V + v∞, we obtain

(w · ∇(V + v∞),w) + (w · ∇w,V + v∞) =
1

2

∫

∂Ω

(v∗ + v∞)2(v∗ + v∞) ·n .
(XI.3.30)

Likewise,

(e1 · ∇(V + v∞),V + v∞) =
1

2

∫

∂Ω

(v∗ + v∞)2e1 ·n . (XI.3.31)

Finally, recalling that V + v∞ = V ε + Φσ (see (XI.3.1)), we obtain

−(e1 × V ε −e1 × x · ∇V ε,V + v∞)

= (e1 × ·∇V ε,V ε) + Φ(e1 × x · ∇σ − e1 × σ,V ε)

+Φ

∫

∂Ω

(V ε · σ)e1 × x · n

= Φ

∫

∂Ω

(V ε · σ)e1 × x ·n+
1

2

∫

∂Ω

|V ε|2e1 × x · n .

(XI.3.32)

We next observe that for any fixed r > δ(Ωc), we have
∫

∂Ω

|σ|2e1 × x ·n =

∫

Ωr

∇ · (|σ|2e1 × x) = 2

∫

Ωr

e1 × x · ∇σ · σ = 0 ,

because e1 ×x · ∇σ(x) ·σ(x) = 0, for all x ∈ Ω. Therefore, (XI.3.32) delivers

−(e1×V ε−e1×x ·∇V ε,V +v∞) =
1

2

∫

∂Ω

(v∗+v∞)2e1×x ·n . (XI.3.33)

Placing (XI.3.30), (XI.3.31), and (XI.3.33) into (XI.3.29), we then conclude
that

2‖D(v)‖2
2−
∫

∂Ω

[
n·T (w, p̃)·(v∗+v∞)− R

2 (v∗+v∞)2v∗ ·n
]
+[f , v+v∞] ≤ 0 ,

namely, the validity of the energy inequality. It remains to show the estimate of
the solution in terms of the data. Thus, assuming |Φ| ≤ 2πr0/R, and choosing
(for example) η = 1/(4R), (XI.3.17) furnishes

|u|1,2 ≤ 4[C |V + v∞|1,2(1 + R‖V + v∞‖3)

+R|V + v∞|1,6/5 + T ‖V ε‖1,6/5 + |f |−1,2] .
(XI.3.34)

If we now use in (XI.3.34) the inequalities (X.4.6) (with v∞ ≡ v∞), and recall
that u = (v+v∞)−(V +v∞), we obtain (XI.3.6), which completes the proof
of the theorem. ut
Remark XI.3.1 For future reference, we observe that in the energy inequal-
ity (XI.3.5), if, in addition, f ∈ L6/5(Ω),we can then replace [f , v+v∞] with
(f , v + v∞). �
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XI.4 Global Summability of Generalized Solutions when
v0 · ω 6= 0

As in the irrotational case, the fundamental step in deriving the asymptotic
structure of generalized solutions is to prove suitable summability properties
at large distances for the velocity field v and the pressure p, much more
detailed than those available at the outset, namely, (v + v∞) ∈ D1,2(Ω) ∩
L6(Ω), with p satisfying the conditions given in Theorem XI.1.2.

The proof of the desired properties will be achieved by following the same
arguments used in the irrotational case, with only the foresight to replace
Theorem VII.7.1 with Theorem VIII.8.1. As a matter of fact, once this basic
replacement is made, the proof is essentially the same.

Specifically, we have the following result

Theorem XI.4.1 Let Ω be a C2-smooth exterior three-dimensional domain,
and assume, for some q ∈ (1, 2), that

f ∈ Lq(Ω) ∩ L3/2(Ω) , v∗ ∈W 2−1/q,q(∂Ω) ∩W 4/3,3/2(∂Ω) . (XI.4.1)

Then, every generalized solution v to the Navier–Stokes problem (XI.0.10)–
(XI.0.11) corresponding to f , v∗ and to v0 ·ω 6= 0, and the associated pressure
field1 p, satisfy (v + v∞, p) ∈ Xq(Ω), with Xq(Ω) defined in (X.6.5).

Proof. Since their actual value is completely irrelevant, throughout the proof
we set, for simplicity, R = T = 1. Moreover, we set u = v + v∞. Since
u ∈ D1,2(Ω), we may find a sequence of second-order tensors {Gk} with
components in C∞

0 (Ω) such that Gk → ∇u in L2(Ω). Then, from (XI.0.10)
and Theorem XI.1.2, it follows that u satisfies the problem

∆u+
∂u

∂x1
+ e1 × x · ∇u− e1 × u = u ·Ak + ∇p̃+ F k

∇ · u = 0





a.e. in Ω

u = u∗ := v∗ + v∞ at ∂Ω ,
(XI.4.2)

where Ak := ∇u −Gk, F k := v · Gk + f , and p̃ is defined in (XI.1.6). We
next observe that by the assumption on f and the fact that u ∈ L6(Ω), we
have F k ∈ Lq(Ω)∩L3/2(Ω), for all k ∈ N. Set Xq,3/2(Ω) = Xq(Ω)∩X3/2(Ω),
endowed with the norm ‖ · ‖Xq,3/2

:= ‖ · ‖Xq + ‖ · ‖X3/2
,2 and let

M : (w, τ ) ∈ Xq,3/2(Ω) → (z, φ) := M(w, τ ) ,

where (z, φ) satisfies

1 Possibly modified by the addition of a constant.
2 See (X.6.6).
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∆z +
∂z

∂x1
+ e1 × x · ∇z − e1 × z = w ·Ak + ∇φ+ F k

∇ · u = 0





in Ω ,

u = u∗ at ∂Ω .
(XI.4.3)

In view of the Hölder inequality and the fact that u ∈ D1,2(Ω),

‖w ·Ak‖s ≤ ‖w‖2s/(2−s)‖Ak‖2 <∞ , s ∈ (1, 2) , (XI.4.4)

with the help of Theorem VII.8.1 we deduce, on the one hand, that the map
M is well-defined and, on the other hand, that there exists a (unique) solution
(z, φ) ∈ Xq,3/2(Ω) to (XI.4.3) satisfying the estimate (with q1 = q, q2 = 3/2)

‖(z, φ)‖Xq,3/2
≤ c

2∑

i=1

(
‖Ak‖2‖w‖2qi/(2−qi) + ‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)

≤ c

(
‖Ak‖2‖(w, τ )‖Xq,3/2

+
2∑

i=1

(
‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)
)
.

(XI.4.5)
Thus, choosing k such that

‖Ak‖2 ≤ 1/(2c) (XI.4.6)

and putting

δ := 2c

2∑

i=1

(
‖F k‖qi + ‖u∗‖2−2/qi(∂Ω)

)
,

from (XI.4.5) it follows at once that M maps the closed ball {(u, φ) ∈
Xq,3/2(Ω) : ‖(u, φ)‖Xq,3/2

≤ δ} into itself. Moreover, in view of the linearity of
the map M and of (XI.4.6), from (XI.4.5) with ‖F k‖qi = ‖u∗‖2−2/qi(∂Ω)0, i =
1, 2, we infer that M is a contraction, and therefore there exists one and only
one solution (z, φ) ∈ Xq,3/2 to (XI.4.3). Next, setting (w, τ ) := (z−u, φ− p̃),
we obtain

∆w +
∂w

∂x1
+ e1 × x · ∇w− e1 ×w = w ·Ak + ∇τ

∇ ·w = 0





in Ω

w = 0 at ∂Ω .

(XI.4.7)

Recalling that by the assumption on v and (XI.4.6), g := w ·Ak ∈ L3/2(Ω),
with the help of Theorem VIII.8.1 we infer that the problem

∆w̃ +
∂w̃

∂x1
+ e1 × x · ∇w̃ − e1 × w̃ = g + ∇τ̃

∇ · w̃ = 0





in Ω ,

w̃ = 0 at ∂Ω ,

(XI.4.8)
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has a (unique) solution (w̃, τ̃) in the class X3/2(Ω). It is easy to see that
(w̃, τ̃ ) = (w, τ ). Actually, the fields Z := w̃ − w and χ := τ̃ − τ solve the
homogeneous problem (XI.4.8) with g ≡ 0. Furthermore, Z ∈ L6(Ω), because
w̃,u ∈ X3/2(Ω), while u ∈ L6(Ω) by assumption. Therefore, from Theorem
VIII.8.1 we obtain Z ≡ ∇χ ≡ 0. Consequently, w ∈ X3/2(Ω), and so, again
by Theorem VIII.8.1 applied to (XI.4.7), we obtain

‖(w, φ)‖X3/2
≤ c ‖w ·Ak‖3/2 ≤ c ‖Ak‖2‖(w, φ)‖X3/2

.

Thus, using (XI.4.6) in this latter inequality, we deduce w ≡ ∇τ ≡ 0, that is,
(u, φ) = (v + v∞, p̃ + C), for some C ∈ R, and the proof of the theorem is
complete. ut

Remark XI.4.1 Note that Theorem XI.4.1 does not require the vanishing
of the flux of v∗ through the boundary ∂Ω. �

Remark XI.4.2 From Theorem XI.4.1 and (XI.0.10), it follows that the “ro-
tational term” e1 ×x · ∇(v+ v∞)− e1 × (v+ v∞) belongs to Lq(Ω). There-
fore, in particular, the results of Exercise VIII.7.1 apply to the component
(v + v∞) · e1 = v1 + 1. �

Remark XI.4.3 If T = 0 (irrotational case), we know that the summability
properties established in Theorem X.6.4 in the significant circumstance when

v∗ ≡ f ≡ 0 (XI.4.9)

(rigid body translating with constant velocity in a viscous liquid) are sharp.
More precisely, under the assumption (XI.4.9), we have (v+v∞) 6∈ Ls(Ω) for
all s ∈ (1, 2] (see Exercise X.6.1), implying, in particular, that the total kinetic
energy of the liquid is infinite. It is probable that if (XI.4.9) holds, the same
conclusion can be drawn also when T 6= 0 (rigid body translating and rotating
with constant velocity in a viscous liquid), that is, the summability properties
established in Theorem XI.4.1 cannot be improved, and consequently, the total
kinetic energy of the liquid is still infinite. However, no proof (or disproof) of
this statement is available to date. �

XI.5 The Energy Equation and Uniqueness for
Generalized Solutions when v0 · ω 6= 0

An immediate consequence of Theorem XI.4.1 is stated in the following the-
orem.

Theorem XI.5.1 Let Ω be a C2-smooth exterior three-dimensional domain,
and let v be a generalized solution to the Navier–Stokes problem (XI.0.10),
(XI.0.11) corresponding to the data

f ∈ L4/3(Ω) ∩ L3/2(Ω) , v∗ ∈W 4/3,3/2(∂Ω) , v0 · ω 6= 0 . (XI.5.1)



XI.5 The Energy Equation and Uniqueness for Generalized Solutions when v0·ω 6= 0 775

Then v and the corresponding pressure field associated to v by Lemma XI.1.1
satisfy the energy equation (XI.2.1).

Proof. Under the assumption (XI.5.1), from Theorem XI.4.1 we have, in par-
ticular,

v + v∞ ∈ L4(Ω) ,

so that the result follows at once from Theorem XI.2.1. ut

A significant consequence to Theorem XI.5.1 is the following result of
Liouville type.

Theorem XI.5.2 Let v be a generalized solution to the Navier–Stokes prob-
lem (XI.0.10), (XI.0.11) in R3 corresponding to f ≡ 0 and v0 · ω 6= 0. Then
v(x) = −v∞ for all x ∈ R3.

Remark XI.5.1 It is not known whether the result of Theorem XI.5.3 con-
tinues to hold if v0 · ω = 0. �

We shall next furnish sufficient conditions on the data for a corresponding
solution to be unique in the class of generalized solutions. The procedure will
be similar to that adopted in Theorem X.7.3 for the irrotational case. To this
end, we begin by proving the following preliminary result.

Lemma XI.5.1 Let the assumption of Theorem XI.5.1 be satisfied and sup-
pose, in addition, that

f ∈ L6/5(Ω) ,

‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω) <
1√
R

min

{
1

4c2
,

√
3

4c

}
,

(XI.5.2)

with c = c(Ω, T , B) for R ∈ [0, B]. Then, any generalized solution v to
(XI.0.10), (XI.0.11) corresponding to f , v∗, and v∞ satisfies (v + v∞) ∈
L3(Ω), along with the inequality

‖v + v∞‖3 <

√
3

2R . (XI.5.3)

Proof. In view of Theorem XI.4.1 and the assumption on f , we have only to
prove (XI.5.3). To this end, let

M : (w, φ) ∈ X6/5(Ω) → (u, τ ) ∈ X6/5(Ω) ,

where X6/5(Ω) is defined in (X.6.5) and (u, τ ) solves
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∆u+ R ∂u

∂x1
+ T e1 × x · ∇u− e1 × u = Rw · ∇w + ∇τ + f

∇ ·u = 0





a.e. in Ω ,

u = v∗ + v∞ at ∂Ω .
(XI.5.4)

It is convenient to endow the Banach space X6/5(Ω) with the “scaled” norm

‖(w, φ)‖X6/5(Ω) := R1/2‖w‖3 + R1/4|w|1,12/7 + |w|2,6/5 + ‖φ‖2 + |φ|1,6/5 .

Since by Theorem II.6.1, |w|1,2 ≤ c1|w|2,6/5, and by the Hölder inequality,

‖w · ∇w‖6/5 ≤ ‖w‖3|w|1,2

the assumption w ∈ X6/5(Ω) implies w · ∇w ∈ L6/5(Ω), and also

‖w · ∇w‖6/5 ≤ c1R−1/2‖(w, φ)‖2
X6/5(Ω) . (XI.5.5)

Consequently, from Theorem VIII.8.1, one deduces, on the one hand, that the
map M is well defined, and on the other hand, that the following inequality
holds:

‖(u, τ )‖X6/5(Ω) ≤ c2

(
R1/2‖(w, φ)‖2

X6/5(Ω) + ‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω)

)
,

(XI.5.6)
where c2 = c2(Ω,B, T ). By the same token, for (wi, φi) ∈ X6/5(Ω), i = 1, 2,
we find that the corresponding (ui, τi) satisfy

‖(u1 − u2, τ1 − τ2)‖X6/5(Ω)

≤ c2R1/2‖(w1 −w2, φ1 − φ2)‖X6/5(Ω)

(
2∑

i=1

‖(wi, φi)‖X6/5(Ω)

)
.

(XI.5.7)
From (XI.5.6) it follows that M maps Bδ , the ball of X6/5(Ω) centered at the

origin and of radius δ = 1/(2c2
√
R), into itself, provided

‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω) ≤
1

4c22
√
R
,

and therefore a fortiori, if

‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω) <
1√
R

min

{
1

4c22
,

√
3

4c2

}
. (XI.5.8)

Furthermore, with the help of (XI.5.7), we conclude that M is a contraction
in Bδ . Thus, under the assumption (XI.5.8), we may take w ≡ u in (XI.5.4),
and deduce that v′ := u−v∞ is a generalized solution to (XI.0.10)–(XI.0.11)
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corresponding to the same data as v. Also, from (XI.5.6) with u ≡ w, (XI.5.8)
and the fact that u ∈ Bδ, we obtain, in particular,

R1/2‖v′ + v∞‖3 ≤ 2c2
(
‖f‖6/5 + ‖v∗ + v∞‖7/6,6/5(∂Ω)

)
<

√
3

2
√
R
.

Since both v′ + v∞ and v + v∞ are in L4(Ω), as a consequence of Theorem
XI.4.1 and the assumption on f , we infer v = v′ a.e. in Ω, and the proof of
the lemma is complete. ut

From Lemma XI.5.1 and Theorem XI.2.2 we immediately obtain the fol-
lowing uniqueness theorem for generalized solutions when v0 · ω 6= 0.

Theorem XI.5.3 Let Ω be a three-dimensional exterior domain of class C2.
Further, let

f ∈ L6/5(Ω) ∩ L4/3(Ω), v∗ ∈W 5/4,4/3(∂Ω), v0 · ω 6= 0.

Then if the data satisfy (XI.5.2)2, v is the only generalized solution satisfying
these data.

XI.6 On the Asymptotic Structure of Generalized
Solutions When v0 · ω 6= 0

This section is devoted to the study of the pointwise behavior of generalized
solutions to (XI.0.10)–(XI.0.11) when v0 ·ω 6= 0. Our main achievement is to
show that under the assumption of body force possessing mild regularity and
of bounded support,1 every such solution v is pointwise bounded above by a
function that, roughly speaking, behaves like the Oseen fundamental solution
and consequently, exhibits a wake-like behavior. Analogous estimates are given
for ∇v and for the “modified” pressure p̃. However, it is worth emphasizing
that our analysis is not able to establish the existence of a leading term in the
asymptotic behavior, which therefore is left as an open question.

We need some preparatory results, which begin with the following.

Lemma XI.6.1 Let v be a generalized solution to (XI.0.10)–(XI.0.11) in
Ω := R3 − Bρ/2 , corresponding to f ≡ 0 and v0 · ω 6= 0. Then, setting
u := v + v∞, we have, for all ε > 0,

|u|21,2,BR ≤ cR−1+ε, all R > ρ/2 ,

with c = (ε,R, T , v, p).
1 This latter assumption can be weakened to that f decays “sufficiently fast” at

large distances. However, we will not state these more general conditions here.
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Proof. By the results of Theorem XI.1.2, we know that v and the associ-
ated pressure p are in C∞(Ω). Thus, u and p satisfy (XI.1.5)–(XI.1.6). Dot-
multiplying both sides of (XI.1.5)1 by u, and integrating over BR,R∗ , R∗ > R,
we obtain
∫

BR,R∗
∇u : ∇u =

∫

BR,R∗
T (e1 × x · ∇u) · u

+

∫

∂BR∪∂BR∗

[
n · ∇u ·u + 1

2R|u|2n1 − 1
2R|u|2u · n− p(u · n)

]
.

We observe that on ∂BR ∪ ∂BR∗ we have n := x
|x| and thus

∫

BR,R∗
e1 × x · ∇u · u = 1

2

∫

∂BR∪∂BR∗
|u|2(e1 × x) ·n = 0.

We thus conclude that
∫

BR,R∗
∇u :∇u

=

∫

∂BR∪∂BR∗

[
n · ∇u ·u + 1

2R|u|2n1 − 1
2R|u|2u ·n− p(u · n)

]
.

The rest of the proof follows precisely that of Lemma X.8.2, and will be
therefore omitted. ut

Lemma XI.6.2 Let the assumptions of Lemma XI.6.1 be satisfied. Then,
setting u := v + v∞, the following properties hold:

(a) ∇u ∈ L∞(Bρ) ;
(b)e1 × x · ∇u ∈ Lq(Bρ), for all q ∈ (2,∞) .

Proof. By Theorem XI.1.2 we know that v, p are in C∞(Bρ). Thus, by The-
orem XI.4.1 (after possibly adding a constant to p), we obtain

(u, p̃) ∈ Xq(B
ρ) , for all q ∈ (1, 2) , (XI.6.1)

with p̃ defined in (XI.1.6). Let ψρ be a smooth, nonincreasing function that
is 0 in Bρ and is 1 in Ω2ρ. We set

w := ψρ (u+ Φσ) −Z , φ := ψρ p̃ , (XI.6.2)

where

Φ :=

∫

∂B2ρ

v · n ,

and σ, we recall, is given by (see (XI.3.2))

σ(x) = −∇E(x− x0) , (XI.6.3)
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with E the fundamental solution to Laplace’s equation. Moreover, Z ∈
C∞

0 (B2ρ) satisfies ∇ ·Z = ∇ψρ · (v + Φσ). Since

∫

B2ρ

∇ψρ · (v + Φσ) =

∫

∂B2ρ

(v + Φσ) ·n = 0 ,

the existence of the function Z is secured by Theorem III.3.3. Using (XI.3.8)
and (XI.6.3), we see that (w, φ) satisfies the following problem:

∆w+ R ∂w

∂x1
+ T (e1 × x · ∇w − e1 ×w) −∇d

= R∇ · [(ψρu) ⊗ (ψρu)] + F

∇ ·w = 0





in R3 , (XI.6.4)

with d = d(x) := φ(x) − ψρ(x)D1E(x − x0), and F ∈ C∞
0 (R3). In view

of (XI.6.1) and the mentioned regularity properties, it is easy to check that
∇ · [(ψρu) ⊗ (ψρu)] ∈ Lq(R3), for all q ∈ (1,∞). Thus, by Lemma VIII.8.2,
the uniqueness Lemma VIII.7.1, and the fact that ψρ = 1 in B2ρ, we conclude
that

D2u ∈ Lq(Bρ)

(e1 × x · ∇u− e1 × u) ∈ Lq(Bρ)

}
for all q ∈ (1,∞) . (XI.6.5)

However, by (XI.6.1), we have also ∇u ∈ Ls(Bρ) for all s ∈ (4/3,∞), so that
property (a) follows from (XI.6.5)1 and Theorem II.9.1. Furthermore, again
by (XI.6.1), we have e1 × u ∈ Lr(Bρ), for all r ∈ (2,∞), which, by virtue
of (XI.6.5)2, implies e1 × x · ∇u ∈ Lq(Bρ), for all q ∈ (2,∞). This proves
property (b) and concludes the proof of the lemma.

ut

With the help of the previous lemma, we prove the following.

Lemma XI.6.3 Let the assumptions of Lemma XI.6.1 be satisfied, and let
Q = Q(t) be the one-parameter family of proper orthogonal matrices defined
in (VIII.5.10)–(VIII.5.11). Then, setting u := v+v∞, the following properties
hold:

(a) For all q ∈ (2,∞),

∫

Ω

(
sup
s≥0

|u(Q>(s) · x)|
)q
dx <∞ .

(b)For all ε > 0, ∫

ΩR

(
sup
s≥0

|u(Q>(s) · x)|
)2
dx ≤ cRε ,

where c is independent of R (c→ ∞ as ε→ 0).
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Proof. Property (b) is an immediate consequence of property (a). In fact, by
the Hölder inequality, for any q ∈ (2,∞), we obtain

∫

ΩR

(
sup
s≥0

|u(Q>(s) · x)|
)2
dx ≤ |ΩR|

(q−2)
q

(∫

ΩR

(
sup
s≥0

|u(Q>(s) · x)|
)q
dx

) 2
q

≤ cR
3(q−2)

q

(∫

Ω

(
sup
s≥0

|u(Q>(s) · x)|
)q
dx

) 2
q

,

and property (b) follows from (a). In order to establish (a), we observe that
sinceQ is periodic of period T := 2π/T (see (VIII.5.12)), it is enough to prove
the result by restricting s to the interval [0, T ]. Set w(x, t) := u(Q>(t) · x).
Taking into account that (see also (VIII.5.15))

∣∣∣∣
∂w

∂t

∣∣∣∣ = T |e1 × (Q> · x) · ∇u| ,

and that Q(0) = I, we obtain, for all s ∈ [0, T ],

|w(x, s)| ≤ |u(x)| +
∫ T

0

∣∣∣∣
∂w

∂t

∣∣∣∣ dt

= |u(x)| +
∫ T

0

|e1 × (Q>(t) · x) · ∇u(Q>(t) · x)|dt ,

which implies, by (II.3.3) and Hölder inequality,

(
sup

s∈[0,T ]

|u(Q>(s) · x)|
)q

≤ 2q−1

(
|u(x)|q + T q−1

∫ T

0

|e1 × (Q>(t) · x) · ∇u(Q>(t) · x)|qdt
)
.

(XI.6.6)
Recalling that Q(t) is proper orthogonal for all t ≥ 0, we have

∫

Ω

|e1 × (Q>(t) · x) · ∇u(Q>(t) · x)|qdx =

∫

Ω

|e1 × x · ∇u(x)|qdx ,

so that from (XI.6.6) we get

∫

Ω

(
sup

s∈[0,T ]
|u(Q>(s) · x)|

)q

dx ≤ 2q−1

(
‖u‖q

q,Ω + T q‖e1 × x · ∇u‖q
q,Ω

)
.

(XI.6.7)
From the stated assumptions, Theorem XI.4.1, and Lemma XI.6.2, we know
that u, e1,×x · ∇u ∈ Lq(Ω) for all q ∈ (2,∞), so that claimed property (a)
follows from (XI.6.7). ut

We are now ready to give pointwise estimates for the velocity field of a
generalized solution.
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Theorem XI.6.1 Let v be a generalized solution to (XI.0.10)–(XI.0.11), cor-
responding to f of bounded support and to v0 · ω 6= 0. Then, for any δ > 0
and all sufficiently large |x|,

v(x) + v∞(x) = O

(
|x|−1(1 + R s(x))−1 + |x|−3/2+δ

)
,

and where, we recall, s(x) := |x|+ x1.

Proof. Choose ρ so large that supp (f) ⊂ Bρ. By Theorem XI.1.2, we know
that v, p are in C∞(Ωρ) ∩ C∞(Ωρ, r), r > ρ. Moreover, setting u := v + v∞,
by Theorem XI.4.1 (after possibly adding a constant to p), we find that (u, p̃)
satisfies (XI.6.1). Proceeding exactly as in the proof of Lemma XI.6.2, we
then establish that the functions ψρ, w, and d there defined satisfy problem
(XI.6.4). Let Q = Q(t) be the one-parameter family of proper orthogonal
matrices defined in (VIII.5.10)–(VIII.5.11), and set

y := Q(t) · x ,
S(y, t) :=Q(t) ·w(Q>(t) · y) , π(y, t) := d(Q>(t) · y) ,

V (y, t) :=Q(t) · [ψρu](Q>(t) · y) , H(y, t) :=Q(t) · F (Q>(t) · y) .
(XI.6.8)

From (XI.6.1) and (XI.6.3) we obtain

w ∈ Lr(R3) , for all r > 2, (XI.6.9)

and hence we have

∂S

∂t
= ∆S + R ∂S

∂y1
−∇π −R∇ · [V ⊗ V ]−H

∇ · S = 0





in R3
∞ ,

lim
t→0+

‖S(·, t)−w‖r = 0 , all r ∈ (2,∞) .

(XI.6.10)

Utilizing (XI.6.1), we deduce, in particular,

∇ · [V ⊗ V ] ∈ L∞,r(R3
∞) , for all r ∈ (1, 4) .

Moreover,

supp (H(·, t)) ⊂ B2ρ , H ∈ L∞,r(R3
∞) , for all r ∈ (1,∞) .

In view of all the above, from Theorem VIII.4.1, Theorem VIII.4.2, and The-
orem VIII.4.3 we can find a solution (Ŝ, π̂) to (XI.6.10) such that

(Ŝ, 0) ∈ Lr(R3 × (ε, T )), Ŝ ∈ Lr(R3
∞)

(0, π̂) ∈ Lr(R3
T ) , for all r ∈ (2, 4), all ε > 0, and all T > ε,



782 XI Three-Dimensional Flow in Exterior Domains. Rotational Case

having the following representation:2

Ŝ(y, t) = (4πt)−3/2

∫

R3

e−|y−z+Rte1|2/4tw(z) dz

−
∫ t

0

∫

R3

Γ (y − z, t− τ ) ·
(
R∇ · [V ⊗ V ](z, τ ) +H(z, τ )

)
dz dτ .

(XI.6.11)
Clearly, we have (for example)

∂S

∂t
, D2S , φ , ∇φ ∈ L2

loc((0, T ]× R3)

and, recalling (XI.6.9), also S ∈ Lr(R3
T ), for all r ∈ (2,∞). Thus, by Lemma

VIII.4.2, we conclude, in particular, that S = Ŝ. From (XI.6.11) we can
therefore, derive the following representation for S:

S = S1 + S2 + S3 , (XI.6.12)

where

S1i(y, t) = R
∫ t

0

∫

R3

DlΓij(y − z, t− τ )Vj(z, τ )Vl(z, τ ) dz dτ , i = 1, 2, 3 ,

(XI.6.13)

S2(y, t) = −
∫ t

0

∫

R3

Γ (y − z, t− τ ) ·H(z, τ ) dz dτ , (XI.6.14)

S3(y, t) = (4πt)−3/2

∫

R3

e−|y−z+Rte1|2/4tw(z) dz . (XI.6.15)

We shall now give pointwise estimates of the functions Si, i = 1, 2, 3. Since
the numerical values of R and T are irrelevant in the proof (provided they
are both positive, of course), in what follows we shall put, for simplicity,
R = T = 1. By Lemma VIII.3.2, we have

|S1(y, t)| ≤ c2

∫ t

0

∫

R3

(τ + |y− z + τe1|2)−2|V (z, t− τ )|2 dz dτ

= c2

∫ t

0

∫

BR

(τ + |y − z + τe1|2)−2|V (z, t− τ )|2 dz dτ

+c2

∫ t

0

∫

BR

(τ + |y− z + τe1|2)−2|V (z, t− τ )|2 dz dτ

: = I1 + I2 ,

(XI.6.16)

where R = |y|/3 > 2ρ. Using the Hölder inequality, for any r ∈ (2,∞) and
with r0 := r/(r − 2) we obtain

2 For simplicity, throughout the proof we shall omit, the label R in the notation of
the fundamental tensor Γ .
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I1 ≤ c3

∫ ∞

0

(∫

BR

(τ + |y− z + τe1|2)−2r0 dz

)1/r0

‖V (t − τ )‖2
r dτ .

From the definition of V given in (XI.6.8), we obtain ‖V (t− τ )‖2
r ≤ ‖u‖2

r,Ωρ ,
and so

I1 ≤ c3‖u‖2
r,Ωρ

∫ ∞

0

(∫

BR

(τ + |y− z + τe1|2)−2r0 dz

)1/r0

dτ .

Furthermore, putting z′ = z − τe1, we have |z′| ≤ 2R for τ ∈ [0, R] and
z ∈ BR. Thus

∫ R

0

(∫

BR

(τ + |y − z + τe1|2)−2r0 dz

)1/r0

dτ

≤
∫ R

0

(∫

BR

(τ + |y − z′|2)−2r0 dz

)1/r0

dτ .

Also, for |z′| ≤ 2R we have |y− z′| ≥ 3R− 2R = R, and hence

∫ R

0

(∫

BR

(τ + |y− z + τe1|2)−2r0 dz

)1/r0

dτ

≤
∫ R

0

(∫

B2R

(τ +R2)−2r0 dz

)1/r0

dτ ≤ c4

∫ R

0

R3/r0

(τ +R2)2
dτ ≤ c5R

−2+ 3
r0 .

Since
∫ ∞

R

(∫

BR

(τ + |y− z + τe1|2)−2r0 dz

)1/r0

dτ ≤
∫ ∞

R

(∫

BR

τ−2r0 dz

)1/r0

dτ

≤ c6R
−1+ 3

r0 ,

we infer, for sufficiently large |y|,

I1 ≤ c7R
−1+ 3

r0 = c7R
−1+

3(r−2)
r ,

where c7 = c7(r). Thus, recalling that r is arbitrary in (2,∞), we conclude
that

I1 ≤ c8|y|−1+ε , for all ε > 0 , (XI.6.17)

with c8 → ∞ as ε → 0. We shall next estimate I2. To this end, we set
δ(ξ) =

√
ξ22 + ξ23 , ξ ∈ R3, and write

I2
c2

=

∫ t

0

∫

BR∩{δ(y−z)<1}
(τ + |y − z + τe1|2)−2|V (z, t− τ )|2 dz dτ

+

∫ t

0

∫

BR∩{δ(y−z)≥1}
(τ + |y − z + τe1|2)−2|V (z, t− τ )|2 dz dτ

: = I21 + I22 .
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By Hölder’s inequality, we obtain for an arbitrary q0 > 6 and with q1 :=
q0/(q0 − 2) ∈ (1, 3/2):

I21 ≤
∫ t

0

(∫

{δ(y−z)<1}

dz

(τ + |y − z + τe1|2)2q1

)1/q1

‖V (t − τ )‖2
q0,BRdτ ,

from which, using the result of Exercise VIII.3.2 and the definition of V , we
deduce

I21 ≤ c9‖u‖2
q0,BR ≤ c9‖u‖

2(q0−6)
q0

∞,Ωρ ‖u‖
2(6−q0)

q0

6,BR . (XI.6.18)

We shall now use in the above relation the inequality

‖u‖6,BR ≤ c10|u|1,2,BR , (XI.6.19)

where, as we know from Exercise II.6.5, the constant c10 is independent of R.
Combining (XI.6.19) with Lemma XI.6.1 and placing this information back
into (XI.6.18), it follows that

I21 ≤ c11R
−1+ε = c12|y|−1+ε , for all ε > 0 , (XI.6.20)

where c12 → ∞ as ε → 0. In order to estimate I22 we choose arbitrary
q0 ∈ (2, 6) and set q2 := q0/(q0 − 2) ∈ (3/2,∞). We thus obtain

I22 ≤
∫ t

0

(∫

{δ(y−z)≥1}

dz

(τ + |y − z + τe1|2)2q2

)1/q2

‖V (t − τ )‖2
q0,BRdτ ,

from which, using again the result of Exercise VIII.3.2, the definition of V ,
and the interpolation inequality (II.2.7) we deduce

I22 ≤ c13‖u‖2
q0,BR ≤ c13

(
‖u‖1−θ

6,BR‖u‖θ
3

)2

, (XI.6.21)

where θ → 0 and c13 → ∞ as q0 → 6. Combining (XI.6.21), (XI.6.19) and
Lemma XI.6.1, we deduce that

I22 ≤ c14R
−1+ε = c15|y|−1+ε , for all ε > 0 , (XI.6.22)

where c15 → ∞ as ε→ 0. Thus, (XI.6.16), (XI.6.17), (XI.6.20), and (XI.6.22)
allow us to conclude that

|S1(y, t)| ≤ c16|y|−1+ε , for all ε > 0 , (XI.6.23)

with c16 → ∞ as ε → 0. Concerning w2, from Theorem VIII.4.4 (see
(VIII.4.48)) and the definition of H, we immediately deduce for all s > 3

|S2(y, t)| ≤ C
‖F ‖s

(1 + |y|)(1 + s(y))
, (XI.6.24)
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so that in particular,

|S2(y, t)| ≤ c17|y|−1 . (XI.6.25)

We also notice that from Theorem VIII.4.3 (see (VIII.4.42)), it follows that

|S3(y, t)| ≤ c18t
− 1

4 ‖w‖6 . (XI.6.26)

Combining (XI.6.2), (XI.6.8), and (XI.6.12) together with (XI.6.24)–(XI.6.26),
we thus conclude, for sufficiently large |x|, that

|u(x)| ≤ |w(x)| + |Φ||σ(x)| ≤ |S(Q(t) · x)| + c21|x|−2

≤ c22

(
|x|−1+ε + t−

1
4 ‖w‖6

)
, for all ε > 0 and all t > 0 ,

(XI.6.27)

where c22 depends on ε, but not on t. Thus, letting t → ∞, from this last
inequality we obtain

|u(x)| ≤ c22|x|−1+ε (XI.6.28)

With the estimate (XI.6.28) in hand, we will give an improved bound on the
term S1 given in (XI.6.13). We begin by observing that, clearly, from the
definition of V and (XI.6.28), it follows that

|V (z, t)| ≤ c23(1 + |z|)−1+ε ,

sup
s≥0

|V (z, s)| ≤ sup
s≥0

|u(Q>(s) · z)| . (XI.6.29)

We next partition R3 into three regions:

BR , BR,4R , B4R ,

and denote the corresponding contributions of S1 over these spatial re-
gions by I1, I2, and I3, respectively. Thus, employing Lemma VIII.3.3 and
(XI.6.29)2, we may increase I1 as follows

|I1| ≤ c24

∫

BR

(
sup
s≥0

|V (z, s)|
)2(∫ ∞

0

|∇Γ (y − z, t)|dt
)
dz

≤ c25

∫

ΩR

(
sup
s≥0

|u(Q>(s) · z)|
)2

|y − z|3/2
dz ≤ c26

|y| 32

∫

ΩR

(
sup
s≥0

|u(Q>(s) · z)|
)2

.

Using the result of Lemma XI.6.3 in this latter, we then conclude that

|I1| ≤ c27|y|−3/2Rδ = c28 |y|−3/2+δ (XI.6.30)

for arbitrary δ > 0. In a similar fashion, we establish
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|I3| ≤ c29

∫

B4R

(
sup
s≥0

|V (z, s)|
)2 (∫ ∞

0

|∇Γ (y − z, t)|dt
)
dz

≤ c30

∫

Ω4R

(
sup
s≥0

|u(Q>(s) · z)|
)2

|y − z|3/2
dz .

Therefore, since for z ∈ Ω4R we have |y − z| ≥ 1
4 |z| + 3R − |y| = 1

4 |z|, with
the help of the Hölder inequality we obtain for arbitrary r ∈ (1, 2)

|I3| ≤ c31

(∫

Ω4R

(
sup
s≥0

|u(Q>(s) · z)|
)2r

dz

) 1
r (∫ ∞

2R

ρ−
3r

2(r−1)+2dρ

) r−1
r

,

which, in turn, by Lemma XI.6.3, furnishes

|I3| ≤ c32 |R|−3/2+δ = c33 |y|−3/2+δ , (XI.6.31)

where δ := 3(r − 1)/r is positive and arbitrarily close to zero, since r can be
chosen arbitrarily close to 1. In order to increase I2, we notice that

Γ1(ξ) :=

∫ ∞

0

|∇Γ (ξ, t)|dt

satisfies the following property:

∫

∂Bρ(x0)

Γ1(x− x0) ≤M ρ−1/2 , (XI.6.32)

for all x0 ∈ R3 and ρ > 0. The proof of (XI.6.32) is entirely analogous to the
analogous property proved in Exercise VII.3.1 for the fundamental tensor E,
once we take into account the estimate for Γ1 furnished in Lemma VIII.3.3.
Taking into account (XI.6.29)1, we derive

|I2| ≤ c34

∫

BR,4R

(1 + |z|)−2+2ε

(∫ ∞

0

|∇Γ (y − z, t)|dt
)
dz

≤ c35R
−2+2ε

∫

BR,4R

Γ (y − z) dz ≤ c35R
−2+2ε|Γ |1,B7R(y) .

Consequently, by (XI.6.32),

|I2| ≤ c36|R|−2+2εR1/2 = c37 |y|−3/2+δ (XI.6.33)

for arbitrary δ > 0. Recalling that S1 =
∑3

i=1 Ii, from (XI.6.30), (XI.6.31),
and (XI.6.33) we deduce

|S1(y, t)| ≤ c38|y|−3/2+δ , for all δ > 0. (XI.6.34)
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Putting together (XI.6.9), (XI.6.12), (XI.6.25), (XI.6.26), and (XI.6.34), ar-
guing as in (XI.6.27), and letting t → ∞, we conclude, for sufficiently large
|x|, that

|u(x)| ≤ c39

[
(1 + |x|)−1(1 + s(x))−1 + |x|−3/2+δ

]
, for all δ > 0 ,

which completes the proof of the theorem. ut

Our next result concerns the asymptotic behavior of ∇v.
Theorem XI.6.2 Let the assumptions of Theorem XI.6.1 be satisfied. Then,
for any η > 0 and all sufficiently large |x|,

∇(v(x) + v∞(x)) = O

(
|x|−3/2(1 + R s(x))−3/2 + |x|−2+η

)
.

Proof. As in the proof of the previous theorem, we set u := v+v∞. We begin
by recalling that, by Lemma XI.6.2, ∇u is bounded for all large |x|. From the
definition (XI.6.8) of V , we thus obtain

|∇V (y, t)| ≤ c1 (XI.6.35)

with c1 independent of y and t. We also recall that by the same token, from
Theorem XI.6.1 we have, for all large |y|,

|V (y, t)| ≤ c2 |y|−1 (XI.6.36)

with c2 independent of y and t. Our next step is to prove that |∇u(x)| decays
at least like |x|−1. Our starting point is again (XI.6.12)–(XI.6.15) for large
values of |y|, which, as immediately proved, yields for k, i = 1, 2, 3,

DkS1i(y, t) = R
∫ t

0

∫

R3

DkΓij(y − z, t− τ )Dl[Vj(z, τ )Vl(z, τ )] dz dτ ,

DkS2(y, t) = −
∫ t

0

∫

R3

DkΓ (y − z, t− τ ) ·H(z, τ ) dz dτ ,

DkS3(y, t) = (4πt)−3/2Dk

[∫

R3

e−|y−z+Rte1|2/4tw(z) dz

]
.

(XI.6.37)
As done previously, we set, for simplicity, R = T = 1. We notice that from
Theorem VIII.4.4 (see, in particular, the argument after (VIII.4.66)), we get

|DkS2(y, t)| ≤ c3 |y|−3/2(1 + s(y))−3/2 , (XI.6.38)

while from Theorem VIII.4.3 it follows that

|DkS3(y, t)| ≤ c4 t
−3/4‖w‖6 . (XI.6.39)
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It remains to estimate Dkw1. To this end, we split the integral in (XI.6.37)1
into two contributions as follows:

DkS1i(y, t) =

∫ t

0

∫

R3\B1(y)

DkΓij(y − z, t− τ )Dl[Vj(z, τ )Vl(z, τ )] dz dτ ,

+

∫ t

0

∫

B1(y)

DkΓij(y − z, t− τ )[Vl(z, τ )DlVj(z, τ )] dz dτ ,

:= I1 + I2 ,
(XI.6.40)

where we have used the condition ∇ · V (z, t) = 0 for sufficiently large |z|.
Thanks to (XI.6.35) and (XI.6.36), we obtain

|I2| ≤ c5|y|−1

∫

B1(y)

∫ ∞

0

|∇Γ (y − z, t)|dt dz ,

so that by Lemma VIII.3.3, we deduce

|I2| ≤ c6|y|−1 . (XI.6.41)

We next notice that by an integration by parts,

I1 = −
∫ t

0

∫

R3\B1(y)

DkDlΓij(y − z, τ )[Vj(z, t− τ )Vl(z, t− τ )] dz dτ ,

+

∫ t

0

∫

∂B1(y)

DkΓij(y − z, τ )Vj(z, t− τ )Vl(z, t− τ )nl dz dτ

:= I
(1)
1 + I

(2)
1 .

(XI.6.42)
Employing (XI.6.36) and (XI.6.32), we obtain

|I(2)
1 | ≤ c7 |y|−2

∫

∂B1(y)

∫ ∞

0

|∇Γ (y − z, t)| dt ≤ c8 |y|−2 . (XI.6.43)

In order to estimate I
(1)
1 , we split it as sum of three integrals, I1, I2, and

I3, over BR/2, B2R,R/2 − B1(y), and B2R, respectively, where R := |y|, is
sufficiently large. We have

|I1| ≤ c9

∫

BR/2

(
sup
s≥0

|V (z, s)|
)2(∫ ∞

0

|D2Γ (y − z, t)|dt
)
dz ,

and consequently, using Lemma VIII.3.3, (XI.6.29), and Lemma XI.6.3, we
get

|I1| ≤ c10

∫

BR/2

(
sup
s≥0

|V (z, s)|
)2

|y − z|−2(1 + s(y − z))−2 dz

≤ c11|y|−2

∫

ΩR/2

(
sup
s≥0

|u(Q>(s) · z)|
)2

≤ c12 |y|−2Rη ,
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for arbitrary positive η. Thus we conclude that

|I1| ≤ c13 |y|−2+η . (XI.6.44)

Likewise, we show

|I3| ≤ c14

∫

B2R

(
sup
s≥0

|V (z, s)|
)2|y − z|−2(1 + s(y − z))−2 dz

≤ c15

∫

Ω2R

(
sup
s≥0

|u(Q>(s) · z)|
)2|y − z|−2 dz .

Therefore, observing that for z ∈ Ω2R we have |y− z| ≥ 1
2 |z|+R− |y| = 1

2 |z|,
by the Hölder inequality we deduce, for arbitrary r ∈ (1, 3),

|I3| ≤ c16

(∫

Ω2R

(
sup
s≥0

|u(Q>(s) · z)|
)2r

dz

) 1
r (∫ ∞

2R

ρ−
2r

r−1+2dρ

) r−1
r

,

which, in turn, by Lemma XI.6.3, delivers

|I3| ≤ c17 |R|−2+η = c17 |y|−2+η (XI.6.45)

with η := 3(r − 1)/r positive and arbitrarily close to zero, since r may be
taken arbitrarily close to 1. Finally, from (XI.6.36) and Lemma VIII.3.3, we
obtain

|I2| ≤ c18 |y|−2

∫

BR/2,2R\B1(y)

dz

|y − z|2(1 + s(y − z))2

≤ c18 |y|−2

∫

B1,3R(y)

dz

|y − z|2(1 + s(y − z))2
.

(XI.6.46)

Since by a simple and direct calculation one shows that

∫

B1,3R(y)

dz

|y − z|2(1 + s(y − z))2
≤ c19 lnR

with c19 independent of R, from (XI.6.46) we get

|I2| ≤ c20 |y|−2 lnR ≤ c20 |y|−2+η (XI.6.47)

for arbitrarily small positive η. Thus, recalling that I
(1)
1 =

∑3
i=1 Ii and col-

lecting (XI.6.40)–(XI.6.47), we conclude that

|∇S1(y)| ≤ c21

(
|y|−1 + |y|−2+η

)
, (XI.6.48)

where we would like to emphasize that the term |y|−1 comes from estimating

the integral I
(2)
1 occurring in (XI.6.40). If we combine (XI.6.2), (XI.6.8), and
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(XI.6.12) together with (XI.6.38), (XI.6.39), and (XI.6.48), we obtain, for
sufficiently large |x|,

|∇u(x)| ≤ |∇w(x)|+ |Φ||∇σ(x)| ≤ |∇S(Q(t) · x)| + c22|x|−3

≤ c23

(
|x|−1 + |x|−3/2(1 + s(x))−3/2 + |x|−2+η + t−3/4|w‖6

)
,

for all η > 0 and all t > 0. Thus, letting t→ ∞ in this relation furnishes

|∇u(x)| ≤ c23

(
|x|−1 + |x|−3/2(1 + s(x))−3/2 + |x|−2+η

)
. (XI.6.49)

This inequality provides, in particular, ∇u(x) = O(|x|−1), which translates
into |∇V (y, t)| ≤ c |y|−1 with c independent of y and t. Plugging this informa-

tion back into the estimate for I
(2)
1 allows us to deduce the improved bound

I
(2)
1 = O(|y|−2), and so, recalling that the term |x|−1 in (XI.6.49) is due only

to the contribution from I
(2)
1 , we may now replace that term with |x|−2, and

the proof of the theorem is complete.
ut

We conclude this section with the following result regarding the asymptotic
behavior of the pressure.

Theorem XI.6.3 Let the assumptions of Theorem XI.6.1 be satisfied. Then,
for all sufficiently large |x|,

p(x) +
T
2R(x2

2 + x2
3) + p0 = O(|x|−2 ln |x|) ,

for some p0 ∈ R.

Proof. As usual, we set u := v + v∞, and take the divergence of both sides
of (XI.1.5) (with f ≡ 0). Recalling that ∇ · (e1 × x · ∇u − e1 × u) = 0, we
obtain

∆p̃ = ∇ ·G in Ωρ ,

∂p̃

∂n
= g on ∂Ωρ ,

(XI.6.50)

where p̃ is defined in (XI.1.6) and

G := Ru · ∇u ,
g := [∆u+ R(D1u− u · ∇u) + T (e1 × x · ∇u− e1 × u)] · n |∂Ωρ .

(XI.6.51)
From Lemma II.9.1 we establish the following representation of p̃(x), for all
x ∈ Ωρ,r and all r > ρ:

p̃(x) =

∫

Ωρ,r

G(y) · ∇E(x− y)dy +

∫

∂Ωρ,r

E(x− y)G(y) · n dσy

−
∫

∂Bρ

E(x− y)g(y) dσy −
∫

∂Br

E(x− y)
∂p̃

∂n
(y) dσy

+

∫

∂Bρ

∂E
∂n

(x− y)p̃(y) dσy +

∫

∂Br

∂E
∂n

(x − y)p̃(y) dσy ,

(XI.6.52)
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where E is the Laplace fundamental solution (II.9.1). Using the property

|DαE(ξ)| ≤ c1 |ξ|−1−|α| , |α| ≥ 0 , ξ ∈ R3 − {0} , (XI.6.53)

and (XI.6.1), we readily prove the existence of an unbounded sequence {rk} ∈
R+ such that (after a possible modification of p̃ by the addition of a constant)

lim
k→∞

∫

∂Brk

[
E(x− y)

(
G(y) · n− ∂p̃

∂n
(y)

)
+
∂E
∂n

(x− y)p̃(y)

]
dσy = 0 .

Consequently, (XI.6.52) furnishes the following representation, for all x ∈ Ωρ:

p̃(x) =

∫

Ωρ

G(y) · ∇E(x− y)dy +

∫

∂Bρ

E(x− y)G(y) · ndσy

−
∫

∂Bρ

E(x− y)g(y) dσy +

∫

∂Bρ

∂E
∂n

(x− y)p̃(y) dσy ,

(XI.6.54)

where we have used the fact that ∂Ωρ = ∂Bρ. Observing that

∫

∂Bρ

E(x− y) [G(y) · n− g(y)] dσy

= mE(x) +

∫

∂Bρ

(
E(x− y) − E(x)

)
[G(y) · n− g(y)] dσy

with

m :=

∫

∂Bρ

[G(y) ·n− g(y)] ,

with the help of (XI.6.53) and the mean-value theorem, from (XI.6.54) we
deduce that

p̃(x) = P (x) +mE(x) +O(|x|−2) , (XI.6.55)

where

P (x) :=

∫

Ωρ

G(y) · ∇E(x− y)dy .

We write

P (x) =

∫

Ωρ,R/2

G(y) · ∇E(x− y)dy +

∫

ΩR/2,2R

G(y) · ∇E(x− y)dy

+

∫

Ω2R

G(y) · ∇E(x− y)dy

:= P1(x) + P2(x) + P3(x) ,
(XI.6.56)

where |x| = R, sufficiently large. From (XI.6.51) and (XI.6.1), we readily
establish, with the help of Hölder’s inequality,G ∈ L1(Ωρ), and consequently,
employing the properties (XI.6.53) for E , we at once show that
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P1(x) + P3(x) = O(|x|−2) . (XI.6.57)

Furthermore, setting BR,x := BR/2,2R −B1(x), we have

P2(x)/R =

∫

BR,x

DlDkE(x− y)ul(y)uk(y) dy

+

∫

B1(x)

DkE(x− y)ul(y)Dluk(y) dy

+

∫

∂BR,x

DkE(x− y)ul(y)uk(y)nl dσy

:= P21(x) + P22(x) + P23(x) .

(XI.6.58)

By Theorem XI.6.1, Theorem XI.6.2, and, again, (XI.6.53), we easily show
that

|P21(x)| ≤ c1 |x|−2

∫

B1,3R(x)

|∇∇E(y)|dy ≤ c2 |x|−2

∫ 3R

1

r−1dr ≤ c3 |x|−2 ln |x| ,

|P22(x)| ≤ c5 |x|−2

∫

B1(x)

|∇E(x− y)| dσy ≤ c3 |x|−2 ,

|P23(x)| ≤ c4 |x|−2

∫

∂B1(x)∪∂BR/2∪∂B2R

|∇E(x− y)| dσy ≤ c5|x|−2 .

(XI.6.59)
From (XI.6.55)–(XI.6.59) we then deduce

p̃(x) = mE(x) + O(|x|−2 ln |x|) . (XI.6.60)

However, from (XI.6.1), we obtain p̃ ∈ L3/2+ε(Ωρ), for all ε positive and close
to zero. Thus, in (XI.6.60) we must have m = 0, and the proof of the theorem
is complete. ut

Remark XI.6.1 The establishment of the asymptotic behavior of second-
order derivatives of v, as well as the (related) behavior of ∇p, requires, ap-
parently, a more complicated effort, and we leave it unsettled. �

XI.7 On the Asymptotic Structure of Generalized
Solutions When v0 · ω = 0

Similarly to the irrotational case, the methods we used to investigate the
asymptotic structure of a generalized solution corresponding to v0 · ω 6= 0,
no longer work if v0 · ω = 0. The fundamental reason resides in the fact that
we are not able to prove (under suitable assumptions on the body force) an
analogue of Theorem XI.4.1, that would ensure that the velocity field v+v∞
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is in a space Lq(ΩR) for some q < 6. Actually, the existence of solutions that
correspond to v0 ·ω = 0 and to data of arbitrary “size” and that are in Lq in
a neighborhood of infinity for some q ∈ (1, 6) remains an open question.

Notwithstanding this difficulty, we can still draw some interesting conclu-
sions on the asymptotic structure of generalized solutions corresponding to
v0 · ω = 0 that, in addition, satisfies the energy inequality (XI.2.16). (As we
know from the existence Theorem XI.3.1, this class of solutions is certainly
not empty.) Specifically, following the work of Galdi & Kyed (2010), we shall
show that provided a certain norm of the data is sufficiently small compared to
T −1, every corresponding generalized solution v satisfying the energy inequal-
ity behaves for large |x| like |x|−1. Combining this result with those of Galdi
(2003), one can also deduce ∇v(x), p(x) = O(|x|−2), and ∇p(x) = O(|x|−3).

However, an important feature that one is able to clarify when v0 · ω = 0
and that, as we previously commented, is still obscure in the case v0 · ω 6= 0
is the question of the leading terms in the asymptotic expansions of velocity
and pressure fields, at least when f ≡ v∗ ≡ 0, and T is sufficiently small.1

In particular, as shown by Farwig, Galdi, & Kyed (2011), in such a case the
leading term of the velocity field is the velocity field of a suitable representative
of Landau solutions, whose class we have recalled in Section X.9; see Theorem
XI.7.4.

In order to present all the above, we begin by proving the following
preparatory result.

Lemma XI.7.1 Let Ω be an exterior domain of class C2, and suppose that
the second-order tensor field F , and the boundary data v∗ satisfy the condi-
tions

∇ · F ∈ L2(Ω) , []F []2 <∞ , 2 v∗ ∈ W 3/2,2(∂Ω) .

Then, there exists a constant C = C(Ω, q, B) if T ∈ (0, B] such that if

‖∇ · F ‖2 + []F []2 + ‖v∗‖3/2,2,∂Ω ≤ 1

8C2T ,

there is at least one generalized solution (v, p) to the Navier–Stokes problem
(XI.0.10)–(XI.0.11) with3 v0 ·ω = 0 and f ≡ ∇ · F such that

u ∈W 2,2
loc (Ω) ∩D1,2(Ω) ∩D2,2(Ω) , []u[]1 <∞ ,

p̃ ∈ D1,2(Ω) ∩ Lq1(Ω) ∩ Lq2 (Ωρ) for all q1 ∈ (3/2, 6] and all q2 ∈ (6,∞) ,

where u := v + v∞, p̃ is defined in (XI.1.6), and ρ is an arbitrary number
greater than δ(Ωc). Moreover, this solution satisfies the estimate

|u|2,2 + |u|1,2 + []u[]1,R+ |p̃|1,2 + ‖p̃‖q1 + ‖p̃‖q2,Ωρ

≤ C1(‖∇ · F ‖2 + []F []2 + ‖v∗ + v∞‖3/2,2,∂Ω) ,
(XI.7.1)

1 This means that the “body” Ωc, is rotating with “small” angular velocity.
2 See the notation in (VIII.4.46).
3 In this connection, see Remark VIII.5.1.
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where C1 = C1(Ω, q1, q2, B).

Proof. The proof of this lemma will be obtained by a simple contraction ar-
gument based on the results of Theorem VIII.6.1. Set

X = X(Ω) := {w ∈ D1,2(Ω) : []w[]1 <∞} .

Clearly,X becomes a Banach space endowed with the norm ‖w‖X := |w|1,2+
[]w[]1 . Let Xδ be the ball in X of radius δ centered at the origin, and consider
the map

M : Xδ → u = M(w) ∈ X ,

where u solves, for suitable π, the following generalized Oseen problem:

∆u+ T (e1 × x · ∇u− e1 × u) = T w · ∇w + ∇π + f

∇ · u = 0

}
in Ω ,

u = v∗ + v∞ at ∂Ω .

(XI.7.2)

It is clear that if we show that the map M has a fixed point in Xδ, for some
δ > 0, then the existence of the desired solution (v, p) will be acquired by
setting v := u−e1 ×x and p := π− T

2 (x2
2 +x2

3). If we let F := T w⊗w+F ,
by assumption and the fact that w ∈ X, we obtain ∇ · F ∈ L2(Ω) with
[]F[]2 < ∞. Thus, from Theorem VIII.6.1 there exists a solution (u, π) to
(XI.7.2) such that

u ∈W 2,2
loc (Ω) ∩D1,2(Ω) ∩D2,2(Ω) , []u[]1 <∞

π ∈ D1,2(Ω) ∩ Lq1 (Ω) ∩ Lq2 (Ωρ) for all q1 ∈ (3/2, 6], and all q2 ∈ (6,∞) ,
(XI.7.3)

where ρ is an arbitrary number greater than δ(Ωc). This shows in particular,
that u ∈ X, so that M is well defined. Furthermore, from (VIII.6.4) in the
same theorem we find that u satisfies the inequality

|u|2,2 + |u|1,2 + []u[]1+ |π|1,2 + ‖π‖q1 + ‖π‖q2,Ωρ

≤ C1(‖∇ · F‖2 + []F[]2 + ‖v∗ + v∞‖3/2,2,∂Ω) ,

where C1 = C1(Ω, q1, q2, B) whenever T ∈ (0, B]. Therefore, observing that

‖∇ · F‖2 + []F[]2 ≤ T
(
‖w‖∞|w|1,2 + []w[]21

)
+ ‖∇ · F ‖2 + []F []2

≤ 2T ‖w‖2
X + ‖∇ · F ‖2 + []F []2 ,

we infer that in particular, u satisfies the following estimate:

‖u‖X ≤ C (T ‖w‖2
X + ‖∇ · F ‖2 + []F []2 + ‖v∗ + v∞‖3/2,2,∂Ω) . (XI.7.4)

Thus, if we choose
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δ = 2C (‖∇ · F ‖2 + []F []2 + ‖v∗ + v∞‖3/2,2,∂Ω)

and require

‖∇ · F ‖2 + []F []2 + ‖v∗ + v∞‖3/2,2,∂Ω ≤ 1

8C2T ,

from (XI.7.4) it follows that M maps Xδ into itself. Furthermore, setting
ui = M(wi), wi ∈ Xδ , i = 1, 2, after a simple calculation that uses again
(VIII.6.4), we deduce

‖u1 − u2‖X ≤ C T (‖w1‖X + ‖w2‖X)‖w1 −w2‖X . (XI.7.5)

Consequently, since wi ∈ Xδ, i = 1, 2, and δ ≤ 1/(4C T ), from (XI.7.5) it
follows that

‖u1 − u2‖X ≤ 1

2
‖w1 −w2‖X ,

which completes the proof that M is a contraction and, as a consequence,
with the help of (XI.7.3), the proof of the lemma.

ut

Remark XI.7.1 Sharper and more detailed asymptotic estimates than those
stated in the previous lemma can be obtained if, in the contraction-mapping
argument used in its proof, we use Theorem VIII.6.2 instead of Theorem
VIII.6.1. More precisely, one can show that under the additional assumption

[|DiFijej |]3 + [|DjDiFij|]4 <∞ (XI.7.6)

on F = {Fij}, the corresponding generalized solution constructed in Lemma
XI.7.1 satisfies the further asymptotic properties

∇u = O(|x|−2) , p̃ = O(|x|−2) , ∇p̃ = O(|x|−2) , as |x| → ∞ .

We leave the details of the proof to the interested reader. �

From the previous result in combination with Theorem XI.2.3 we immedi-
ately obtain the following theorem, which furnishes the pointwise asymptotic
behavior of a generalized solution satisfying the energy inequality, at least for
small data.

Theorem XI.7.1 Let Ω be as in Lemma XI.7.1 and let v be a generalized
solution corresponding to v0 · ω = 0 and to data

f ∈ L2(Ω) ∩ L6/5(Ω), v∗ ∈ W 3/2,2(Ω) .

Suppose also that f = ∇·F , where F is a second-order tensor field in Ω with
[|F |]2 < ∞.4 Finally, assume that v and the associated pressure p satisfy the

4 In this connection, see Remark VIII.5.1.
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energy inequality (XI.2.16), and that T ∈ (0, B] for some B > 0. Then, there
exists a positive constant c = c(Ω,B) such that if

‖∇ · F ‖2 + []F []2 + ‖v∗‖3/2,2,∂Ω ≤ c

T , (XI.7.7)

the fields u = v+v∞ and p̃ = p+ T
2 (x2

2 +x2
3) satisfy all the properties stated

in Lemma XI.7.1. In particular,

v + v∞ = O(|x|−1) as |x| → ∞ .

Proof. Let c = min{1/(8C2), 2M}, where C and M are defined in Lemma
XI.7.1 and Theorem XI.2.3, respectively. Then, in view of (XI.7.7), by Lemma
XI.7.1 there exists a corresponding generalized solution v1 that by (XI.7.1),
satisfies in particular the estimate

(|x|+ 1)|v1(x) + v∞(x)| ≤ c

T .

Thus, from Theorem XI.2.3 we infer v ≡ v1, and the desired result follows.
ut

Remark XI.7.2 If the tensor field F satisfies also condition (XI.7.6), then
the generalized solution v of Theorem XI.7.1 and the associated pressure field
p satisfy, in addition the asymptotic properties:

∇(v(x) + v∞(x)) = O(|x|−2) ,

p+ T
2
(x2

2 + x2
3) = O(|x|−2) , ∇

(
p + T

2
(x2

2 + x2
3)
)

= O(|x|−3) ;

see Remark XI.7.1. �

Theorem XI.7.1 along with Theorem XI.2.1 and Theorem XI.2.3, furnishes
the following two results whose simple proof is left to the reader.

Theorem XI.7.2 Let the assumptions of Theorem XI.7.1 be satisfied. Then
v and the corresponding pressure p satisfy the energy equality (XI.2.1)

Theorem XI.7.3 Let the assumptions of Theorem XI.7.1 be satisfied. Then
v is the only generalized solution corresponding to the given data.

As a matter of fact, the pointwise estimates of Theorem XI.7.1, as well as
those of Remark XI.7.1, can be further refined in the case that f ≡ v∗ ≡ 0

and T is below a certain constant depending on Ω. Actually, as shown by
Farwig, Galdi, & Kyed (2011), in such a case one is able to produce the
leading terms of the asymptotic expansions of v and p. In order to describe
this result, let Ω be of class C2, and denote by v be the generalized solution
constructed in Theorem XI.3.1 corresponding to the above data, and by p the



XI.8 Notes for the Chapter 797

associated pressure field (see Theorem XI.1.2). Further, let (U b, P b) be the
Landau solution (X.9.21) corresponding to the parameter b = b e1, where

b :=

(∫

∂Ω

T (v, p̃) · n
)
· e1 , (XI.7.8)

and, we recall, p̃ is defined in (XI.1.6), while T is the Cauchy stress tensor
(IV.8.6).

The following theorem holds.

Theorem XI.7.4 Let Ω be an exterior domain of class C2 and let α ∈ (0, 1).
Then there exists C = C(α,Ω) > 0 such that if T ∈ (0, C], then any gen-
eralized solution (v, p̃) to (XI.0.10)–(XI.0.11) corresponding to v0 · ω = 0,
f ≡ v∗ ≡ 0 and satisfying the energy inequality (XI.2.16) satisfies the asymp-
totic expansion

v(x) + v∞(x) = U b(x) +O

(
1

|x|1+α

)
as |x| → ∞ ,

∇
(
v(x) + v∞(x)

)
= ∇U b(x) +O

(
1

|x|2+α

)
as |x| → ∞ ,

(XI.7.9)

and

p(x) +
T
2

(x2
2 + x2

3) = P b(x) +m · x

4π|x|3 +O

(
1

|x|2+α

)
as |x| → ∞ ,

where (U b, P b) is the Landau solution (X.9.21), with b = b e1 and b given in
(XI.7.8), while

m := (I − e1 ⊗ e1) ·
∫

∂Ω

[
T (v, p̃) − (e1 × x) ⊗ (e1 × x)

]
· n ,

with I the identity matrix.

We shall not give a proof of this result, referring the interested reader to the
quoted paper of Farwig, Galdi, & Kyed. We shall limit ourselves to observing
that one of the key points in the proof is the fact that due to its symmetry
properties, the Landau solution of Theorem XI.7.4 solves (XI.0.10)1,2 with
R = 0 and f ≡ 0 at each x ∈ R3 −{0}. This property was first recognized by
Farwig & Hishida (2009).

XI.8 Notes for the Chapter

Section XI.1. A proof of Corollary XI.1.1 was first given by Galdi (2002,
Theorem 4.6). However, his proof is more complicated and less direct than the
one provided here. Furthermore, the assumptions on f are more stringent. In
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this connection, we would like to recall also the contribution of Silvestre (2004,
Theorem 3.1). Unlike Corollary XI.1.1, valid for any generalized solution, this
latter author proves the existence of at least one generalized solution satisfying
the pointwise property (XI.1.16).

Section XI.2. All results in this section are due to me.

Section XI.3. A proof of existence of generalized solutions under the as-
sumption that the boundary datum v∗ (is sufficiently smooth and) has zero
total flux through ∂Ω is due to Leray (1933, Chapter III). If v∗ reduces to
a rigid motion, namely, v∗ = v1 + v2 × x, v1, v2 ∈ R3, a simpler proof is
given in Borchers (1992, Korollar 4.1). However, a similar result and under
the same boundary conditions can be easily deduced also from earlier work of
Weinberger (1973) and Serre (1987).

The existence theory in its full generality, as presented in Theorem XI.3.1,
is due to me.

Section XI.4. The main result, Theorem XI.4.1, is taken from Galdi & Kyed
(2011a, Theorem 4.4). As already pointed out in Remark XI.4.3, we would like
to emphasize one more time the interesting open question whether v + v∞
is square-summable in a neighborhood of infinity (that is, whether the liquid
possesses a finite kinetic energy), in the case that v∗ ≡ f ≡ 0 and v0 ·ω 6= 0.

Section XI.5. All results in this section are due to me. Similar results, under
more stringent assumptions on the data, can be found in Galdi & Kyed (2010,
2011a).

Section XI.6. The main results presented in Theorem XI.6.1–Theorem XI.6.3
are due to Galdi & Kyed (2011a). However, the proof of Theorem XI.6.1 given
here differs in some significant details from the analogous one furnished by
the above authors.

The significant problem that is left open is the determination of leading
terms (if any) in the asymptotic expansion of the velocity and pressure fields.

Another interesting problem that deserves attention is the asymptotic be-
havior of the vorticity field. It is very likely that outside the “wake region”
the vorticity decays exponentially fast. Nevertheless, a proof of this property
is far from being obvious.

Section XI.7. Theorem XI.7.1 is basically due to Galdi (2003) and Galdi &
Kyed (2010).

The fact that a suitable Landau solution is the leading term in the asymp-
totic expansion of the velocity field was first discovered by Farwig & Hishida
(2009). In fact, the main result of these authors, under assumptions slightly
different from those of Theorem XI.7.4, consists in the proof of a representa-
tion for v similar to (XI.7.9), where, however, the quantity v + v∞ − U b is
estimated in Lebesgue spaces rather than pointwise.



XII

Steady Navier–Stokes Flow in

Two-Dimensional Exterior Domains

F.F. CHOPIN, Scherzo op.31, bars 1-3.

Introduction

In this chapter we shall study plane steady flow occurring in the complement
of a compact region. Specifically, we shall investigate existence, uniqueness
and asymptotic behavior of solutions v, p to the Navier–Stokes system:1

∆v = Rv · ∇v + ∇p+ Rf
∇ · v = 0

}
in Ω

v = v∗ at ∂Ω

(XII.0.1)

where Ω is an exterior domain of R2. As in the previous chapter, (XII.0.1) is in
a nondimensional form, with R representing the Reynolds number. To system
(XII.0.1) we must append the condition at infinity on the velocity field, that
we choose to be of the form

1 As we mentioned previously in several occasions, the steady-state, two-
dimensional exterior problem in a rotating frame still lacks of significant results.
For this reason, it will not be treated in this monograph.



800 XII Two-Dimensional Flow in Exterior Domains

lim
|x|→∞

v(x) = −v∞, (XII.0.2)

with v∞ a prescribed (constant) vector of R2. As already pointed out, a
significant application of problem (XII.0.1)–(XII.0.2) occurs when f ≡ v∗ ≡ 0

and v∞ 6= 0, and regards the steady-state motion of a viscous liquid around a
long, straight cylinder C with axis a, assuming that the liquid is at rest at large
distances from C, and that C moves with (constant) translational velocity v∞
orthogonal to a. Actually, in a region of flow sufficiently far from the two ends
of C and including C, one may expect that the velocity field of the liquid is
independent of the coordinate parallel to a and, moreover, that there is no
motion in the direction of a. Therefore, the relevant region of flow can be
reasonably approximated by a two-dimensional domain placed in a suitable
plane orthogonal to a and exterior to the cross-section of C.

Using the methods of Section X.4 (cf. Remark X.4.4), we show that if Ω is
locally Lipschitz with ∂Ω 6= ∅, and if the flux of v∗ through ∂Ω is sufficiently
“small” in the sense of (X.4.47), then (XII.0.1) admits at least one solution
v, p, without further restrictions on the size of the data. Such a solution is
also smooth if Ω and the data are likewise smooth. Concerning the behavior
at large distances, the only information one can obtain is that v has a finite
Dirichlet integral, that is,

∫

Ω

∇v : ∇v ≤M, (XII.0.3)

with M = M(Ω, f, v∗,R). However, (XII.0.3) alone is not enough to ensure
that v tends (even in a generalized sense) to a constant vector to infinity, as
is shown by simple counterexamples; see Section XII.1.2 Therefore, we don’t
know if these solutions verify condition (XII.0.2). Furthermore, if v∗ ≡ f ≡ 0,
we do not know, in general, if this solution is nontrivial. 3 A separate consid-
eration deserves the case Ω = R2. Actually, in such a case, even the existence
of solutions to the system (XII.0.1) is not known, in general.4 Technically, this
is due to the fact that a sequence of functions obeying the bound (XII.0.3)
with Ω = R2, need not be convergent in any of the spaces Lq(BR), q > 1,
R > 0 (cf. Exercise II.7.3), and this in turn implies that one can not show
the convergence of the nonlinear term along the sequence of approximating
solutions; see Remark X.4.4.

The investigation of whether solutions to (XII.0.1) satisfying (XII.0.3) may
also obey (XII.0.2) has attracted the attention of many writers; see Section
XII.3. Specifically, Gilbarg & Weinberger (1974, 1978) have shown that if f is

2 A sharp estimate at large distances of functions satisfying condition (XII.0.3) has
been given in Theorem II.9.1.

3 If Ωc is symmetric around some direction, then one can construct nontrivial,
suitably symmetric solutions; see the Notes for this Chapter.

4 Existence can be established if the data satisfy suitable symmetry requirements;
see the Notes for this Chapter.
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of bounded support, every v satisfying (XII.0.1) for a suitable pressure p, and
(XII.0.3), either converges at large distances, in a well-defined sense, to some
constant vector v0, or that the L2-norm of v over the unit circle approaches
infinity at large distances. However, they can not show that v0 = −v∞. If
v∗ ≡ f ≡ 0, Amick (1988) has proved that v ∈ L∞(Ω). Nevertheless, also in
such a case, one cannot infer that v0 = −v∞ if v∞ 6= 0 and, what perhaps
is more surprising, if v0 = 0, one is able to conclude that v ≡ 0 only in the
special situation where Ω = R2.

At this point we may wonder if we could prove existence by means of
different techniques, such as a fixed point argument. This problem, which was
first considered by Finn & Smith (1967b), is in fact solvable when the velocity
field v∞ is not zero and the data are sufficiently small; see Section XII.5. It
is interesting to observe that the corresponding solutions obey, in particular,
condition (XII.0.3). It should also be emphasized that if v∞ = 0, the above
techniques do not work and so it is not known whether (XII.0.1), (XII.0.2)
with v∞ = 0 is resoluble, even for small data.5 The reason for this unequal
result is essentially due to the fact that the approach followed is based on
fixed point arguments that rely on linearized versions of (XII.0.1), (XII.0.2).
As we know from Chapters V and VII, the linearization when v∞ 6= 0 (Oseen
system) produces solutions that, in the neighborhood of infinity, are more
regular than those corresponding to the linearization when v∞ = 0 (Stokes
system). In this respect, we recall that a similar circumstance occurs also for
three-dimensional flows.

In view of all the above, it is natural to ask whether (XII.0.1)–(XII.0.2)
may indeed admit a solution for data of arbitrary size. This question has
been investigated by Galdi (1999b) for the physically relevant problem where
v∗ ≡ f ≡ 0, which, as we noted previously, describes the motion of the liquid
past a sufficiently long cylinder. In such a case the data are represented by
the translational velocity of the cylinder that, in dimensionless form, is given
by Re1 (assuming v∞‖ e1). Let us call P this particular problem. “Arbitrary
data” for P means then “arbitrary speed” of the cylinder, namely, any R > 0.
Galdi has shown that ifΩ possesses an axis of symmetry (e.g.,Ω is the exterior
of a circle) then, if there exists R > 0 such that for all R ≥ R problem P

has no solution in a very general regularity class, the homogeneous problem
obtained by setting in (XII.0.1)–(XII.0.2) v∗ ≡ f ≡ v∞ ≡ 0, and R = 1
must admit a non-zero solution, a fact that is very questionable on physical
grounds; see Section XII.6.

Another question that arises is the asymptotic structure of a field v satis-
fying (XII.0.1)–(XII.0.3), for suitable p. One may expect that v can be rep-
resented asymptotically by an expansion in “reasonable” functions of r ≡ |x|
with coefficients independent of r. However, if v∞ = 0, not every such solution
can be represented in this way, for one can exhibit examples, due to Hamel,
of solutions to (XII.0.1), (XII.0.2) with v∞ = 0 that obey (XII.0.3) and decay

5 See, however, the Notes for this Chapter for some partial results.
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more slowly than any negative power of r; see Section XII.6. If v∞ 6= 0, how-
ever, we have a result completely analogous to the three-dimensional case,
namely, if v satisfies (XII.0.1)–(XII.0.3), for a suitable pressure p, and, in
addition, f is (sufficiently smooth and) of bounded support, then v has the
same asymptotic structure of the Oseen fundamental solution. The proof of
this result, based on the papers of Galdi & Sohr (1995) and Sazonov (1999),
is due to Sazonov; see Section XII.6 and Section XII.8.

In the last section of the chapter we shall study the behavior of solutions
to (XII.0.1), (XII.0.2) in the limit of vanishing Reynolds number for the case
f = 0.6 This problem is considered in the class C of solutions whose existence
has been determined in Section XII.5. We show that the solutions from C

tend (in an appropriate sense) to solutions of the Stokes problem obtained
by formally taking R = 0 into (XII.0.1), (XII.0.2). The interesting feature of
this study is that, as expected from the linear theory (cf. Section VII.8), the
limit process is singular in that it does not preserve the condition at infinity
(XII.0.2). In fact, following the work of Galdi (1993), we show that the limit
solution satisfies (XII.0.2) if and only if v∗ verifies a suitable condition. In
the case when Ω is the exterior of a unit circle, this condition reads:

∫

∂Ω

(v∗ + v∞) = 0.

Notation. Throughout this chapter Cartesian coordinates of a point x, are
denoted either (as usual) by x1, x2, or (more simply) by x,y. When using the
latter notation, the components of a vector w are written as wx, wy. We shall
also frequently employ polar coordinates, r,θ. In such a case, the components
of w, are denoted, as customary, by wr, wθ.

XII.1 Generalized Solutions and D-Solutions

As already observed in Remark X.4.4, if Ω is a locally Lipschitz exterior do-
main in the plane with ∂Ω 6= ∅, and if the flux of v∗ through ∂Ω satisfies
(X.4.47), we may use the same method employed in Section X.4 to construct,
for all R > 0, a vector field satisfying conditions (i)-(iii) and (v) of Definition
IX.1.1, together with the energy inequality (IX.4.16). Moreover, we can asso-
ciate to v a pressure field p (cf. Lemma X.1.1) and both v and p are smooth
provided Ω and the data are smooth; cf. Theorem X.1.1. However, v and p
solve in principle only problem (XII.0.1) because, unlike the three-dimensional
case, the property (i), namely,

∫

Ω

∇v : ∇v <∞, (XII.1.1)

is not enough a priori to control the behavior at infinity of v. Thus, the limiting
condition (XII.0.2) or even the weaker condition (iv) of Definition X.1.1 need

6 This assumption is made for the sake of simplicity.
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not be satisfied. That the problem of proving the convergence at infinity of a
solution v under the sole information (XII.1.1) is far from being obvious, is
shown by the fact that there are fields w in Ω having a finite Dirichlet integral
and that become unbounded at large distances like a power of log |x|. Take,
for instance, Ω = R2 − B(0) and w(x) = (log |x|)α, 0 < α < 1/2. Therefore,
in order to prove the convergence of a solution v at infinity, the equations of
motion must play a fundamental role.

The situation becomes completely obscure in the case Ω = R2, where the
methods of Section X.4 do not even furnish existence of a vector field satisfying
(XII.0.1) for a suitable pressure p; see Remark X.4.4.

In what follows, we will make a definite distinction between a generalized
solution v to (XII.0.1), (XII.0.2) in the sense of Definition X.1.1, and a field
v satisfying only (i)-(iii) and (v) of the same definition. In this latter case,
the vector field v will be referred to as a D-solution, in spite of the fact that
the word “solution” is not the most appropriate, since v need not verify the
condition at infinity. A study on the asymptotic behavior of D-solutions is
performed in Section XII.3, where it will be shown, among other things, that,
as |x| → ∞, v(x) tends in a suitable sense to some vector v0. Whether this
vector coincides with the vector −v∞ prescribed in (iv) of Definition X.1.1
remains, however, a fundamental open question.

Nevertheless, we may wonder if, by using a different technique, one can
show existence, at least in the range of small data. As shown in Section XII.5,
this is indeed possible, provided v∞ is not zero. If v∞ is zero, the question of
existence of generalized solutions, even with small data, is open and, probably,
for “generic” data, it does not admit a positive answer; see also the Notes for
this Chapter.

XII.2 On the Uniqueness of Generalized Solutions

Maybe uniqueness of generalized solutions is a more complicated question
than existence itself. Indeed it represents a formidable problem that, for its
resolution, requires in my opinion the contribution of completely new ideas
and methods. To test the difficulty, let v1, p1 and v2, p2 be two generalized
solutions to problem (XII.0.1), (XII.0.2), which will be assumed smooth for
simplicity. Letting

u = v1 − v2 π = (p1 − p2)/R
we have

1

R∆u = u · ∇u+ v1 · ∇u+ u · ∇v1 + ∇π

∇ · u = 0



 in Ω

u = 0 at ∂Ω

lim
|x|→∞

u(x) = 0.

(XII.2.1)
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Multiply (XII.2.1)1 by u, integrate by parts over ΩR and use (XII.2.1)2 to
obtain

R−1

∫

ΩR

∇u : ∇u = −
∫

ΩR

u ·∇v1 ·u+

∫

∂BR

[u· ∂u
∂n

− 1

2
u2(u+v1)·n−πu ·n].

(XII.2.2)
Now assume that u, v1, and π behave in such a way that the surface integral
tends to zero as R → ∞. (This is not known if v∞ = 0, while, if v∞ 6= 0, it
is true for any generalized solution which satisfies some further condition; cf.
Section XII.8.) From (XII.2.2) in the limit R→ ∞ we find

R−1

∫

Ω

∇u : ∇u = −
∫

Ω

u · ∇v1 · u. (XII.2.3)

This is the classical relation, which we have used several times to show unique-
ness of generalized solutions, sometimes with the equality sign replaced by the
inequality one. However, for the case at hand, relation (XII.2.3) is not going
to produce uniqueness for small R. Actually, we would need an estimate of
the type

−
∫

Ω

u · ∇v1 · u ≤ c

∫

Ω

∇u : ∇u (XII.2.4)

for some c = c(v1, Ω) ∈ (0,∞), to conclude
∫

Ω

∇u : ∇u = 0, for R < c−1,

and hence uniqueness. However, the validity of (XII.2.4) is very unlikely,1

no matter what summability assumptions on u and v1 are made and, con-
sequently, the “traditional” method gives no information whatsoever about
uniqueness, even at small Reynolds numbers.

Nevertheless, what is certainly true is that, if R is “sufficiently” large and
the flux through the wall ∂Ω is not zero, uniqueness of generalized solutions is
lost, as can be seen by means of simple examples. To show this, let us consider
an indefinite, circular cylinder C of radius r0 immersed in a viscous liquid and
assume that the radial component of the velocity of the liquid, when evaluated
at the lateral surface of C, is a constant V. The appropriate Reynolds number
is then defined by

R = V r0/ν.

Using V and r0 as reference velocity and length, respectively, from (XII.0.1),
(XII.0.2) we obtain that the two-dimensional motions of the liquid in every
plane orthogonal to C, when referred to polar coordinates (r, θ), must obey
the following problem

1 From (II.5.7) it follows that (XII.2.4) holds if ∇v1(x) = O(|x|−2 log−2 |x|).
However, even admitting that v1 at large distances has the same behavior
as the solution of the corresponding linearized problem, we would have only
∇v1(x) = O(|x|−1); cf. Section V.3 and Section VII.6.
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R
(
vr
∂vr

∂r
+
vθ

r

∂vr

∂θ
− v2

θ

r

)
= −∂p

∂r
+∆vr −

2

r2
∂vθ

∂θ
− vr

r2

R
(
vr
∂vθ

∂r
+
vθ

r

∂vθ

∂θ
+
vθvr

r

)
= −1

r

∂p

∂θ
+∆vθ +

2

r2
∂vr

∂θ
− vθ

r2

∂vr

∂r
+
vr

r
+

1

r

∂vθ

∂θ
= 0





in Ω

v(1, θ) = v∗

lim
r→∞

v(r, θ) = −v∞
(XII.2.5)

where v = (vr , vθ), Ω is the exterior of the unit circle, v∗(θ) is prescribed and

∆ =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
.

Now, by a simple computation, we show that for any choice of γ, ω ∈ R and
R > 1, R 6= 2, problem (XII.2.5) with

v∞ = 0, v∗ = (−R, γ − ω/(R− 2)) (XII.2.6)

admits the elementary solution 2

vr = −R
r

vθ =
1

r

[
γ − ω

R− 2
r−R+2

]

p = R
∫ (

1

2

dv2
r

dr
− v2

θ

r

)
.

(XII.2.7)

The flow (XII.2.6), (XII.2.7) which was discovered by Hamel (1916, pp. 51-52)
has a simple physical explanation; cf. Preston (1950). Specifically, it represents
the motion of a liquid subject to a unit suction in the direction orthogonal to
the wall of the circular cylinder, while the cylinder rotates with the angular
velocity

γ − ω

R− 2
.

By the arbitrarity of R, γ, and ω, we may choose

ω = γ(R− 2) (XII.2.8)

and the solution (XII.2.7) specializes to

2 Notice that (XII.2.7) is not a solution of the corresponding linearized Stokes
problem, that is, (XII.2.5) with R = 0, since (XII.2.5)5 is violated.
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vr = −R
r

vθ =
ω

R− 2

1

r

[
1 − r−R+2

]

p = R
∫ (

1

2

dv2
r

dr
− v2

θ

r

)
.

(XII.2.9)

Moreover, the data are independent of γ, since with the choice (XII.2.8) and
for R > 1 and R 6= 2, conditions (XII.2.6) become

v∞ = 0, v∗ = (−R, 0). (XII.2.10)

As a consequence, we conclude that if R > 1 and R 6= 2 the fields (XII.2.9)
constitute a one-parameter family of solutions to (XII.2.5), parameterized in
ω, and corresponding to the same data (XII.2.10). Furthermore, since the
gradients of the velocity fields square summable in Ω, they are generalized
solutions.

The example just given suggests that, in the exterior two-dimensional
problem, the prescription of the velocity field alone at the boundary and at
infinity is not in general enough to secure the uniqueness of the solution, and
other extra conditions may be needed. For instance, in the class (XII.2.9)–
(XII.2.10) uniqueness is recovered if we prescribe at the boundary r = 1 the
vorticity ω = r−1∂(rvθ)/∂r.

XII.3 On the Asymptotic Behavior of D-Solutions

The aim of this section is to investigate the behavior at large distances
of D-solutions, namely, of vector fields v satisfying (XII.0.1) and condition
(XII.1.1).

Since we are interested only in the regularity at infinity, we shall suppose
that the D-solutions with which we are dealing are as smooth as required
by the formal manipulation we shall perform. Of course, to substantiate this
procedure, it is enough to assume that the data and the domain Ω have a
sufficient degree of regularity, what degree will be tacitly understood. More-
over, since the results we shall find are essentially independent of the Reynolds
number R, we shall put, for simplicity, R = 1.

We wish now to collect some notation and formulas that will be frequently
used. The scalar field

ω =
∂wx

∂y
− ∂wy

∂x

is the vorticity of a vector field w. From (XII.0.1), it follows that the vorticity
of a D-solution v verifies the equation

∆ω − v · ∇ω =
∂fx

∂y
− ∂fy

∂x
. (XII.3.1)
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Owing to the solenoidality of v, we also have

∆vx =
∂ω

∂y
, ∆vy = −∂ω

∂x
. (XII.3.2)

The following result is based on ideas of Gilbarg & Weinberger (1978, Lemma
2.3).

Lemma XII.3.1 Let v be a D-solution to (XII.0.1) with f ∈ L2(Ωρ), some
ρ > δ(Ωc). Then, ∇ω ∈ L2(Ωρ) and the following identity holds

∫

Ω

|∇ω|2 =
1

2

∫

∂Bρ

(
∂ω2

∂n
− v · nω2

)
+

∫

Ωρ

(
fy
∂ω

∂x
− fx

∂ω

∂y

)
.

Proof. Let h ∈ C1(R) be a positive function with piecewise differentiable
first derivatives and let ψR be the Sobolev “cut-off” function (II.6.1) with
exp

√
lnR > ρ. Using (XII.3.1), we show the following identity

∇ · [ψR∇h− h∇ψR − ψRhv] = ψRh
′′|∇ω|2 − h (∆ψR + v · ∇ψR)

+ h′ψR

(
∂fx

∂y
− ∂fy

∂x

)
,

(XII.3.3)

where prime means differentiation. Setting

ω∗ = max
x∈∂Bρ

|ω(x)|,

we choose

h =

{
ω2 if |ω| ≤ ω0

ω0(2|ω| − ω0) if |ω| ≥ ω0

(XII.3.4)

for ω0 ≥ ω∗. From (XII.3.3) and (XII.3.4) we easily recover

∫

Ωρ

h′′ψR|∇ω|2 =

∫

Ωρ

h(∆ψR + v · ∇ψR) + 1
2

∫

∂Bρ

(
∂ω2

∂n
− v ·nω2

)

+
∫

Ωρ

[
fy

(
∂h′ψR

∂x

)
− fy

(
∂h′ψR

∂x

)]
.

(XII.3.5)
Taking into account that

h ≤ min
{
ω2, 2ω0|ω|

}

and the properties (II.6.2), (II.6.5), and (II.6.61) of the function ψR, we find
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∣∣∣∣
∫

Ωρ

h∆ψR

∣∣∣∣ ≤
c

R2

∫

Ωρ

ω2 ≤ c

R2 |v|21,2

∣∣∣∣
∫

Ωρ

hv · ∇ψR

∣∣∣∣ ≤ 2ω0

∫

Ωρ

|ω||v · ∇ψR| ≤ 2ω0‖ω‖2,Ωρ‖v · ∇ψR‖2,Ωρ

≤ c1ω0(ln lnR)−1/2|v|1,2.
(XII.3.6)

Furthermore,
∣∣∣∣
∫

Ωρ

ψR

(
fy
∂h′

∂x
− fx

∂h′

∂y

)∣∣∣∣ ≤
1

2

∫

Ωρ

|ψRh
′′|(|∇ω|2 + |f |2) (XII.3.7)

and so, collecting (XII.3.3) and (XII.3.5)–(XII.3.6) we obtain

∫

{Ωρ;|ω|≤ω0}
ψR|∇ω|2 ≤ 1

2

∣∣∣∣∣

∫

∂Bρ

(
∂ω2

∂n
− v ·nω2

)∣∣∣∣∣

+ c2|v|1,2[|v|1,2R
−2 + ω0(ln lnR)−1/2]

+ c3

[
‖f‖2

2,Ωρ +

∫

Ωρ

|h′||∇ψR||f|
]
.

We then let R → ∞ into this relation and use the monotone convergence
criterion along with the assumption on f to deduce, for some positive constant
c4 independent of ω0, ∫

{Ωρ;|ω|≤ω0}
|∇ω|2 ≤ c4

which, by the arbitrarity of ω0, implies∇ω ∈ L2(Ωρ). Having established this,
we come back to (XII.3.5) and let R→ ∞ and then ω0 → ∞, which completes
the proof. ut

An immediate consequence of the result just shown is the following theo-
rem of the Liouville type.

Theorem XII.3.1 Let v be a D-solution to (XII.0.1) in the whole of R2

corresponding to f ≡ 0. Then v ≡ const.

Proof. From Lemma XII.3.1 it follows that ω = const. and then, from
(XII.3.2), ∆v = 0 in R2. Since v ∈ D1,2(R2), by Exercise II.11.11, we find
v ≡ const. and the proof is complete. ut

The next objective is to find a pointwise estimate on v. To this end, we
propose the following

Lemma XII.3.2 Let v and f be as in Lemma XII.3.1. Then,

v ∈ D1,q(Ωρ) for all q ∈ [2,∞).
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Proof. By (XII.3.2) and by Lemma XII.3.1 we have

∆v ∈ L2(Ωρ)

and so, from the scalar version of Theorem V.5.3 (cf. Remark V.5.3), we
deduce

v ∈ D2,2(Ωρ),

which implies

∇v ∈W 1,2(Ωρ).

The result is then a consequence of this latter property and the embedding
Theorem II.3.4.

ut

From the result just shown we obtained the desired pointwise bound on
v. Specifically, we have the following lemma.

Lemma XII.3.3 Let v and f be as in Lemma XII.3.2. Then

lim
|x|→∞

(
|v(x)|/

√
log |x|

)
= 0 uniformly.

Proof. It is an immediate consequence of Lemma XII.3.2 and Theorem II.9.1.
ut

Concerning the summability of higher-order derivatives, we can prove the
following result.

Lemma XII.3.4 Let v be as in Lemma XII.3.1. If for some ρ > δ(Ωc) and
m ≥ 0,

f ∈Wm,2(Ωρ),

then we have
D2v ∈Wm,2(Ωρ).

Proof. The result is already known from Lemma XII.3.2 if m = 0. Let us
begin to prove it for m = 1. We operate with Dk on both sides of (XII.3.1) to
obtain

∆ωk = v · ∇ωk +Dkv · ∇ω + Fk (XII.3.8)

with

ωk = Dkω

Fk = Dk

(
∂fx

∂y
− ∂fy

∂x

)
.
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Multiplying both sides of (XII.3.8) by ψRωk, with ψR chosen as in Lemma
XII.3.1, and integrating by parts over Ωρ yields
∫

Ωρ

ψR|∇ωk|2 =
1

2

∫

Ωρ

[
ω2

k(∆ψR + v · ∇ψR) + 2ψRωkDkv · ∇ω
]

+

∫

Ωρ

ψRωkFk + Bρ.

(XII.3.9)

In (XII.3.9), as in the remaining part of the proof, we denote by Bρ the
generic contribution of boundary integrals over ∂Bρ, whose explicit value is
not important to our purposes. By the properties of ψR and Lemma XII.3.3
we have

|∆ψR + v · ∇ψR| ≤ c1/R. (XII.3.10)

We also have
∣∣∣∣
∫

Ωρ

ψRωkFk

∣∣∣∣ ≤
1

2

∫

Ωρ

ψR|∇ωk|2 + c2
(
|ω|21,2 + |f |21,2

)
. (XII.3.11)

Moreover, using ∇ · v = 0, we find

ψRωkDkv · ∇ω =
1

2
Dk[ψRDkv · ∇ω2] −∇ · [ 1

2
ψRω

2D2
kv]

+ω2∇ψR ·D2
kv − 1

2
DkψRDkv · ∇ω2

−ψRωDkv · ∇ωk

and so we deduce that
∣∣∣∣
∫

Ωρ

ψRωkDkv · ∇ω
∣∣∣∣ ≤ c3|v|2,2|v|21,4 +

1

4

∫

Ωρ

ψR|∇ωk|2 + |v|21,4 + Bρ.

In view of Lemma XII.3.2, we may conclude, for a constant c4 independent of
R, that

∣∣∣∣
∫

Ωρ

ψRωkDkv · ∇ω
∣∣∣∣ ≤ c4 +

1

4

∫

Ωρ

ψR|∇ωk|2. (XII.3.12)

Replacing (XII.3.10)–(XII.3.12) in (XII.3.9) furnishes
∫

Ωρ

ψR|∇ωk|2 ≤ c5

with c5 = c5(v, f). Thus, letting R→ ∞ into this inequality, we deduce that

D2ω ∈ L2(Ωρ). (XII.3.13)

Recalling (XII.3.2) and that ∇ω ∈ L2(Ωρ), from (XII.3.13), Lemma XII.3.2,
and Remark V.5.3 we infer that
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D2v ∈W 1,2(Ωρ), (XII.3.14)

which proves the lemma in the case where m = 1. It is now easy to extend
the result to arbitrary m > 1. Actually, by (XII.3.14), Theorem II.3.4, and
Lemma XII.3.2 we have

D2v ∈ Lq(Ωρ) for all q ∈ [2,∞)

∇v ∈ L∞(Ωρ).
(XII.3.15)

Differentiating (XII.3.8) one more time we find that

∆ωsk = v · ∇ωsk +Dsv · ∇ωk +Dkv · ∇ωs +DsDkv · ∇ω + Fsk

≡ v · ∇ωsk + Fsk + Fsk

(XII.3.16)
with

ωsk = Dsωk

Fsk = DsFk.

We multiply both sides of (XII.3.16) by ψRωsk and integrate over Ωρ. Then
we treat the term ∫

Ωρ

ψRωskv · ∇ωks

as we did for the analogous term in the case where m = 1. On the other hand,
making use of (XII.3.15) we can show directly (without integration by parts)
that ∣∣∣∣

∫

Ωρ

Fskωsk

∣∣∣∣ ≤ c6,

with c6 = c6(v, f). We then conclude that

∇ωsk ∈ L2(Ωρ);

reasoning as before we obtain

D2v ∈W 2,2(Ωρ).

Then, by Theorem II.3.4, it follows that

D3v ∈ Lq(Ωρ) for all q ∈ [2,∞)

D2v ∈ L∞(Ωρ).

Iterating such a procedure as many times as needed, we then complete the
proof of the lemma. ut

We are now in a position to show a first result on the pointwise convergence
on the derivatives of v and p.
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Theorem XII.3.2 Let v be a D-solution to (XII.0.1). If for some ρ > δ(Ωc)
and some m ≥ 1

f ∈Wm,2(Ωρ),

then we have

(i) lim
|x|→∞

|Dαv(x)| = 0 uniformly, 1 ≤ |α| ≤ m.

If, in addition,
f ∈Wm+1,q(Ωρ), some q ∈ (1, 2),

we also have

(ii) lim
|x|→∞

|Dαp(x)| = 0 uniformly, 1 ≤ |α| ≤ m.

Proof. Let vα ≡ Dαv. By assumption and Lemma XII.3.4, we have

vα ∈W 2,2(Ωρ), 1 ≤ |α| ≤ m.

Thus, by the embedding Theorem II.3.4, it follows that

vα ∈W 1,r(Ωρ), for all r ∈ [2,∞),

so that (i) becomes a consequence of Theorem II.9.1. To show (ii), we observe
that, taking the divergence of both sides of (XII.0.1)1 we can deduce that

∆p = 2

(
∂vx

∂x

∂vy

∂y
− ∂vx

∂y

∂vy

∂x

)
+ ∇ · f . (XII.3.17)

By hypothesis and Lemma XII.3.2, it follows that

∆p ∈ Lq(Ωρ), (XII.3.18)

where q is specified in the statement of the theorem. Moreover, since by
(XII.0.1)

∂p

∂x
=
∂ω

∂y
− vx

∂vx

∂x
− vy

∂vx

∂y
+ fx

∂p

∂y
= −∂ω

∂x
− vx

∂vy

∂x
− vy

∂vy

∂y
+ fy

(XII.3.19)

with the help of Lemma XII.3.1 and Lemma XII.3.3, we immediately obtain

∫

Ωρ

|∇p|2
log |x| <∞ (XII.3.20)

and so, from (XII.3.18), (XII.3.20) we may assert (cf. Exercise XII.3.1)

D2p ∈ Lq(Ωρ). (XII.3.21)
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Since q < 2, we apply Theorem II.6.1 to ∇p to deduce the existence of a
constant p1 such that

∇p− p1 ∈ Ls(Ωρ), s = 2q/(2 − q),

lim
|x|→∞

∫

S2

|∇p(x)− p1| = 0.
(XII.3.22)

However, because of (XII.3.20), we must have p1 = 0, and (XII.3.22) implies

∇p ∈ Ls(Ωρ), s = 2q/(2 − q). (XII.3.23)

Operating with Dα, 1 ≤ |α| ≤ m, on both sides of (XII.3.17) and using the
results of Lemma XII.3.2 and Lemma XII.3.4, we obtain

∆p ∈Wm,q(Ωρ).

This latter property together, with (XII.3.23) and Remark V.5.3, allows us to
infer that

D2p ∈Wm,q(Ωρ). (XII.3.24)

By (XII.3.24) and the embedding Theorem II.3.4 we recover (at least)

Dαp ∈ Ls(Ωρ) ∩D1,q(Ωρ), 1 ≤ |α| ≤ m, (XII.3.25)

with s given in (XII.3.23). From (XII.3.23), (XII.3.25), and Theorem II.9.1
we then obtain the pointwise convergence (ii). The theorem is proved. ut
Exercise XII.3.1 Let p be a smooth field satisfying (XII.3.18) and (XII.3.20) for

some q ∈ (1,∞). Show that p obeys (XII.3.21). Hint: Let π = ϕp where ϕ is a

“cut-off” function that is zero in Ωρ and one in Ω2ρ. Derive the equation for π in

the whole of R
2, and use the results of Exercise II.11.9 and Exercise II.11.11.

We shall now draw attention to the behavior at infinity of v and p. We
begin to show that the pressure p has a pointwise limit at infinity. This will
be achieved through a number of intermediate results due to Gilbarg & Wein-
berger (1978, §4), which we are now going to derive. For a given (vector or
scalar) function f in Ω we denote by f = f(r) its average over the unit circle,
that is,

f =
1

2π

∫ 2π

0

f(r, θ)dθ.

Lemma XII.3.5 Let v be a D-solution to (XII.0.1). If for some ρ > δ(Ωc)

fr

r
∈ L1(Ωρ),

then there is a p0 ∈ R such that

lim
r→∞

p(r) = p0.



814 XII Two-Dimensional Flow in Exterior Domains

Proof. Multiplying (XII.3.19)1 by cos θ and (XII.3.19)2 by sin θ, adding up,
and using (0.12), we find

∂p

∂r
=

1

r

(
∂ω

∂θ
+ vx

∂vy

∂θ
− vy

∂vx

∂θ

)
+ fr . (XII.3.26)

Integrating this equation from 0 to 2π, dividing by 2π, and observing that

∫ 2π

0

vx
∂vy

∂θ
dθ =

∫ 2π

0

vy
∂vx

∂θ
dθ = 0,

we deduce that

∂p

∂r
=

1

2πr

∫ 2π

0

[
(vx − vx)

∂vy

∂θ
− (vy − vy)

∂vx

∂θ

]
dθ + f r

and so, integrating from r1 to r2, squaring, and applying the Schwarz inequal-
ity, it follows that

2π2|p(r2) − p(r1)|2 ≤
∫ r2

r1

∫ 2π

0

|v − v|2
r

drdθ

∫ r2

r1

∫ 2π

0

1

r

∣∣∣∣
∂v

∂θ

∣∣∣∣
2

drdθ

+

(∫

Ωr1,r2

∣∣∣∣
fr

r

∣∣∣∣

)2

.

(XII.3.27)
By the Wirtinger inequality (II.5.17) and Exercise II.5.12,

∫ 2π

0

|v − v|2dθ ≤
∫ 2π

0

∣∣∣∣
∂v

∂θ

∣∣∣∣
2

dθ, (XII.3.28)

and since |∂v/∂θ| ≤ r|∇v|, from (XII.3.27) we recover

2π2|p(r2) − p(r1)|2 ≤ |v|41,2,Ωr1,r2
+ ‖fr/r‖2

1,Ωr1,r2
.

The result is proved. ut

Lemma XII.3.6 Let v and f be as in Lemma XII.3.5. Then there exists a
sequence {Rk} such that

Rk ∈ (22k

, 22k+1

)

lim
k→∞

∫ 2π

0

|p(Rk, θ) − p(Rk)|2dθ = 0.

Proof. From the Wirtinger inequality (XII.3.28) applied to p and the integral
theorem of the mean, for each k ∈ N there is an Rk, as stated in the lemma,

such that (with ρk = 22k

)
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log 2

∫ 2π

0

|p(Rk, θ) − p(Rk)|2dθ =

∫ ρk+1

ρk

∫ 2π

0

|p(r, θ)− p(r)|2
r log r

dθdr

≤
∫ ρk+1

ρk

∫ 2π

0

∣∣∣∣
∂p

∂θ

∣∣∣∣
2

(r log r)−1dθdr

≤
∫

Ωρk,ρk+1

|∇p|2
log |x| .

The result then follows from this inequality and (XII.3.20).
ut

In the next lemma we shall prove that p converges strongly to some p0 ∈ R
in L2(S1). To this end, we need a particular representation of p−p in suitable
regions. Let {Rk} be the sequence determined in the previous lemma and let
Akmbe the annulus

Akm =
{
x ∈ R2 : Rk < |x| < Rm

}
, k < m.

It is well known that Green’s function (of the first kind) for the Laplace
operator in the domain Akm is given by

G(r, θ; ρ, ϕ) =

∞∑

s=1

(rs −R2s
k /r

s)(ρs −R2s
m/ρ

s)

2πs(R2s
m − R2s

k )
cos (s(θ − ϕ))

− log(r/Rm) log(Rk/ρ)

2π log(Rk/Rm)
≡ G1 +G2, r < ρ,

(XII.3.29)

and with r and ρ interchanged if r > ρ, cf. Weinberger (1965, p.140, Prob-
lem 2 with answer on p.417). (The notation (r, θ; ρ, ϕ) means the pair (x; y)
expressed in polar coordinates.) Setting

Π = Π(ρ, θ) ≡ p(r, θ) − p(r),

and observing that for all r ∈ Akm

∫ 2π

0

G2(r)∆Π(r, θ)dθ =

∫ 2π

0

∂G2(r)

∂r
Π(r, θ)dθ = 0,

from (III.1.33) we deduce the following representation for Π in Akm

Π(r, θ) =

∫ Rm

Rk

ρ

∫ 2π

0

G1(r, θ; ρ, ϕ)∆Π(ρ, ϕ)dρdϕ

+

∫ 2π

0

∂G1(r, θ;Rm, ϕ)

∂ρ
Π(Rm, ϕ)Rmdϕ

−
∫ 2π

0

∂G1(r, θ;Rk, ϕ)

∂ρ
Π(Rk, ϕ)Rkdϕ.

(XII.3.30)

Formula (XII.3.30) allows us to prove the following.
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Lemma XII.3.7 Let v, f , and p0 be as in Lemma XII.3.5. Assume, further,
that for some ρ > δ(Ωc)

f ∈ L2(Ωρ), ∇ · f ∈ L1(Ωρ).

Then

lim
r→∞

∫ 2π

0

|p(r, θ)− p0|2 = 0.

Proof. Squaring both sides of (XII.3.30) and integrating over θ from 0 to 2π,
we obtain

1

3

∫ 2π

0

Π2(r, θ)dθ ≤ I1 + I2 + I3,

where

I1 =

∫ Rm

Rk

dρ1

∫ Rm

Rk

dρ2

∫ 2π

0

dϕ1

∫ 2π

0

dϕ2{∆Π(ρ1, ϕ1)∆Π(ρ2, ϕ2)

×[

∫ 2π

0

G1(r, θ; ρ1, ϕ1)G1(r, θ; ρ2, ϕ2)dθ]}

I2 = 2π

∫ 2π

0

dθ

{∫ 2π

0

∣∣∣∣
∂G1(r, θ;Rm, ϕ)

∂ρ

∣∣∣∣
2

R2
mdϕ

}
·
∫ 2π

0

|Π(Rm, ϕ)|2dϕ

I3 = 2π

∫ 2π

0

dθ

{∫ 2π

0

∣∣∣∣
∂G1(r, θ;Rk, ϕ)

∂ρ

∣∣∣∣
2

R2
kdϕ

}
·
∫ 2π

0

|Π(Rk, ϕ)|2dϕ.

(XII.3.31)
By using the following orthogonality conditions holding for all s, s′ ∈ N−{0},

∫ 2π

0

cos(sθ) cos(s′θ)dθ =

∫ 2π

0

sin(sθ) sin(s′θ)dθ = πδss′

∫ 2π

0

sin(sθ) cos(s′θ)dθ = 0

from (XII.3.29) we find

∫ 2π

0

G1(r, θ; ρ1, ϕ1)G1(r, θ; ρ2, ϕ2)dθ

=

∞∑

s=1

(rs − R2s
k /r

s)2(ρs
1 −R2s

m/ρ
s
1)(ρ

s
2 −R2s

m/ρ
s
2)

4πs2(R2s
m − R3s

k )2
cos[s(ϕ1 − ϕ2)],

(XII.3.32)
when r < ρ1, r < ρ2, and with similar expression otherwise. By a straightfor-
ward calculation one shows that the right-hand side of (XII.3.32) attains its
maximum at ρ1 = ρ2 = r = (RmRk)1/2 and ϕ1 = ϕ2; therefore
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∣∣∣∣
∫ 2π

0

G1(r, θ; ρ1, ϕ1)G1(r, θ; ρ2, ϕ2)dθ

∣∣∣∣ ≤
∞∑

s=1

(Rs
m −Rs

k)2

4πs2(Rs
m +Rs

k)2

≤ 1

4π

∞∑

s=1

s−2 ≡ c1.

Inserting this information into (XII.3.31)1 yields

I1 ≤ c1

(∫

Akm

|∆Π |
)2

. (XII.3.33)

In addition, since

∂G1

∂ρ

∣∣∣∣
ρ=Rm

=

∞∑

s=1

(rs −R2s
k /r

s)Rs−1
m

π(R2s
m −R2s

k )
cos[s(θ − ϕ)],

recalling that Rk ∈ (22k

, 22k+1

) it follows that, for Rk < r ≤ Rm−2,

∫ 2π

0

∣∣∣∣
∂G1(r, θ;Rm, ϕ)

∂ρ

∣∣∣∣
2

R2
mdϕ =

∞∑

s=1

(rs −R2s
k /r

s)2R2s
m

π(R2s
m −R2s

k )2

≤
∞∑

s=1

(Rm−2/Rm)2s

π[1 − (Rk/Rm)2s]2

≤
π

∞∑

s=1

2−2ms

π[1 − (Rk/Rm)2]2
≤ c2.

(XII.3.34)

Likewise, we show that if Rk+2 ≤ r < Rm,

∫ 2π

0

∣∣∣∣
∂G1(r, θ;Rk, ϕ)

∂ρ

∣∣∣∣
2

R2
kdϕ ≤ c3. (XII.3.35)

Using (XII.3.34) and (XII.3.35) in (XII.3.31)2 and (XII.3.31)3, respectively,
and taking into account (XII.3.33), we conclude for all r ∈ [Rk+2, Rm−2],
m ≥ k + 5,

1

3

∫ 2π

0

Π2(r, θ)dθ ≤ c1

(∫

Akm

|∆Π |
)2

+ 2πc2

∫ 2π

0

Π2(Rm, θ)dθ

+2πc3
∫ π

0
Π2(Rk, θ)dθ.

(XII.3.36)

Now, by (XII.3.17) and assumption,

∆Π ∈ L1(Ωρ), (XII.3.37)

and, therefore, the lemma follows from (XII.3.37) and Lemma XII.3.5 and
Lemma XII.3.6 by letting m and k to infinity in (XII.3.36). ut
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We are now in a position to establish the pointwise convergence of the
pressure at infinity.

Theorem XII.3.3 Let v be a D-solution to (XII.0.1). Then, if for some ρ >
δ(Ωc)

fr

r
∈ L1(Ωρ), f ∈ L2(Ωρ), ∇ · f ∈ L1(Ωρ),

there is a p0 ∈ R such that

lim
|x|→∞

p(x) = p0 uniformly.

Proof. We indicate by p1(x) the difference p(x) − p0 where p0 is defined in
Lemma XII.3.5. Clearly, v, p1 is still a solution to (XII.0.1) and, in particular,
p1 verifies (XII.3.26). Let x = (2R, θ). Denoting by (r′, θ′) a polar coordinate
system with the origin at x, from (XII.3.26) we have, after integration over r′

and θ′,

p1(x) = p1(r
′) +

1

2π

∫ r′

0

fr(ρ)dρ

+
1

2π

∫ r′

0

∫ 2π

0

1

ρ

{
[vx(ρ, θ′) − vx(ρ)]

∂vy(ρ, θ′)

∂θ′

−[vy(ρ, θ′) − vy(ρ)]
∂vx(ρ, θ′)

∂θ′

}
dρdθ′,

(XII.3.38)

where the average is now meant with respect to the angle θ′. From the
Wirtinger inequality (XII.3.28) and the Schwarz inequality, it follows for
r′ ≤ R that

∣∣∣∣
∫ r′

0

1

ρ

{∫ 2π

0

[vx(ρ, θ′) −vx(ρ)]
∂vy(ρ, θ′)

∂θ′
dθ′
}
dρ

∣∣∣∣

≤
∫ R

0

∫ 2π

0

|∇v(ρ, θ′)|2ρdρdθ′ ≤ |v|21,2,ΩR,3R
.

(XII.3.39)
Likewise, one shows

∣∣∣∣∣

∫ r′

0

1

ρ

{∫ 2π

0

[vy(ρ, θ′) − vy(ρ)]
∂vx(ρ, θ′)

∂θ′
dθ′
}
dρ

∣∣∣∣∣ ≤ |v|21,2,ΩR,3R
. (XII.3.40)

Moreover, ∣∣∣∣∣

∫ r′

0

f r(ρ)dρ

∣∣∣∣∣ ≤ ‖fr/r‖1,ΩR,3R (XII.3.41)

and so, by (XII.3.38)–(XII.3.41), we recover
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2π|p1(x)| ≤ 2π|p1(r′)| + 2|v|21,2,ΩR,3R
+ ‖fr/r‖1,ΩR,3R.

Multiplying both sides of this latter inequality by r′ and integrating over
r′ ∈ [0, R] and θ′ ∈ [0, 2π) we find that

2π|p1(x)| ≤
4π

R2

∫ R

0

∫ 2π

0

|p1(r
′, θ′)r′dr′dθ′ + 2|v|21,2,ΩR,3R

+ ‖fr/r‖1,ΩR,3R

≤ 4π

R2

∫

ΩR,3R

|p1|+ 2|v|21,2,ΩR,3R
+ ‖fr/r‖1,ΩR,3R

≤ 16π max
R≤r≤3R

∫ 2π

0

|p1(r, θ)|dθ+ 2|v|21,2,ΩR,3R
+ ‖fr/r‖1,ΩR,3R.

Passing to the limit R → ∞ in this estimate and using Lemma XII.3.7, we
then complete the proof of the theorem.

ut

It remains to investigate the behavior at infinity of the velocity field v. In
this respect, Lemma XII.3.3 ensures that v cannot grow too fast at infinity.
Under the simplifying assumption f = 0 (or, more generally, f of bounded
support in Ω) we shall show that, in fact, v is uniformly bounded. To reach
the objective, we notice that, defining the total head pressure field Φ:

Φ := p+
1

2
|v|2, (XII.3.42)

by a simple calculation based on (XII.0.1) with f = 0 one shows

∆Φ− v · ∇Φ = ω2. (XII.3.43)

Consider (XII.3.43) in Ωρ1,ρ2 , for arbitrary ρ1, ρ2 with ρ2 > ρ1 > ρ0 and some
fixed ρ0 > δ(Ωc). Since v ∈ L∞

loc(Ω
ρ), we may apply to it the classical maxi-

mum principle of Hopf (1952) and Olěinik (1952) (cf. Protter & Weinberger
1967, pp. 61-64) to obtain that Φ cannot attain a maximum in Ωρ1,ρ2 unless
it is a constant. It also follows that

max
θ∈[0,2π)

Φ(r, θ)

has no maximum in Ωρ1,ρ2 and hence it must be monotonous in Ωρ, for
sufficiently large ρ. Thus, we deduce that

lim
r→∞

max
θ∈[0,2π)

[
p(r, θ) +

1

2
|v(r, θ)|2

]
= A,

implying, by Theorem XII.3.3,1 that

1 We can assume, without loss, that p0 = 0.
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lim
r→∞

max
θ∈[0,2π)

|v(r, θ)| =
√

2A ≡ L. (XII.3.44)

However, we don’t know if L is finite or infinite. As a consequence, the max-
imum principle is not enough to obtain the boundedness of v, and we need
more information about the function Φ. In the particular case v∗ ≡ f ≡ 0 this
is achieved through the following profound result, due to C. J. Amick (1986,
Theorem 4(a); 1988, Theorem 11), which we shall state without proof.

Lemma XII.3.8 Let v be a D-solution to (XII.0.1) corresponding to v∗ ≡
f ≡ 0. Then there exists a continuous, non-intersecting curve

γ : t ∈ [0, 1) → γ(t) ∈ Ω
ρ

such that

(i) γ(0) ∈ ∂Ωρ;
(ii) |γ(t)| → ∞ as t→ 1;

in addition, the function Φ is monotonically decreasing along γ, namely,

Φ(γ(t)) < Φ(γ(s)), for all s, t ∈ [0, 1), s <t. (XII.3.45)

With this result in hand, we can show the following one (cf. Amick 1986,
Theorem 4(b) and 1988, Theorem 12).

Lemma XII.3.9 Let v and f be as in Lemma XII.3.8. Then

v ∈ L∞(Ωρ),

and there is an L ∈ [0,∞) such that

lim
|x|→∞

max
θ∈[0,2π)

|v(x)| = L uniformly. (XII.3.46)

Proof. Since p(x) tends to zero for large |x|, by (XII.3.45) we deduce that

|v(γ(t))| ≤ c, for all t ∈ [0, 1), (XII.3.47)

with c independent of t. Since v ∈ D1,2(Ω), we have

∫ 2k+1

2k

∫ 2π

0

1

r

∣∣∣∣
∂v

∂θ

∣∣∣∣
2

dθdr → 0, as k → ∞,

implying ∫ 2π

0

∣∣∣∣
∂v(rk, θ)

∂θ

∣∣∣∣
2

dθ → 0, as k → ∞, (XII.3.48)
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for some sequence {rk} with rk ∈ (2k, 2k+1). Since, by properties (iii) and (ii),
γ is connected and extends to infinity, for any k ∈ N we can find at least one
tk ∈ [0, 1) such that

γ(tk) = (rk, θk),

for some θk ∈ [0, 2π). Thus, in view of (XII.3.47), it follows that

|v(rk, θk)| ≤ c, for all k ∈ N. (XII.3.49)

From the identity

v(rk, θ) = v(rk, θk) −
∫ θk

θ

∂v(rk, τ )

∂τ
dτ,

(XII.3.48), and (XII.3.49) we find

max
x∈∂Brk

|v(x)| ≤ c1, for all k ∈ N, (XII.3.50)

with c1 independent of k. We next apply the maximum principle to (XII.3.43)
in the annulus Ωrk ,rk+1 to find

max
x∈Ωrk,rk+1

Φ(x) ≡ max
x∈Ωrk,rk+1

{
p(x) +

1

2
|v(x)|2

}
≤ max

x∈∂Brk
∪∂Brk+1

Φ(x).

(XII.3.51)
However, by (XII.3.50) and Theorem XII.3.3 we deduce

max
x∈∂Brk

∪∂Brk+1

Φ(x) ≤ c2, for all k ∈ N

so that, again Theorem XII.3.3 and (XII.3.51) deliver

max
x∈Ωrk,rk+1

|v(x)|2 ≤ c3, for all k ∈ N,

with a constant c3 independent of k. Therefore, v ∈ L∞(Ωρ). Since the second
part of the lemma is an immediate consequence of the first and (XII.3.44),
the proof is complete. ut

We shall next investigate if the velocity approaches some vector v0 at
infinity. We have the following two possibilities:

(i) the number L in (XII.3.44) is zero;
(ii) the number L in (XII.3.44) belongs to (0,∞].2

In case (i) we have
lim

|x|→∞
v(x) = 0, uniformly,

and we deduce at once that v0 = 0. On the other hand, if L > 0, using the
ideas of Gilbarg & Weinberger (1978, §5), we proceed as follows. First of all,
we need two preliminary lemmas.

2 Of course, by Lemma XII.3.9, if v∗ ≡ f ≡ 0 it follows that L <∞.
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Lemma XII.3.10 Let v and f be as in Lemma XII.3.8. Then

(i) lim
r→∞

∫ 2π

0

|v(r, θ) − v(r)|2dθ = 0,

(ii) lim
r→∞

|v(r)| = L,

where L is defined in (XII.3.44).

Proof. By the Wirtinger inequality (XII.3.28) and the Cauchy inequality we
have

∣∣∣∣
d

dr

∫ 2π

0

|v(r, θ) − v(r)|2dθ
∣∣∣∣ =

∣∣∣∣2
∫ 2π

0

(v − v) · ∂v
∂r
dθ

∣∣∣∣

≤
∫ 2π

0

[
r|∇v|2 +

|v − v|2
r2

r

]
dθ

≤ c

∫ 2π

0

r|∇v|2dθ;

therefore,

lim
r→∞

∫ 2π

0

|v(r, θ) − v(r)|2 = ` ∈ [0,∞).

However, again by (XII.3.28), we have

∫ ∞

ρ

1

r

(∫ 2π

0

|v(r, θ) − v(r)|2dθ
)
dr <∞,

which implies ` = 0, and (i) is proved. To show (ii), we observe that (XII.3.46)
implies that, given any sequence {rk} ⊂ R+ with rk → ∞, there is a corre-
sponding sequence {θk} ⊂ [0, 2π) such that

lim
rk→∞

|v(rk, θk)| = L. (XII.3.52)

However, as in the proof of Lemma XII.3.8, we show the existence of a sequence
rk ∈ (2k, 2k+1) such that (XII.3.48) holds. Since

|v(rk, θ) − v(rk, θk)|2 ≤ 2π

∫ 2π

0

∣∣∣∣
∂v(rk, τ )

∂τ

∣∣∣∣
2

dτ,

by (XII.3.52) and the triangle inequality we find that

lim
rk→∞

|v(rk, θ)| = L, uniformly in θ. (XII.3.53)

Moreover, since

∫ 2π

0

(v(rk, θ) − v(rk))dθ = 0 for all k ∈ N,
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it follows that

|v(rk, θ) − v(rk)|2 ≤ 2π

∫ 2π

0

∣∣∣∣
∂v(rk, τ )

∂τ

∣∣∣∣
2

dτ

which together with (XII.3.48) and (XII.3.53) allows us to conclude that

lim
k→∞

|v(rk)| = L. (XII.3.54)

Now, for r ∈ (rk, rk+1) we have

|v(r) − v(rk)|2 =

∣∣∣∣
1

2π

∫ r

rk

∫ 2π

0

∂v

∂r
drdθ

∣∣∣∣
2

≤ 1

(2π)2

∫ rk+1

rk

∫ 2π

0

1

r
drdθ

∫

Ωrk

|∇v|2 ≤ 1

2π
log 2|v|21,2,Ωrk ,

and so, in view of (XII.3.54), the property (ii) follows by letting k → ∞ in
this inequality.

ut

Lemma XII.3.11 Let v be as in Lemma XII.3.2 and assume that the number
L in (XII.3.44) is finite. Then, if for some ρ > δ(Ωc)

r1/2f ∈ L2(Ωρ),

it follows that
r1/2∇ω ∈ L2(Ωρ).

Proof. From the identity (XII.3.5) with h ≡ ω2 and ψR replaced by ηR = rψR,
we deduce that

∫

Ωρ

ηR|∇ω|2 =
1

2

∫

Ωρ

ω2(∆ηR + v · ∇ηR) +
1

2

∫

∂Bρ

(
∂ω2

∂n
− v · nω2

)

+

∫

Ωρ

[
fy

(
∂ωηR

∂x

)
− fx

(
∂ωηR

∂y

)]
.

(XII.3.55)
By the properties (II.7.2) of ψR and Lemma XII.3.3, it follows that

|∇ηR|+ |v · ∇ηR| + |∆ηR| ≤ c (XII.3.56)

for some constant c independent of R. Furthermore,
∣∣∣∣
∫

Ωρ

[
fy

(
∂ωηR

∂x

)
− fx

(
∂ωηR

∂y

)]∣∣∣∣ ≤
1

2

∫

Ωρ

(
ηR|∇ω|2 + c1ω

2 + c2r|f|2
)

(XII.3.57)
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so that by (XII.3.56) and (XII.3.57), identity (XII.3.55) gives

∫

Ωρ

ηR|∇ω|2 ≤ C,

for a constant C independent of R. Letting R → ∞ and using the monotone
convergence theorem completes the proof. ut

We are now in a position to prove the following result on the behavior of
a D-solution at infinity.

Theorem XII.3.4 Let v be a D-solution to (XII.0.1) with f of bounded
support in Ω and let L ∈ [0,∞] be the number defined in (XII.3.44). Then,
if L < ∞ (this certainly happens whenever v∗ ≡ f ≡ 0), there is a v0 ∈ R2

such that

lim
r→∞

∫ 2π

0

|v(r, θ) − v0|2dθ = 0. (XII.3.58)

Furthermore, if v0 = 0, we have

lim
|x|→∞

v(x) = 0 uniformly. (XII.3.59)

Finally, if L = ∞,

lim
r→∞

∫ 2π

0

|v(r, θ)|2dθ = ∞. (XII.3.60)

Proof. Let ψ = ψ(r) be the argument of v(r), that is,

vx(r) = |v(r)| cosψ(r)

vy(r) = |v(r)| sinψ(r)
ψ ∈ [0, 2π). (XII.3.61)

Clearly, we have

ψ′(r) =
vxv

′
y − v′xvy

|v|2 (XII.3.62)

where the prime means differentiation. Multiplying (XII.3.19)1 by sin θ,
(XII.3.19)2 by cos θ, and adding up, for sufficiently large |x| we find that

∂ω

∂r
+ vx

∂vy

∂r
− vy

∂vx

∂r
+

1

r

∂p

∂θ
= 0. (XII.3.63)

We take the average over θ of both sides of (XII.3.63) to deduce that

∂ω

∂r
+ vxv

′
y − v′xvy+

1

2π

∫ 2π

0

{
[vx(r, θ) − vx(r)]

∂vy(r, θ)

∂r

−[vy(r, θ) − vy(r)]
∂vx(r, θ)

∂r

}
dθ = 0.

(XII.3.64)
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From Lemma XII.3.10 we know that |v(r)| converges to L ≥ 0. Assume, for a
while, that L > 0. Then we may find ρ > δ(Ωc) such that

|v(r)| > L/2, for all r > ρ. (XII.3.65)

We then divide both sides of (XII.3.64) by |v(r)|2 and integrate over θ ∈ [0, 2π)
and over r ∈ (r1, r2), r2 > r1 > ρ, to obtain

ψ(r2) − ψ(r1) = − 1

2π

∫ r2

r1

∫ 2π

0

1

|v(r)|2
[
∂ω

∂r
+ (vx − vx)

∂vy

∂r

−(vy − vy)
∂vx

∂r

]
drdθ.

Using (XII.3.65) and the Schwarz and the Wirtinger inequalities we see that

|ψ(r2) − ψ(r1)| ≤
2

πL2 [‖r1/2ω‖2,Ωr1,r2
+ |v|1,2,Ωr1,r2

]

× [|v|1,2,Ωr1,r2
+

(∫ r2

r1

∫ 2π

0

dr

r2

)1/2

]

and, therefore, letting r1, r2 → ∞ and recalling Lemma XII.3.11, we obtain

lim
r→∞

ψ(r) = ψ0 (XII.3.66)

for some ψ0 ∈ [0, 2π]. For L ≥ 0 we define the vector

v0 = (L cosψ0, L sinψ0).

If L ∈ (0,∞), from Lemma XII.3.10(ii), (XII.3.61), and (XII.3.66) we conclude
that

lim
r→∞

v(r) = v0,

which along with Lemma XII.3.10(i) implies (XII.3.58). If L = 0, we have
v0 = 0 and (XII.3.59) follows from (XII.3.44). Finally, if L = ∞, (XII.3.60)
follows directly from Lemma XII.3.10. Notice that, in view of Lemma XII.3.9,
this circumstance can not occur if v∗ ≡ f ≡ 0. The theorem is proved.

Remark XII.3.1 The vector v0 determined in Theorem XII.3.4 need not be
the vector v∞ prescribed in (XII.0.2). The problem of the coincidence of v0

and v∞ therefore remains open. Furthermore, if v0 = 0 and v∗ ≡ f ≡ 0,
we can conclude that v ≡ 0 only in the trivial case Ω = R2; see Theorem
XII.3.1). �

Remark XII.3.2 Another question that is open is to ascertain if, in the case
v0 6= 0, (XII.3.58) holds pointwise:

lim
|x|→∞

v(x) = v0. (XII.3.67)
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C.J. Amick has shown the validity of (XII.3.67) in the class of symmetric
flows. Precisely, let us call a solution v, p to (XII.0.1) symmetric around the
x-axis, or, more simply, symmetric, if p and vx are even in y and vy is odd

in y. It can be shown that if the x-axis is of symmetry for
◦
Ωc, and v∗ and

f possess the same symmetry as v does, under suitable regularity conditions
on the data, the class of symmetric D-solutions is not empty. If, in particular,
v∗ ≡ f ≡ 0, then such solutions satisfy (XII.3.67) uniformly; cf. Amick (1988,
Theorem 27). If the flow is not symmetric, the best one can say, so far, is that
(XII.3.67) holds in suitable large sectors. Namely, taking v0 = (1, 0), for all
ε ∈ (0, π/2), we have

lim
r→∞

max
|θ|∈[ε,π−ε]

|v(r, θ) − v0| = 0;

provided that v∗ ≡ f ≡ 0; cf. Amick (1988, Theorem 19). In any case, one
can show that the modulus of v tends pointwise to the modulus of v0; see
Amick (1988, Theorem 21).3 �

XII.4 Pointwise Asymptotic Decay of the Vorticity and
its Relevant Consequences

Theorem XII.3.2, Theorem XII.3.3, and Theorem XII.3.4 are all silent about
the rate of decay of v and p and their derivatives at large distances. As a
matter of fact, in Section XII.8 we shall show that, if v0 6= 0 and (XII.3.67)
holds uniformly, then the fields v and p present the same asymptotic structure
of the Oseen fundamental tensor.1 The key point in assessing this property
is a detailed study of the pointwise rate of decay of the vorticity, ω, in the
general case and, in particular, when v0 6= 0. This investigation will lead to the
important consequence that, if v0 6= 0, then every D-solution corresponding
to v0 and to f of bounded support must satisfy the following property

∫

Ωρ

|v − v0|2
|x|1+ε <∞ , for all ε > 0 ,

for sufficiently large ρ. Observe that a priori a D-solution only satisfies the
weaker property ∫

Ωρ

|v − v0|2
|x|2 ln |x|2 <∞ ;

3 In Galdi (2004, Theorem 3.4) it is stated that the pointwise limit (XII.3.67) also
holds for non-symmetric flow. However, the validity of this result is based on
Lemma 3.10 in the same paper, whose proof is not correct as presented.

1 Notice that, in contrast, if v0 = 0, the example furnished in (XII.2.7) excludes, in
general, for the corresponding velocity field, a uniform decay in a negative power
of |x|.



XII.4 Pointwise Asymptotic Decay of the Vorticity and its Relevant Consequences 827

see (II.6.14).
With this in mind, we begin to establish a simple consequence of the two-

sided maximum principle, namely, that, if v is bounded (as it happens when
v∗ ≡ f ≡ 0), then

lim
|x|→∞

|x|3/4|ω(x)| = 0, uniformly; (XII.4.1)

(cf. Gilbarg & Weinberger 1978, Theorem 5). Actually, using Lemma XII.3.11,
we find that

∫ 2k+1

2k

1

r

∫ 2π

0

(
r2ω2 + 2r3/2

∣∣∣∣ω
∂ω

∂θ

∣∣∣∣
)
drdθ <∞, for all k ∈ N,

which implies the existence of rk ∈ (2k, 2k+1) such that

∫ 2π

0

(
r2kω

2(rk, θ) + 2r
3/2
k

∣∣∣∣ω(rk, θ)
∂ω(rk, θ)

∂θ

∣∣∣∣
)
dθ→ 0, as k → ∞. (XII.4.2)

However,

ω2(rk, θ) ≤
1

2π

∫ 2π

0

ω2(rk, ϕ)dϕ+
1

π

∫ 2π

0

|ω(rk, ϕ)|
∣∣∣∣
∂ω(rk, ϕ)

∂ϕ

∣∣∣∣dϕ

which, by (XII.4.2), implies

r
3/2
k |ω2(rk, θ)| → 0, as k → ∞, uniformly in θ.

The decay estimate (XII.4.1) then follows by applying the two-sided maximum
principle (Protter & Weinberger 1967, pp. 61-64) to (XII.3.1) with f ≡ 0 in
the annuli Ak = {x ∈ Ω : rk < |x| < rk+1}.

A first consequence of (XII.4.1) is the following pointwise decay for the
gradient of v:

lim
|x|→∞

|x|3/4

log |x||∇v(x)| = 0, uniformly . (XII.4.3)

We shall not prove this property here, since it is irrelevant to our further
purposes, and refer instead the interested reader to Gilbarg & Weinberger
(1978, Theorem 7) for a proof.2

Once (XII.4.1) has been established, it is easy to show, by means of local
elliptic estimates, that the derivatives of arbitrary order (≥ 1) of ω decay, at
least, like in (XII.4.1); see Exercise XII.4.1. Moreover, by combining (XII.4.1)
and (XII.4.3), an analogous property can be proved also for v and p; see
Exercise XII.4.1.

2 Actually, in this paper a weaker decay for ∇v is given, due to the circumstance
that the authors do not assume v to be bounded but, rather, that it satisfies the
growth condition of Lemma XII.3.3.
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Exercise XII.4.1 Let v be a D-solution to (XII.0.1) corresponding to f ≡ v∗ ≡ 0.
Show that, as |x| → ∞,

|Dαω(x)| = o(|x|−3/4) , all |α| ≥ 1 . (XII.4.4)

Hint: Combining (XII.3.1), Theorem XII.3.2 and the interior estimates for the
Laplace operator (see Exercise IV.4.4) we have, for sufficiently large |x|,

|ω|`+2,B1(x) ≤ c ‖ω‖2,B2(x) all ` ≥ −1 , (XII.4.5)

with c depending on ` and v.
Moreover, show that

|Dα
v(x)| = o(|x|−3/4 log |x|) , all |α| ≥ 1 . (XII.4.6)

Hint: Equation (XII.0.1)1, with f ≡ 0, can be rewritten as follows

∆v = ω × v + ∇Φ ,

where v = (v1, v2), ω := ωe3, and Φ is defined in (XII.3.42), so that

∆(Dkv) = (Dkω) × v + ω × (Dkv) + ∇(DkΦ) .

From Theorem IV.4.1, Theorem IV.4.4, Theorem XII.3.2, and Remark IV.4.1 it
follows that

‖Dkv‖m+2,2,B2 (x) ≤ c (‖ω‖m+1,2,B2 (x) + ‖Dkv‖2,B2(x)) .

The desired estimate is a consequence of this latter, and of (XII.4.4), (XII.4.3).
Finally, denoted by p = p(x) the pressure field associated to v, show that

|Dαp(x)| = o(|x|−3/4 log |x|) , all |α| ≥ 1 . (XII.4.7)

Our next objective is to show that if (XII.3.67) holds uniformly, for some
v0 6= 0, then the vorticity ω and all its derivatives decay exponentially fast
outside any sector that excludes the line {x ∈ R2 : x = λv0, λ > 0}. To
this end, assume, without loss of generality, v0 = −e1, and, with the origin

of coordinates in
◦
Ωc, set

ΩR0,σ :=
{
x =

(
x1 = r cos θ, x2 = r sin θ

)
∈ Ω : r ≥ R0, |π − θ| ≥ σ

}
,

where σ > 0 and R0 > δ(Ωc).
We have the following result, due, basically, to Amick (1988, §2.5).

Theorem XII.4.1 Let v be a D-solution to (XII.0.1) with f of bounded
support. Furthermore, suppose that v satisfies (XII.3.67) uniformly, with v0 =
−e1. Then, for any σ > 0 there exist positive numbers R0, C and γ depending
on σ and v, such that3

3 A much more detailed pointwise decay estimate for the vorticity will be provided
in Theorem XII.8.4.
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|ω(x)| ≤ C exp(−γ|x|) , for all x ∈ ΩR0,σ . (XII.4.8)

Therefore, from (XII.4.5), (XII.4.8) and the embedding Theorem II.3.4 it fol-
lows, in addition,

|Dαω(x)| ≤ C1 exp(−γ|x|) , for all |α| ≥ 0 and all x ∈ ΩR0,σ , (XII.4.9)

where, this time, C1 depends also on α.

Proof. In order to prove (XII.4.8), it is sufficient to prove its validity in the
following three sector-like regions:

S1 = {x ∈ Ω : |x2| ≤ κ1x1, x1 > M1}
S2 = {x ∈ Ω : |x1| ≤ κ2x2, x2 > M2}
S3 = {x ∈ Ω : |x1| ≤ κ3(−x2), x2 < −M3}

with κi > 0 arbitrarily large, and Mi > 0 sufficiently large, i = 1, 2, 3. We
begin with the region S1. Consider (XII.3.1) in the domain Ωρ, with ρ so large
that supp (f) ⊂ Bρ. Then, multiplying both sides of (XII.3.1) in Ωρ by ω, we
find

(ω2)x1x1 + (ω2)x2x2 = (v1ω
2)x1 + (v1ω

2)x2 + 2|∆ω|2 , (XII.4.10)

where we used the notation (·)ξ := ∂(·)/∂ξ, (·)ξη := ∂2(·)/∂ξ∂η. Integrating
the previous relation first over x1 between x1(> M1) and ∞, then over x2 in
R, and taking into account Theorem XII.3.2 and Lemma XII.3.9, we get

− d

dx1

∫

R

ω2(x1, x2)dx2 = −
∫

R

v1ω
2(x1, x2)dx2 + 2

∫ ∞

x1

∫

R

|∆ω|2

≥ −
∫

R

v1ω
2(x1, x2)dx2 .

In view of the assumptions on v, we can find M1 > 0 sufficiently large, such
that |v1(x)+1| < 1/2, for all x1 > M1 and all x2 ∈ R. Therefore, the preceding
inequality furnishes

d

dx1

∫

R

ω2(x1, x2)dx2 ≤ −1
2

∫

R

ω2(x1, x2)dx2 , for all x1 > M1 ,

which, in turn, delivers
∫

R

ω2(x1, x2)dx2 ≤ c1 exp(−x1/2) for all x1 > M1 ,

where c1 = c1(ω). Integrating this latter over the interval (x1 − 2, x1 + 2), we
deduce, in particular,

‖ω‖2,B2(x) ≤ c2 exp(−x1/2) for all x1 > M1 ,
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from which, observing that for x ∈ S1 we have |x| ≤ x1

√
κ2

1 + 1, the validity of
(XII.4.8) in S1 follows with the help of (XII.4.5) and the embedding Theorem
II.3.4. We shall next prove (XII.4.8) in the region S2. We begin to observe that,
in view of the assumption on v, for any ε > 0 we can find M2 = M2(ε) > 0
such that

|v(x) + e1| < ε for all x1 ∈ R, x2 >M2 . (XII.4.11)

For β > 0, we introduce the new variables

ξ1 = x2 + βx1 , ξ2 = x1 ,

so that (XII.4.10) furnishes, in particular,

(1 + β2)(ω2)ξ1ξ1 + (ω2)ξ2ξ2 + 2β(ω2)ξ1ξ2 ≥ [(βv1 + v2)ω
2 ]ξ1 + (v2ω

2)ξ2 .

Integrating both sides of this relation first over ξ1 between ξ1(> M2) and
∞, then over ξ2 in R, and taking into account Theorem XII.3.2 and Lemma
XII.3.9, we obtain

−(1 + β2)
d

dξ1

∫

R

ω2( ξ1, ξ2)dξ2 ≥ −
∫

R

(βv1 + v2)ω
2(ξ1, ξ2)dξ2

= β

∫

R

ω2(ξ1, ξ2)dξ2 −
∫

R

[β(v1 + 1) + v2]ω
2(ξ1, ξ2)dξ2 .

Using (XII.4.11), we deduce

− d

dξ1

∫

R

ω2(ξ1, ξ2)dξ2 ≥ β − (β + 1)ε

1 + β2

∫

R

ω2(ξ1, ξ2)dξ2 , for all ξ1 > M2 ,

which, upon integration, allows us to conclude

∫

R

ω2(ξ1, ξ2)dξ2 ≤ c2 exp(−γξ1) , γ :=
β − (β + 1)ε

1 + β2
, ξ1 > M2 (XII.4.12)

where c2 = c2(ω) > 0 and γ > 0 for sufficiently small ε. Fix x = (x1, x2) with
x2 > M2, and, for δ > 0 small enough, set

Cδ(x) = {y ∈ R2; |y1 − x1| < δ, |y2 − x2| < δ} .

From (XII.4.12) we thus have, with ξ1 = x2 + βx1,

‖ω‖2,Bδ(x) ≤ ‖ω‖2,Cδ(x) ≤
∫ ξ1+(1+β)δ

ξ1−(1+β)δ

∫ x1+δ

x1−δ

ω2(η1, η2)dη1dη2

≤ c3 exp(−γξ1) = c3 exp[−γ(x2 + βx1)] , x2 > M2 , x1 ∈ R.
(XII.4.13)

We now observe that x2 + βx1 ≥ x2 − β|x1|, and since in S2 it is |x1| ≤ κ2x2,
with the choice β = 1/(2κ2), we infer
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|x| ≤ x2

√
1 + κ2

2 ≤ 2(x2 + βx1)
√

1 + κ2
2 , x ∈ S2 .

Coupling this information with (XII.4.13), (XII.4.5) and the embedding The-
orem II.3.4, we conclude the validity of the decay estimate in (XII.4.8) for all
x ∈ S2. The proof that the same estimate holds in S3 is completely analo-
gous to that just furnished for S2 and it is left to the reader. The theorem is
therefore completely proved. ut

An immediate and important consequence of Theorem XII.4.1 is described
in the following.

Corollary XII.4.1 Let the assumptions of Theorem XII.4.1 be satisfied.
Then, the function Φ̃ := Φ + 1

2 , with Φ defined in (XII.3.42) satisfies the
following pointwise decay

|Φ̃(x)| ≤ C1 exp(−C2|x|) for all x ∈ ΩR0,σ ,

with Ci, i = 1, 2, independent of x.

Proof. By assumption and by Theorem XII.3.3 (with p0 = 0, for simplicity
and without loss of generality) we have

lim
|x|→∞

Φ̃(x) = 0 , uniformly . (XII.4.14)

Moreover, by an elementary calculation that uses (XII.0.1)1 and (XII.3.2) we
find in ΩR0

∂Φ̃

∂x1
=

∂ω

∂x2
− v2ω

∂Φ̃

∂x2
= − ∂ω

∂x1
+ v1ω .

(XII.4.15)

Consequently, from Theorem XII.4.1 we obtain

|∇Φ̃(x)| ≤ c1 exp(−c2|x|) , for all x ∈ ΩR0,σ , (XII.4.16)

with ci, i = 1, 2, independent of x. Now, for every x = (θ, r), and y = (θ, r1)
in ΩR0,σ , with r1 > r, we have

|Φ̃(x)| ≤ |Φ̃(y)| +
∫ r1

r

∣∣∣∣∣
∂Φ̃

∂ρ

∣∣∣∣∣dρ ,

so that, by (XII.4.16), we find

|Φ̃(x)| ≤ |Φ̃(y)| + c3 exp(−c2|x|) , for all x ∈ ΩR0,σ .

The result then follows by letting |y| → ∞ in this relation and employing
(XII.4.14).

ut
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Exercise XII.4.2 Let the assumptions of Corollary XII.4.1 hold. Show that

|Dα eΦ(x)| ≤ c1 exp(−c2|x|) for all α| ≥ 0, x ∈ ΩR0,σ ,

with c1 and c2 independent of x. Hint: Use (XII.4.15) along with Theorem XII.3.2

and Theorem XII.4.1.

We shall next furnish for the function Φ̃ a weighted-L2 property holding
in the whole of ΩR0 . Precisely, we have the following result due to Sazonov
(1999, §4).

Theorem XII.4.2 Let the assumption of Corollary XII.4.1 hold. Then, for
all ε ∈ (0, 1),4 ∫

ΩR0

|Φ̃|2
|x|1+ε

<∞ . (XII.4.17)

Proof. We begin to observe that, in order to show (XII.4.17), it is enough to
show the following

∫

ΩR0∩{x1<a}

|Φ̃|2
|x1|1+ε

<∞ , some a < 0 . (XII.4.18)

In fact, since for all x in the sector-like region Sa := {x ∈ Ω : |x2| ≤
c|x1|, x1 < a} it is |x| ≤ |x1|

√
1 + c2, inequality (XII.4.18) implies

∫

ΩR0∩Sa

|Φ̃|2
|x|1+ε

<∞ ,

which, in turn, in view of Corollary XII.4.1, secures (XII.4.17). In order to
prove (XII.4.18), we begin to consider the sequence of problems (N ∈ N,
N ≥ N0 > R0)

∆Φ̃N − v · ∇Φ̃N = ω2 in Ω(N) := ΩR0,N

Φ̃N

∣∣
∂ΩR0

= Φ̃
∣∣
∂ΩR0

, Φ̃N

∣∣
∂BN

= 0
(XII.4.19)

It is not hard to show that, for each N ≥ N0, problem (XII.4.19) has a unique

solution Φ̃ ∈ C∞(Ω(N)); see Exercise XII.4.3. Setting φN := Φ̃ − Φ̃N , from
(XII.3.43) and (XII.4.19) it follows that

∆φN − v · ∇φN = 0 in Ω(N)

φN

∣∣
∂ΩR0

= 0 , φN

∣∣
∂BN

= Φ̃
(XII.4.20)

4 Actually, the result holds for all ε > 0, but it will be used (and useful) only for ε
in the stated range.
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Therefore, applying the two-sided maximum principle (Protter & Weinberger
1967, pp. 61-64) we find

m1 := min
{

min
∂BN

Φ̃, 0
}
≤ ζN (x) ≤ max

{
max
∂BN

Φ̃, 0
}

:= m2 , x ∈ Ω(N) .

(XII.4.21)
In view of (XII.4.14), for any ε > 0, we can find N = N(ε) ∈ N such that
(XII.4.21) holds with m1 ≥ −ε, m2 ≤ ε, and all N ≥ N . Consequently,

extending Φ̃N to zero outside BN , and continuing to denote by Φ̃N such
extension, we conclude

‖Φ̃N‖∞,ΩR0 ≤M ,

lim
N→∞

Φ̃N(x) = Φ̃(x) , uniformly in x ∈ ΩR0 ,
(XII.4.22)

where M > 0 is independent of N . We next write Φ̃N = ζN +ψΦ̃, where ψ is a
smooth “cut-off” function that is 1 for |x| ≤ R0 + δ and is 0 for |x| ≥ R0 +2δ,

with δ sufficiently small. Taking into account that Φ̃ satisfies (XII.3.42), we
may rewrite (XII.4.19) as follows

∆ζN − v · ∇ζN = g in Ω(N)

ζN
∣∣
∂ΩR0

= ζN
∣∣
∂BN

= 0
, (XII.4.23)

where g is a smooth function of compact support independent of N . If we
multiply through both sides of (XII.4.23)1 by ζN , integrate by parts over
Ω(N), use (XII.4.23)2, and recall that ∇ · v = 0, we at once obtain

|ζN |21,2 = −(g, ζN ) ,

so that, by (XII.4.22)1 and by the fact that g ∈ L1(ΩR0), we deduce

|ζN |1,2 ≤ C , (XII.4.24)

with C independent of N . Next, for a < 0, let

f(x) =





1

ln(−a) if x1 ≥ a

1

ln(−x1)
if x1 ≤ a

.

Multiplying through both sides of (XII.4.23)1 by f ζN , integrating by parts
over Ω(N), and taking into account (XII.4.23)2 and ∇ · v = 0, we easily find

‖f∇ζN‖2
2 + 1

2

∫

Ω(N)∩{x1<a}

|ζN |2
|x1| ln2 |x1|

≤ (ζN∇ζN ,∇f) + (g, ζN )

+1
2

∫

Ω(N)∩{x1<a}

|ζN |2|v + e1|
|x1| ln2 |x1|

.

(XII.4.25)
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By the Cauchy inequality (II.2.5), the properties of f and (XII.4.24) we have

(ζN∇ζN ,∇f) ≤ 1
8

∫

Ω(N)∩{x1<a}

|ζN |2
|x1| ln2 |x1|

+ c1|ζN |21,2

≤ 1
8

∫

Ω(N)∩{x1<a}

|ζN |2
|x1| ln2 |x1|

+ c2 ,

with c2 independent of N . Moreover, in view of (XII.4.22)1,

(g, ζN ) ≤ c3

with c2 independent of N . Finally, by virtue of the assumptions made on v,
we can choose |a| (and, consequently, N) so large as

1
2

∫

Ω(N)∩{x1<a}

|ζN |2|v+ e1|
|x1| ln2 |x1|

≤ 1
8

∫

Ω(N)∩{x1<a}

|ζN |2|
|x1| ln2 |x1|

.

Employing all the above information into (XII.4.25), we recover

∫

Ω(N)∩{x1<a}

|ζN |2
|x1| ln2 |x1|

≤ c4

where c4 does not depend on N . Recalling the definition of ζN , this latter
inequality delivers at once

∫

Ω(N)∩{x1<a}

|Φ̃N |2
|x1| ln2 |x1|

≤ c5 (XII.4.26)

with c5 independent of N . Fix r > R0 and take N > r. Then (XII.4.26)
implies ∫

ΩR0,r∩{x1<a}

|Φ̃N |2
|x1| ln2 |x1|

≤ c5

so that, letting N → ∞ in this relation and using (XII.4.22), by the Lebesgue
dominated convergence theorem we deduce

∫

ΩR0,r∩{x1<a}

|Φ̃|2
|x1| ln2 |x1|

≤ c5 ,

which, in turn, by the arbitrariness of r (and the regularity of Φ̃) implies
(XII.4.18). The proof of the theorem is thus completed. ut

Exercise XII.4.3 Show that, for each N ≥ N0, problem (XII.4.19) has one and

only one solution eΦN ∈ C∞(Ω(N)). Hint: Use Galerkin method along with the local

regularity estimates for the Poisson equation given in Exercise IV.4.4 and Exercise

IV.5.3.
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The weighted-L2 summability property of Φ̃ that we have just proved
allows us to deduce an analogous property for v + e1. Notice that, being v a
D-solution, we have (cf. (II.6.14))

∫

Ωρ

|v + e1|2
|x|2 ln |x|2 <∞ ,

where ρ > δ(Ωc). However, we are able to obtain a much stronger summability
property, as shown in the following theorem due to Sazonov (1999, Lemma
4).

Theorem XII.4.3 Let the assumption of Theorem XII.4.1 hold. Then, for
all ε ∈ (0, 1),5 ∫

ΩR0

|v+ e1|2
|x|1+ε

<∞ . (XII.4.27)

Proof. The proof is based on a suitable representation of the velocity field v in
terms of the total head pressure Φ̃. This latter is more simply (and elegantly)
obtained if we rewrite the linear momentum equation (XII.0.1)1 in terms of the
complex variable formalism. Let z = x1 + i x2, u(z) := v1(x1, x2)+ i v2(x1, x2)
(i :=

√
−1), and define the operators

∂

∂z
:= 1

2

(
∂

∂x1
+

1

i

∂

∂x2

)
,

∂

∂z
:= 1

2

(
∂

∂x1
− 1

i

∂

∂x2

)
.

Since

4
∂2u

∂z∂z
= ∆v1 + i∆v2

2
∂Φ̃

∂z
=

∂Φ̃

∂x1
+ i

∂Φ̃

∂x2

∂

∂z
(u2 − 1) = v2ω − i v1ω ,

from (XII.4.15) and (XII.3.2) we deduce that (XII.0.1)1 can be rewritten, in
ΩR0 , as follows

∂

∂z

[
4
∂u

∂z
− (u2 − 1)

]
= 2

∂Φ̃

∂z
. (XII.4.28)

Pick y = (y1, y2) ∈ ΩR0 , and set ζ = y1 + i y2. We recall the following
generalized Cauchy integral formula

w(ζ) = − 1

2πi

∫

∂A

w(z)

z − ζ
dz − 1

π

∫

A

∂w

∂z

1

z − ζ
dx1dx2 , (XII.4.29)

where A is a bounded subdomain of ΩR0 , ζ ∈ A, and w ∈ C1(A). The proof of
(XII.4.29) is based on the (conjugate form of the) well-known Stokes formula:

5 See footnote 4.
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∫

∂A

w(z) dz = 2i

∫

A

∂w

∂z
dx1dx2 (XII.4.30)

and on the fact that 1/z is analytic for z 6= 0; see, e.g., Hörmander (1966,
Theorem I.2.1) for details. Choosing in (XII.4.29) w = 4∂u/∂z− (u2 − 1) and
A = ΩR0,r , we obtain

1

π

∫

ΩR0,r

∂

∂z

[
4
∂u

∂z
− (u2 − 1)

]
(z)

1

z − ζ
dx1dx2 = (u2(ζ) − 1) − 4

∂u

∂z
(ζ)

− 1

2πi

∫

∂ΩR0,r

4∂u/∂z(z) − (u2 − 1)(z)

z − ζ
dz .

(XII.4.31)
Moreover, using (XII.4.30) with A = ΩR0,r,η := ΩR0,r − Bη(y) and w =

Φ̃(z)/(z − ζ), we find

1

π

∫

ΩR0 ,r,η

(∂Φ̃/∂z)(z)

z − ζ
dx1dx2 =

1

π

∫

ΩR0,r,η

Φ̃(z)

(z − ζ)2
dx1dx2

+
1

2πi

∫

∂ΩR0,r

Φ̃(z)

z − ζ
dz +

1

2πi

∫

|ζ−z|=η

Φ̃(z)

z − ζ
dz

(XII.4.32)
We would like to let η → 0 in this latter relation. We begin to notice that,
setting ξ = ξ1 + iξ2, it is

1

(ξ)2
=

2

|ξ|2
{
ξ22 − ξ21
|ξ|2 − 2i

ξ1ξ2

|ξ|2
}
, (XII.4.33)

which shows that 1/(ξ)2 is a singular kernel, and, therefore, by Theorem
II.11.4, we have

lim
η→0

∫

ΩR0,r,η

Φ̃(z)

(z − ζ)2
dx1dx2 =

∫

ΩR0,r

Φ̃(z)

(z − ζ)2
dx1dx2

in the P.V. sense, for a.a. ζ ∈ ΩR0,r .
(XII.4.34)

Furthermore, with the parameterization z = ζ + η eiθ, θ ∈ [0, 2π], we find, in

view of the continuity of Φ̃,

∫

|ζ−z|=η

Φ̃(z)

z − ζ
dz =

∫ 2π

0

Φ̃(ζ + η eiθ) e2iθdθ = o(1) as η → 0 .

From this equation, (XII.4.32) and (XII.4.33) we thus deduce, for a.a. ζ ∈
ΩR0,r,
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1

π

∫

ΩR0,r

(∂Φ̃/∂z)(z)

z − ζ
dx1dx2 =

1

π

∫

ΩR0,r

Φ̃(z)

(z − ζ)2
dx1dx2

+
1

2πi

∫

∂ΩR0,r

Φ̃(z)

z − ζ
dz ,

(XII.4.35)

where the first integral on the right-hand side of (XII.4.34) is understood in
the P.V. sense. Combining (XII.4.28), (XII.4.31) and (XII.4.35) we infer

u2(ζ) − 1 = 4
∂u

∂z
(ζ) +

2

π

∫

ΩR0,r

Φ̃(z)

(z − ζ)2
dx1dx2

+
1

2πi

∫

∂ΩR0,r

4∂u/∂z(z) − (u2 − 1)(z)

z − ζ
dz +

1

πi

∫

∂ΩR0,r

Φ̃(z)

z − ζ
dz

(XII.4.36)
We finally let r → ∞ in (XII.4.36). Employing the properties

v(x) + e1 , ∇v(x) , Φ̃(x) → 0 , uniformly as |x| → ∞

and taking into account that 1/|z − ζ | = O(|z|−1) as |z| → ∞ for each fixed
ζ ∈ ΩR0 , by letting r → ∞ into (XII.4.36) we at once reach the desired
representation:

u2(ζ) − 1 =
2

π

∫

ΩR0

Φ̃(z)

(z − ζ)2
dx1dx2 + 4

∂u

∂z
(ζ)

+
1

2πi

∫

∂ΩR0

4∂u/∂z(z) − (u2 − 1)(z)

z − ζ
dz +

1

πi

∫

∂ΩR0

Φ̃(z)

z − ζ
dz ,

:=
2

π

∫

ΩR0

Φ̃(z)

(z − ζ)2
dx1dx2 + F (u)(ζ)

(XII.4.37)
for a.a. ζ ∈ ΩR0 and where, again, the integral on the right-hand side of
the last line in (XII.4.37) is interpreted in a suitable sense that will be made
clear next. In fact, in view of the properties (XII.4.33) of the kernel 1/(ξ)2,
Theorem XII.4.2 and Stein’s Theorem II.11.5, the integral transform

S (Φ̃) :=

∫

ΩR0

Φ̃(z)

(z − ζ)2
dx1dx2

is well-defined (in the P.V. sense) and, for all ε ∈ (0, 1), it satisfies

|x|(1+ε)/2
S (Φ̃) ∈ L2(ΩR0 ) . (XII.4.38)

Since, for each fixed z ∈ ∂ΩR0 , 1/|z − ζ| = O(|ζ|−1) as |ζ| → ∞, and since v
is a D-solution, we easily establish
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|x|(1+ε)/2
F (u) ∈ L2(ΩR) , R > R0 , (XII.4.39)

so that, by (XII.4.37)–(XII.4.39), we conclude

|x|(1+ε)/2 (u2 − 1) ∈ L2(ΩR) .

Let us denote by L2
w(ΩR) the (weighted) space of functions g with the property

|x|(1+ε)/2 g ∈ L2(ΩR). Observing that u2−1 = v2
1−1−v2

2 +2i v1v2, we deduce:
(i) −v2 + (v1 + 1)v2 = g, and (ii) v2

1 − 1− v2
2 = h, with g, h ∈ L2

w(ΩR). Thus,
recalling that: (iii) v1(x) + 1 = o(1) as |x| → ∞, from (i) it follows, for
sufficiently large |x|,

|v2(x)| ≤ |g(x)| + |v1(x) + 1| |v2(x)| ≤ |g(x)|+ 1
2
|v2(x)| ,

that is, v2 ∈ L2
w(ΩR0).6 Replacing this information back in (ii), we find v2

1 −
1 = f , with f ∈ L2

w(ΩR). Since 2(v1 + 1) = (v1 + 1)(v1 + 1) − v2
1 + 1, by (iii)

we recover, for sufficiently large |x|,

2|v1(x) + 1| ≤ |f(x)| + |v1(x) + 1| |v1(x) + 1| ≤ |f(x)| + |v1(x) + 1|

that is v1 + 1 ∈ L2
w(ΩR0 ), and the proof of the theorem is completed.

ut

XII.5 Existence and Uniqueness of Solutions for Small
Data and v∞ 6= 0

Objective of this section is to show that the two-dimensional exterior problem
admits a unique solution –at least when the velocity v∞ is not zero and the
data are sufficiently small.

The leading idea is the same we used in similar circumstances, namely,
to couple suitably the Lq-estimates derived for the linearized approximation
together with a contraction mapping argument. It is important to empha-
size, however, that this procedure is not going to work unless v∞ 6= 0 and,
even in this situation, its success is by no means evident a priori, as we are
about to illustrate. To begin, let us take first v∞ = 0. As we know from the
linearized Stokes theory of Section V.3 and Section V.5, in such a case only
two types of existence results with corresponding Lq-estimates are available:
those of Theorem V.4.6 and those of Theorem V.5.1. Now, by those of Theo-
rem V.4.6 we are not able to control the behavior of the solution at infinity,
while the results of Theorem V.5.1 require for their validity a (necessary and
sufficient) compatibility condition on the data, and we cannot use them to
prove existence unless we show that such a condition is also necessary in the
nonlinear case. We may then conclude that the Lq theory developed for the

6 Recall that v is C∞(ΩR0).
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Stokes problem, as it stands, cannot be used to obtain existence for the full
nonlinear Navier–Stokes problem. In fact, existence of solutions of the exterior
two-dimensional Navier–Stokes problem corresponding to v∞ = 0 remains an
open question, even for small data.1

On the other hand, the Lq theory for the linearized Oseen problem de-
rived in Theorem VII.5.1 does not suffer from these drawbacks and can be
used, at least in principle, to show existence to the nonlinear problem when
v∞ 6= 0, v∞ = e1, say. However, employing these estimates, together with a
contraction-mapping technique, we have to face other problems. Actually, we
wish to find a fixed point (in a subset X of an appropriate Banach space) of
the mapping

L : u ∈ X → L(u) = v ∈ X

where v solves the problem

∆v + R ∂v

∂x1
= Ru · ∇u+ ∇π + f

∇ · v = 0





in Ω

v = v∗ + e1 at ∂Ω

lim
|x|→∞

v(x) = 0.

(XII.5.1)

In the limit of small data, i.e., R → 0, as is usually requested by a contraction
argument, there will be a competition between the linear term

R ∂v

∂x1
(XII.5.2)

and the nonlinear one

Ru · ∇u. (XII.5.3)

If, in the range of vanishing R, the contribution of the former were negligible
with respect to that of the latter, it would be very unlikely to prove existence,
because the linear part in (XII.5.1) would then approach the Stokes system
for which, as we noticed, the procedure is not working. Fortunately, what
happens is that (XII.5.2) prevails on (XII.5.3) and the machinery produces
nonlinear existence. Nevertheless, the proof of this fact is by no means trivial
and, in fact, it relies on the following two crucial circumstances:

(a) The validity of suitable, new a priori estimates for solutions to the
linearized Oseen problem where, unlike those derived in Theorem VII.7.1 (cf.
(VII.7.29)), the constant c entering the estimates themselves does not depend
on R ∈ (0, 1]; cf. Lemma XII.5.1. Because of the Stokes paradox, the new
estimates have to be weaker than (VII.7.29); cf. Remark VII.7.2.

1 See the Notes for this Chapter regarding some existence results when v∞ = 0.
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(b) The component v2 of the velocity field v in the solution to the Oseen
problem, presents no “wake region” and, as a consequence, it has at large
distances a behavior “better” than that exhibited by the component v1.

For simplicity, we shall restrict ourselves to the case when the domain
Ω is exterior to a single “body” (the closure of a bounded, simply-connected
domain), leaving to the reader the task of considering more general situations.
In addition, in order to render the notation less heavy, throughout this section
the Reynolds number R will be denoted by λ.

We next introduce some other notations that will be frequently used in the
sequel. For q ∈ (1, 6/5], we indicate by Cq the class of those vector functions
u = (u1, u2) defined in Ω such that:

u2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω)

u ∈ L3q/(3−2q)(Ω) ∩D2,q(Ω).

For u ∈ Cq and λ > 0, we put

〈u〉λ,q ≡ λ(‖u2‖2q/(2−q) + |u2|1,q) + λ2/3‖u‖3q/(3−2q) + λ1/3|u|1,3q/(3−q)

(XII.5.4)
and, as usual, we write 〈u〉λ,q,Ω when we need to specify the domain where
the norm (XII.5.4) is defined.

Remark XII.5.1 For u ∈ Cq, it holds that

lim
|x|→∞

u(x) = 0 uniformly.

Actually, by Theorem II.6.1, u ∈ D1,2q/(2−q)(Ω). Since 2q/(2 − q) > 2 and
u ∈ L3q/(3−2q)(Ω), the property follows from Theorem II.9.1. If u has only
finite norm (XII.5.4), then

lim
|x|→∞

∫ 2π

0

|u(|x|, θ)|dθ = 0. (XII.5.5)

In fact, if q ∈ (1, 6/5) then u ∈ D1,r(Ω) for some r < 2 and so from Lemma
II.6.3 and the condition u ∈ L3q/(3−2q)(Ω) we find (XII.5.5). If q = 6/5, we
have u ∈ D1,2(Ω) ∩ L6(Ω), and we proceed as follows. Set

f(r) =

∫ 2π

0

|u(r, θ)|2dθ, r = |x|.

Then there exists a sequence {rn} ⊂ R+ accumulating at infinity such that

lim
rn→∞

f(rn) = 0.

For all sufficiently large r we may find n ∈ N such that
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f(r) = f(rn) + 2

∫ r

rn

∫ 2π

0

u(ρ, θ) · ∂u(ρ, θ)

∂ρ
dρdθ.

Applying the Hölder inequality on the right-hand side of this relation, it fol-
lows that

|f(r)| ≤ |f(rn)| + 2‖u‖6,Ωrn
|u|1,2,Ωrn

(∫ ∞

rn

ρ−2dρ

)1/3

,

which again proves (XII.5.5). �

We shall now give some preparatory results. Our first objective is to prove
a fundamental estimate for the linearized Oseen problem corresponding to
zero body force.

Lemma XII.5.1 Let Ω ⊂ R2 be an exterior domain of class C2 and let

u∗ ∈W 2−1/q,q(∂Ω), 1 < q ≤ 6/5.

Then, for any λ > 0 there is a unique solution to the Oseen problem

∆u+ λ
∂u

∂x1
= ∇π

∇ · u = 0





in Ω

u = u∗ at ∂Ω

lim
|x|→∞

u(x) = 0

(XII.5.6)

such that u ∈ Cq , π ∈ D1,q(Ω). Moreover, if q ∈ (1, 6/5) there is a λ0 > 0
such that for all λ ∈ (0, λ0]

〈u〉λ,q ≤ cλ2(1−1/q)| logλ|−1‖u∗‖2−1/q,q(∂Ω) (XII.5.7)

with c = c(Ω, q, λ0).

Proof. From Theorem VII.5.1 we know that there is a unique solution to
problem (XII.5.6) with 〈u〉λ,q finite and such that

u ∈ D2,q(ΩR), π ∈ D1,q(ΩR). (XII.5.8)

On the other hand, from Theorem IV.4.1 and Theorem IV.5.1 we obtain

‖u‖2,q,ΩR + ‖π‖1,q,ΩR ≤ c1
(
λ‖D1u‖q,Ω2R + ‖u‖1,q,Ω2R

+‖π‖q,Ω2R + ‖u∗‖2−1/q,q(∂Ω)

)
.

(XII.5.9)

Since, by Theorem VII.5.1 and (VII.7.14), u and π satisfy for all R > δ(Ωc)

‖u‖2,ΩR + ‖π‖2,ΩR + |u|1,2 ≤ c2(1 + λ)‖u∗‖1/2,2(∂Ω), (XII.5.10)
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from (XII.5.9), (XII.5.10) it follows that

‖u‖2,q,ΩR + ‖π‖1,q,ΩR ≤ c3(‖u∗‖2−1/q,q(∂Ω) + ‖u∗‖1/2,2(∂Ω)). (XII.5.11)

However, the trace Theorem II.4.4 implies that

‖u∗‖1/2,2(∂Ω) ≤ c‖u∗‖2−1/q,q(∂Ω)

and from (XII.5.11) we conclude that

‖u‖2,q,ΩR + ‖π‖1,q,ΩR ≤ c4‖u∗‖2−1/q,q(∂Ω) (XII.5.12)

with c4 independent of λ ∈ (0, B], arbitrary B > 0. Thus, in particular,
(XII.5.9) and (XII.5.13) tell us

u ∈ Cq, π ∈ D1,q(Ω),

completing the proof of the first part of the lemma. We now pass to the proof
of (XII.5.7). Without loss of generality, we assume that Ωc ⊂ B1/2, with the

origin of coordinates taken in
◦
Ωc. From the embedding Theorem II.3.4,

‖u2‖2q/(2−q),Ω1
+ |u2|1,q,Ω1 + ‖u‖3q/(3−2q),Ω1

+ |u|1,3q/(3−q),Ω1
≤ c5|u|2,q,Ω1

(XII.5.13)
and so, since 2(1 − 1/q) < 1/3 for q ∈ (1, 6/5), from (XII.5.12), (XII.5.13),
and all λ ∈ (0, 1] we find for some c6 independent of λ

〈u〉λ,q,Ω1 ≤ c6λ
2(1−1/q)+ε‖u∗‖2−1/q,q(∂Ω) (XII.5.14)

where ε = 1/3 − 2(1 − 1/q) > 0. Let us denote by E(x; λ) the Oseen tensor
corresponding to the Reynolds number λ. From Exercise VII.3.5 we know that
E obeys the homogeneity condition

E(x; λ) = E(λx; 1). (XII.5.15)

Moreover, from the representation Theorem VII.6.2 we deduce for j = 1, 2
that

uj = −T (u) ·Ej(x; λ)

+

∫

∂Ω

u∗(z) · T [Ej(x − z; λ), ej(x− z)] · n(z)dσz

− λ

∫

∂Ω

u∗(z) ·Ej(x− z; λ)n1(z)dσz

−
∫

∂Ω

[Ej(x− z; λ) −Ej(x; λ)] · T (u, π) · n(z)dσz

(XII.5.16)

with
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T (u) =

∫

∂Ω

T (u, π) · n

and
E1 = (E11, E12)

E2 = (E12, E22).
(XII.5.17)

Recalling that Ωc ⊂ B1/2 from (XII.5.16) and the mean value theorem applied
to Dα(Ej(x− z; λ) −Ej(x; λ)), α = 0, 1, we derive for all x ∈ Ω1

|uj(x)| ≤ |T (u)||Ej(x; λ)|
+D{λ sup

z∈Ω1/2

|Ej(x− z; λ)|

+ sup
z∈Ω1/2

[|e(x− z)| + |∇xEj(x− z; λ)|]}

|∇uj(x)| ≤ |T (u)||∇Ej(x; λ)|+ D{λ sup
z∈Ω1/2

|∇xEj(x− z; λ)|

+ sup
z∈Ω1/2

[|∇xe(x− z)| + |D2
xEj(x− z; λ)|]}

(XII.5.18)

where
D = ‖∇u‖1,∂Ω + ‖π‖1,∂Ω + ‖u∗‖1,∂Ω. (XII.5.19)

Taking into account (XII.5.15), from (XII.5.18)1 we find, with y = λx,

|uj(x)| ≤ |T (u)||Ej(y; 1)| + λD{ sup
z∈Ω1/2

[|Ej(y − λz; 1)|

+ |e(y − λz)| + |∇yEj(y − λz; 1)|]}

≤ |T (u)||Ej(y; 1)| + λD{ sup
|z|≤λ/2

[|Ej(y − z; 1)|

+ |e(y − z)| + |∇yEj(y − z; 1)|]}
and so

‖uj‖t
t,Ω1 ≤ 2tλ−2{|T (u)|t‖Ej(y; 1)‖t

t,R2

+ λtDt

∫

|y|≥λ

{sup|z|≤λ/2 [|Ej(y − z; 1)|

+ |e(y − z)| + |∇yEj(y − z; 1)|]}tdy}.
(XII.5.20)

To estimate the integral on the right-hand side of (XII.5.20) we observe that
∫

|y|≥λ

sup
|z|≤λ/2

|Ej(y − z; 1)|tdy ≤
∫

2≥|y|≥λ

sup
|z|≤λ/2

|Ej(y − z; 1)|tdy

+

∫

|y|≥2

sup
|z|≤1/2

|Ej(y − z; 1)|tdy.

(XII.5.21)
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From (VII.3.36) we have

|E(y − z; 1)| ≤ c(| log |y − z|| + 1), |y|, |z| ≤ 2

and since

|z| ≤ λ/2, |y| ≥ λ implies |y− z| ≥ 1
2 |y|, (XII.5.22)

it follows that
∫

2≥|y|≥λ

sup
|z|≤λ/2

|Ej(y − z; 1)|tdy ≤ c7 (XII.5.23)

with c7 independent of λ ∈ (0, 1]. Furthermore, since by the mean value
theorem,

|(Eij(y − z) − Eij(y))| = |zl
∂Eij(y − βz)

∂zl
|, β ∈ (0, 1),

from (VII.3.37) and (VII.3.45) it follows for all |y| sufficiently large (≥ |y0|,
say) that

∫

|y|≥|y0|
sup

|z|≤1/2
|Ej(y − z; 1)|tdy ≤ c

∫

|y|≥|y0|
(|Ej(y; 1)|t + |y|−trj )dy

where

rj =

{
1 if j = 1

3/2 if j = 2.

From the local regularity of E, and from (VII.3.42), (VII.3.43) we conclude
that ∫

|y|≥2

sup
|z|≤1/2

|Ej(y − z; 1)|tdy ≤ c8 (XII.5.24)

with c8 independent of λ ∈ (0, 1] for all values of t such that

Ej(y; 1) ∈ Lt(|y| ≥ |y0|). (XII.5.25)

Collecting (XII.5.21), (XII.5.23), and (XII.5.24), it follows that
∫

|y|≥λ

sup
|z|≤λ/2

|Ej(y − z; 1)|tdy ≤ c9 (XII.5.26)

with c9 independent of λ ∈ (0, 1] and for all values of t for which (XII.5.25)
holds. In addition, from (VII.3.17) and (XII.5.22) we infer for all t > 2 that

∫

|y|≥λ

sup
|z|≤λ/2

|e(y − z; 1)|tdy ≤ c10

{∫

2≥|y|≥λ

|y|−tdy

+

∫

|y|≥2

sup
|z|≤1/2

|y− z|−tdy
}

≤ c11(λ
2−t + 1).

(XII.5.27)
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Likewise,

∫

|y|≥λ

sup
|z|≤λ/2

|∇yEj(y − z; 1)|tdy ≤
∫

2≥|y|≥λ

sup
|z|≤λ/2

|∇yEj(y − z; 1)|tdy+

∫

|y|≥2

sup
|z|≤1/2

|∇yEj(y − z; 1)|tdy.

(XII.5.28)
From (VII.3.36) we have

|∇E(y − z; 1)| ≤ c12|y − z|−1, |y|, |z| ≤ 2

and so, by (XII.5.22), it follows that

∫

2≥|y|≥λ

sup
|z|≤λ/2

|∇yEj(y − z; 1)|tdy ≤ c13

∫

2≥|y|≥λ

|y|−tdy ≤ c14(1 + λ2−t).

(XII.5.29)
Also, employing the asymptotic properties of ∇Ej(y; 1) (cf. (VII.3.46) and
(VII.3.47)) together with the following ones on the second derivatives,

|D2Ej(y)| ≤ c|y|−sj

where2

sj =

{
3/2 for j = 1

2 for j = 2

we are able to establish, exactly as we did for (XII.5.24), the following esti-
mate: ∫

|y|≥2

sup
|z|≤1/2

|∇yEj(x − z; 1)|tdy ≤ c15 (XII.5.30)

for those values of t such that

∇Ej(y; 1) ∈ Lt(|y| ≥ |y0|). (XII.5.31)

Thus, from (XII.5.28)–(XII.5.30) we recover

∫

|y|≥λ

sup
|z|≤λ/2

|∇yEj(y − z; 1)|tdy ≤ c16(1 + λ2−t), (XII.5.32)

with c16 independent of λ and t satisfying (XII.5.31). From (XII.5.20),
(XII.5.26), (XII.5.27), and (XII.5.32) we find

‖uj‖t,Ω1 ≤ c17

(
λ−2/t|T (u))| + (1 + λ1−2/t)D

)

2 These bounds on D2Ej are obtained directly by a formal differentiation of
(VII.3.37).
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for all λ ∈ (0, 1], for all t for which (XII.5.25) and (XII.5.31) hold, and with
a constant c17 independent of λ. Since t > 2, from this latter inequality, we
deduce that

‖uj‖t,Ω1 ≤ 2c17

(
λ−2/t|T (u))| +D

)
. (XII.5.33)

Estimate (XII.5.33) furnishes, in particular,

λ‖u2‖2q/(2−q),Ω1 + λ2/3‖u‖3q/(3−2q),Ω1 ≤ c
(
λ2(1−1/q)|T (u))| + λ2/3D

)

(XII.5.34)
with c independent of λ ∈ (0, 1].3 In a completely analogous way, starting
with (XII.5.18)2 we show

|uj|τ1,τ,Ω1 ≤ 2τλτ−2{|T (u)|τ‖∇Ej(y; 1)‖τ
τ,R2

+ λτDτ

∫

|y|≥λ

{ sup
|z|≤λ/2

[|∇yEj(y − z; 1)|

+ |∇ye(y − z)| + |D2
yEj(y − z; 1)|]}τdy}.

Therefore, noting that, by (VII.3.17),

|∇ye(y − z)| ≤ c18|y − z|−2,

and that by (VII.3.21),

∫

2≥|y|≥λ

sup
|z|≤λ/2

|D2
yEj(y − z; 1)|τdy ≤ c19

∫

2≥|y|≥λ

|y|−2τdy

≤ c20(1 + λ2(1−τ)),

using the same procedure employed to obtain (XII.5.33), we arrive at

|uj|1,τ,Ω1 ≤ c21

(
λ1−2/τ |T (u)| +D

)
(XII.5.35)

for all values of λ ∈ (0, 1] and all values of τ such that

∇Ej(y; 1) ∈ Lτ (|y| ≥ |y0|),
D2Ej ∈ Lτ (|y| ≥ |y0|).

Thus, from (VII.3.46), (VII.3.49) and (XII.5.35), and observing that τ > 1,
we derive, in particular,

λ|u2|1,q,Ω1 + λ1/3|u|1,3q/(3−q),Ω1 ≤ c
(
λ2(1−1/q)|T (u)| + λ1/3D

)
(XII.5.36)

3 Observe that λ ≤ λ2/3 for 0 ≤ λ ≤ 1.
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for some c = c(Ω, q) and with q ∈ (1, 6/5). The next step is to increase D
(defined in (XII.5.19)) in terms of the boundary norm ‖u∗‖2−1/q,q(∂Ω). Using
the trace Theorem II.4.4 we have

D ≤ c22

(
‖u‖2,q,Ω1 + ‖π‖1,q,Ω1 + ‖u∗‖2−1/q,q(∂Ω)

)

and so this inequality, together with (XII.5.12), implies

D ≤ c23‖u∗‖2−1/q,q(∂Ω).

Observing that 1/3 > 2(1 − 1/q) for q ∈ (1, 6/5), from (XII.5.14), (XII.5.34),
and (XII.5.36) we obtain

〈u〉λ,q ≤ c24λ
2(1−1/q)

(
|T (u)| + λε‖u∗‖2−1/q,q(∂Ω)

)
(XII.5.37)

with ε = 1/3 − 2(1 − 1/q) > 0. From Theorem VII.8.1 we know that there is
a λ1 > 0 such that

|T (u)| ≤ c25| logλ|−1‖u∗‖2−1/q,q(∂Ω)

for all λ ∈ (0, λ1] and with c25 = c25(Ω, q, λ1). Thus, replacing this estimate
in (XII.5.37), we recover (XII.5.7) with λ0 = min{1, λ1}, and the lemma is
proved. ut

Remark XII.5.2 By using the same line of proof, one can show that if q =
6/5, the solutions of the previous lemma satisfy the weaker estimate

〈u〉λ,q ≤ cλ2(1−1/q)‖u∗‖2−1/q,q(∂Ω)

for all λ ∈ (0, 1]. �

The next result shows an estimate for solutions to the Oseen problem
with zero boundary data. It is somehow weaker than that shown in Theorem
VII.7.1, cf. (VII.7.29), but with the advantage that, in the present case, the
constant c that enters the estimate can be rendered independent of λ ∈ (0, 1].

Lemma XII.5.2 Let Ω be as in Lemma XII.5.1. Then, given

f ∈ Lq(Ω), 1 < q < 6/5,

there is at least one solution to the Oseen problem:

∆w+ λ
∂w

∂x1
= ∇τ + f

∇ ·w = 0





in Ω

w = 0 at ∂Ω

lim
|x|→∞

w(x) = 0

(XII.5.38)
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such that
w ∈ Cq, τ ∈ D1,q(Ω).

This solution satisfies the estimate

〈w〉λ,q ≤ c‖f‖q (XII.5.39)

for all λ ∈ (0, λ0] (λ0 given in Lemma XII.5.1) and with c = c(Ω, q, λ0).
Moreover, if w1, τ1 is another solution to (XII.5.38) corresponding to the
same data and with 〈w1〉λ,q finite,4 then w = w1.

Proof. Extend f to zero outside Ω and continue to denote by f this extension.
We look for a solution w, τ of the form

w = v + u, τ = p+ π (XII.5.40)

where

∆v + λ
∂v

∂x1
= ∇p+ f

∇ · v = 0





in R2

while u, π solve problem (XII.5.6) with u∗ = −v at ∂Ω. From Theorem
VII.4.1 we know that there is a unique solution v, p satisfying the estimate

〈v〉λ,q + |v|2,q + |p|1,q ≤ c1‖f‖q (XII.5.41)

with c1 independent of λ ∈ (0, 1]. We need another estimate for a suitable
norm of v on the unit ball B centered at the origin. To this end, we write v
as the Oseen volume potential (VII.3.50)1

5

v(x) =

∫

R2

E(x− y; λ) · f(y)dy =

∫

R2

E(λ(x − y); 1) · f(y)dy

where the homogeneity property (XII.5.15) has been employed. By the Hölder
inequality we have (with q′ = q/(q − 1))

|v(x)|q′ ≤
(∫

R2

|E(λ(x − y); 1)|q′
dy

)
‖f‖q′

q .

Since ∫

R2

|E(λ(x− y); 1)|q′
dy ≤ λ−2

∫

R2

|E(z; 1)|q′
dz = cλ−2,

it follows that
‖v‖q′,B ≤ 2πcλ−2(1−1/q)‖f‖q , (XII.5.42)

4 Of course, w1 and τ1 satisfy (XII.5.38) in the sense of Definition VII.1.1(v).
5 This is easily shown by a standard approximating procedure that starts with
f ∈ C∞

0 (Ω) and uses (XII.5.41).
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which is the inequality we wanted to show. We now pass to the solution u, π.
From Lemma XII.5.1 we know that

u ∈ Cq, π ∈ D1,q(Ω)

and that for all λ ∈ (0, λ0]

〈u〉λ,q ≤ c2λ
2(1−1/q)‖v‖2−1/q,q(∂Ω). (XII.5.43)

Our task is to increase the right-hand side of (XII.5.43) in terms of f . To
this end, we observe that by the trace Theorem II.4.4, the Ehrling inequality
(II.5.20), and the Hölder inequality,6

‖v‖2−1/q,q(∂Ω) ≤ c3‖v‖2,q,Ω1 ≤ c4 (‖v‖q,Ω1 + |v|2,q,Ω1)

with c5 depending only on Ω. Since q′ > q, from this latter inequality and
(XII.5.41)–(XII.5.43) we conclude, for all λ ∈ (0, λ0], that

〈u〉λ,q ≤ c5‖f‖q (XII.5.44)

with c6 = c6(Ω, q, λ0). Estimate (XII.5.39) then becomes a consequence of
(XII.5.40), (XII.5.41), and (XII.5.44). To show the result completely we have
to prove the uniqueness part. However, this follows from Exercise VII.6.2 once
we notice that w and w1 are 3q/(3 − q)-generalized solutions to the Oseen
problem corresponding to the same data (cf. Remark XII.5.1). ut

Remark XII.5.3 Lemma XII.5.2 can be extended to the case q = 6/5. In
such a situation we may take λ0 = 1.

Combining Lemma XII.5.1 and Lemma XII.5.2, we immediately obtain
the following result. �

Lemma XII.5.3 Let Ω be as in Lemma XII.5.1. Then, given

f ∈ Lq(Ω), u∗ ∈W 2−1/q,q(∂Ω), 1 < q < 6/5,

there is a unique solution to the Oseen problem

∆u+ λ
∂u

∂x1
= ∇π + f

∇ · u = 0





in Ω

u = u∗ at ∂Ω

lim
|x|→∞

u(x) = 0

such that u ∈ Cq, π ∈ D1,q. Moreover, there is a λ0 > 0 such that for all
λ ∈ (0, λ0], this solution satisfies

6 We may assume, without loss, that Ωc is contained in B1/2.
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〈u〉λ,q ≤ c
[
λ2(1−1/q)| logλ|−1‖u∗‖2−1/q,q(∂Ω) + ‖f‖q

]
,

with c = c(Ω, q, λ0).

Finally, we need the following result concerning functions having a finite
〈·〉λ,q-norm.

Lemma XII.5.4 Let Ω be an arbitrary domain in R2 and let v, w be two
solenoidal vector functions in Ω for which the norm (XII.5.4), with 1 < q ≤
6/5, is finite. Then the following inequality holds for all λ > 0

‖v · ∇w‖q ≤ 4λ−1−2(1−1/q)〈v〉λ,q〈w〉λ,q.

Proof. Taking into account that v and w are divergence-free, we obtain

v · ∇w =

(
−v1

∂w2

∂x2
+ v2

∂w1

∂x2

)
e1 +

(
−v1

∂w2

∂x1
+ v2

∂w2

∂x2

)
e2

and so, by the Hölder inequality and (XII.5.4),

‖v · ∇w‖q ≤
(
‖v1‖3q/(3−2q)|w2|1,3/2 + ‖v2‖3|w|1,3q/(3−q)

)

≤
(
λ−2/3|w2|1,3/2〈v〉λ,q + λ−1/3‖v2‖3〈w〉λ,q

)
.

(XII.5.45)

From the interpolation inequality (II.2.10) we find (with q′ = q/(q − 1)) that

|w2|1,3/2 ≤ |w2|3/q′

1,q |w2|1−3/q′

1,3q/(3−q) ≤ λ−2/q′−1/3〈w〉λ,q

‖v2‖3 ≤ ‖v2‖6/q′

2q/(2−q)‖v‖
1−6/q′

3q/(3−2q) ≤ λ−2/q′−2/3〈v〉λ,q

and the lemma becomes a consequence of this relation and (XII.5.45). ut

We are now in a position to prove an existence and uniqueness result for
the nonlinear problem. We shall prove it when Ω is an exterior domain, leaving
to the reader the (much simpler) case where Ω = R2 in Exercise XII.5.1.

Theorem XII.5.1 Let Ω ⊂ R2 be an exterior domain of class C2 and let

f ∈ Lq(Ω), v∗ ∈ W 2−1/q,q(∂Ω), v∞ = e1

with q ∈ (1, 6/5). There exists a positive constant λ0 > 0 such that if for some
λ ∈ (0, λ0],

| logλ|−1‖v∗ + e1‖2−1/q,q(∂Ω) + λ2/q−1‖f‖q < 1/32c2, (XII.5.46)

with c given in Lemma XII.5.3, then problem (XII.0.1), (XII.0.2) (with R ≡ λ)
has at least one solution v, p such that



XII.5 Existence and Uniqueness of Solutions for Small Data and v∞ 6= 0 851

v2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω)

v + e1 ∈ L3q/(3−2q)(Ω) ∩D1,3q/(3−q)(Ω) ∩D2,q(Ω)

p ∈ D1,q(Ω).

Furthermore, this solution satisfies the estimate

〈v + e1〉λ,q ≤ c2
(
λ2(1−1/q)| logλ|−1‖v∗ − e1‖2−1/q,q(∂Ω) + λ‖f‖q

)

(XII.5.47)
where 〈·〉λ,q is defined in (XII.5.4). Finally, if v1, p1 is another solution to
problem (XII.0.1), (XII.0.2) corresponding to the same data such that

cλ−2(1−1/q)〈v1 + e1〉λ,q < 13/64, (XII.5.48)

then v ≡ v1 and p ≡ p1 + const.

Proof. We look for a solution v to (XII.0.1), (XII.0.2) of the form

v = u0 + λ2(1−1/q)u + e1, p = p0 + λ2(1−1/q)π, (XII.5.49)

where

∆u0 + λ
∂u0

∂x1
= ∇p0 + λf

∇ · u0 = 0





in Ω

u0 = v∗ + e1 at ∂Ω

lim
|x|→∞

u(x) = 0

(XII.5.50)

and

∆u+ λ
∂u

∂x1
= λ[λ2(1−1/q)u · ∇u +λ2(1−1/q)u0 · ∇u0

+u0 · ∇u+ u · ∇u0] + ∇π
∇ · u = 0





in Ω

u = 0 at ∂Ω

lim
|x|→∞

u(x) = 0.

(XII.5.51)
A solution to (XII.5.50) is determined by Lemma XII.5.3. For all λ ∈ (0, λ0]
such a solution obeys the estimate

〈u0〉λ,q ≤ c
(
λ2(1−1/q)| logλ|−1‖u∗‖2−1/q,q(∂Ω) + λ‖f‖q

)
≡ D. (XII.5.52)

A solution to (XII.5.51) is likewise obtained from Lemma XII.5.1 with the
help of the contraction-mapping theorem. To this end, for λ ∈ (0, λ0], set
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Bλ,q =
{
w : Ω → R2 : 〈w〉λ,q <∞; ∇ ·w = 0 in Ω; w = 0 at ∂Ω

}
.

Clearly, Bλ,q is a Banach space endowed with the norm 〈·〉λ,q. For δ > 0, let

Xλ,q,δ = {w ∈ Bλ,q : 〈w〉λ,q ≤ δ} .

Consider the mapping

L : w ∈ Xλ,q,δ → L(w) = u ∈ Bλ,q, (XII.5.53)

where u solves

(∇u,∇ϕ) = −λ( ∂u
∂x1

,∇ϕ) − (F(w),ϕ) (XII.5.54)

for all ϕ ∈ D(Ω), with

F(w) = λ
(
λ2(1−1/q)w · ∇w + λ−2(1−1/q)u0 · ∇u0 + u0 · ∇w +w · ∇u0

)
.

(XII.5.55)
By Lemma XII.5.4 it follows that

‖F(w)‖q <∞,

and so, by Lemma XII.5.2, we derive that the mapping (XII.5.53) is well
defined and that the solution u verifies

u ∈ D2,q(Ω), π ∈ D1,q(Ω) (XII.5.56)

where π is the pressure field associated to u by Lemma VII.1.1. Thus, in
particular, u(x) tends to zero uniformly as |x| → ∞; cf. Remark XII.5.1. We
next show that, given λ ∈ (0, λ0] there is a δ = δ(λ) > 0 such that L is
a contraction in Xλ,q,δ, provided the data obey condition (XII.5.46). From
Lemma XII.5.4, (XII.5.52), and (XII.5.55) we find

‖F(w)‖q ≤ 4
(
〈w〉2λ,q + λ−4(1−1/q)D2 + 2λ−2(1−1/q)D〈w〉λ,q

)

and therefore, in view of Lemma XII.5.3, we obtain that for any w ∈ Xλ,q,δ

there is a unique solution u to (XII.5.54)–(XII.5.55) satisfying (XII.5.56) such
that

〈u〉λ,q = 〈L(w)〉λ,q ≤ 4c
(
〈w〉2λ,q + λ−4(1−1/q)D2 + 2λ−2(1−1/q)D〈w〉λ,q

)
.

(XII.5.57)
Since 〈w〉λ,q ≤ δ, the preceding inequality yields

〈L(w)〉λ,q ≤ 4c
(
δ2 + λ−4(1−1/q)D2 + 2λ−2(1−1/q)Dδ

)
. (XII.5.58)

Thus, taking (for instance)
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δ ≡ λ−2(1−1/q)D < (32c)−1, (XII.5.59)

from (XII.5.57) it follows for all λ ∈ (0, λ0] that

〈L(w)〉λ,q ≤ 4c · δ
8c

=
δ

2
, (XII.5.60)

which furnishes that the mapping (XII.5.53) transforms Xλ,q,δ into itself, with
δ given in (XII.5.59). It is now simple to show that, in fact, L is a contraction in
Xλ,q,δ. Actually, performing the same kind of reasoning leading to (XII.5.57),
for any w1, w2 ∈ Xλ,q,δ we show

〈L(w1) − L(w2)〉λ,q ≤ 4c[2λ−2(1−1/q)〈u0〉λ,q〈w1 −w2〉λ,q

+ (〈w1〉λ,q + 〈w2〉λ,q) 〈w1 −w2〉λ,q]

and so, by (XII.5.52) and (XII.5.59) we deduce that

〈L(w1 − L(w2)〉λ,q ≤ 8c
(
λ−2(1−1/q)D + δ

)
〈w1 −w2〉λ,q ≤ 1

2
〈w1 −w2〉λ,q,

which proves that L is a contraction in Xλ,q,δ. We may thus conclude that,
under the assumption (XII.5.59) (that is, (XII.5.46)) on v∗, f , and λ, problem
(XII.5.51) admits at least one solution u with 〈u〉λ,q finite. In fact, in view of
Lemma XII.5.2, it follows that u, π also satisfy condition (XII.5.56) with π
pressure field associated to u. As a consequence, the fields (XII.5.49) consti-
tute a solution to (XII.0.1), (XII.0.2). Furthermore, by (XII.5.52), (XII.5.59),
and (XII.5.60) we find that v also satisfies estimate (XII.5.47). It remains to
show uniqueness. Setting

w = v − v1, π = p− p1,

we have

∆w + λ
∂w

∂x1
= ∇π + g

∇ ·w = 0





in Ω

w = 0 at ∂Ω

lim
|x|→∞

w(x) = 0.

where
g := λ (w · ∇u1 + u · ∇w) .

From Lemma XII.5.3 and Lemma XII.5.4 it follows that

〈w〉λ,q ≤ 4cλ−2(1−1/q)〈w〉λ,q (〈u1〉λ,q + 〈u〉λ,q) . (XII.5.61)

By a direct computation that makes use of (XII.5.57)–(XII.5.59) we find
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4cλ−2(1−1/q) (〈u1〉λ,q + 〈u〉λ,q) < 1

so that (XII.5.61) implies w ≡ 0, thus completing the proof of the theorem.
ut

Remark XII.5.4 It is worth observing that Theorem XII.5.1 does not re-
quire that the datum v∗ satisfies the zero-outflux condition:

∫

∂Ω

v∗ · n = 0.

�

Remark XII.5.5 We wish to emphasize that Theorem XII.5.1 furnishes ex-
istence (and uniqueness) for the physically significant problem obtained by
setting v∗ ≡ f ≡ 0, and describing the (plane) steady flow of a viscous liq-
uid around a cylinder translating with constant speed. Let us denote by P

this problem. For problem P, the assumption (XII.5.46) reduces, in fact, to
| logλ| > c, for some c = c(Ω) > 0, which is certainly satisfied by taking λ
sufficiently small, which means, small translating speed. It is also interesting
to observe that the logarithmic factor, that is crucial to prove such a result,
comes from the estimate of the total force, T = T (λ), exerted by the liquid on
the cylinder in the Oseen approximation, and provided in Theorem VII.8.1.
As we know, in the class of generalized solutions to the Oseen approximation
T (λ) is not zero for all λ > 0, while it becomes zero in the Stokes approxima-
tion, that corresponds to λ = 0 (Stokes paradox, see Remark V.3.5). So, we
are expecting T (λ) → 0 as λ→ 0, and Theorem VII.8.1 gives us an estimate
of the rate at which this happens. Consequently, if we had no Stokes paradox,
we would not be able to prove existence for problem P! �

Remark XII.5.6 Solutions determined in Theorem XII.5.1 are unique in
the class of those solutions verifying (XII.5.48). This result is much weaker
than the analogous one proved for the three-dimensional case. In fact, for the
situation at hand, we must require that both v and v1 are small in suitable
norms, and it is not known if a solution v obeying (XII.5.46) is unique in the
class of those solutions v1 that merely satisfy the condition 〈v1〉λ,q < ∞; cf.
also Section XII.2. �

Remark XII.5.7 Since q < 6/5, solutions determined in Theorem XII.5.1
belong to D1,s(Ω), for some s < 2. Moreover, they are generalized solutions
in the sense of Definition IX.1.1. In fact, they obviously satisfy conditions
(ii)-(v). Furthermore, since v ∈ D2,q(Ω) ∩ D1,3q/(3−q)(Ω), 1 < q < 6/5, by
Theorem II.6.1, it follows that v ∈ D1,2q/(2−q)(Ω) and so, noticing that

3q/(3 − q) < 2 < 2q/(2− q)

we conclude, by interpolation, that v ∈ D1,2(Ω) and so also issue (i) of Defi-
nition X.1.1 is verified. �
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Remark XII.5.8 Solutions determined in Theorem XII.5.1 satisfy the en-
ergy equality; cf. Corollary XII.7.1. �

Exercise XII.5.1 Let f ∈ Lq(R2), 1 < q ≤ 6/5. Show that there is an M > 0 such
that if

λ2/q−1‖f‖q < M,

problem (XII.0.1), (XII.0.2) in Ω = R
2 with v∞ = e1 admits at least one solution

v, p satisfying the following properties:

〈v〉λ,q,R2 <∞, v ∈ D2,q(R2), p ∈ D1,q(R2).

Discuss also the uniqueness of these solutions.

XII.6 A Necessary Condition for Non-Existence with
Arbitrary Large Data

In the previous section we have shown existence of solutions corresponding
to v∞ 6= 0, provided the size of the data is suitably restricted (depending
on the Reynolds number). On the other side, we know from Section XII.2
and Section XII.3 that, for data of arbitrary size (and sufficiently smooth),1

we can construct a corresponding pair (v, p) satisfying (XII.0.1). As far as
the behavior at infinity is concerned, namely, (XII.0.2), at least in the very
significant physical case v∗ ≡ f ≡ 0, we know that such a v tends, as |x| → ∞,
to a vector v0, in a suitable sense, and, in the case of symmetric flow, even
uniformly pointwise; see Theorem XII.3.4 and Remark XII.3.2. However, we
do not know if v0 = v∞.

At this point, it appears natural to investigate whether solutions corre-
sponding to large data do exist. This question has been taken up by Galdi
(1999b) in the case when v∗ ≡ f ≡ 0 and Ω possesses an axis of symmetry,
that we may take coincident with the x1-axis (say). Under such assumption
on the data and after suitable scaling, we may rewrite the original problem
(XII.0.1)–(XII.0.2) as follows

∆v = v · ∇v + ∇p
∇ · v = 0

}
in Ω

v|∂Ω = 0

lim
|x|→∞

(v(x) + λe1) = 0 ,

(XII.6.1)

where, as in the previous section, we have denoted by λ the Reynolds number.
As we mentioned in the Introduction, (XII.6.1) describes one of the most

studied problems in fluid dynamics, namely, the plane, steady-state motion of

1 We are thinking of boundary data with zero or even “small” flux, in the sense
specified in (X.4.47).
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a viscous liquid around a cylinder of symmetric cross-section (e.g., a circle),
that translates with constant speed λ in the positive e1-direction orthogonal
to its axis. The existence problem for arbitrary data is then equivalent, in
this situation, to finding solutions to (XII.6.1) for any prescribed value of
λ > 0.2 Since the smoothness of Ω is irrelevant, we may assume Ω of class
C∞ (e.g., the exterior of a circle), so that any solution (v, p) to (XII.6.1)
with v ∈ W 1,2(ΩR), for all large R > 0, is C∞(Ω); see Theorem X.1.1.
Thus, given λ > 0, we denote by C (λ) the class of solutions to (XII.6.1) with
v ∈W 1,2(ΩR), all R > δ(Ωc), and such that

lim
r→∞

∫ 2π

0

|v(r, θ) − λe1|dθ = 0 .

The following result holds (Galdi 1999b, Theorem 4.1; Galdi 2004, §4.3).

Theorem XII.6.1 Let Ω be smooth and symmetric around the x1-axis. Sup-
pose there exists λ > 0 such that problem (XII.6.1) has no solution in the class
C (λ) for all λ ≥ λ. Then, the following homogeneous problem

∆u = u · ∇u+ ∇τ
∇ · u = 0

}
in Ω

u|∂Ω = 0

lim
|x|→∞

u(x) = 0 uniformly pointwise ,

(XII.6.2)

must have a non-zero solution (u, τ ) such that:

(i) (u, τ ) is symmetric around the x1-axis, in the sense specified in Remark
XII.3.2;

(ii) u, τ ∈ C∞(Ω);
(iii) ∇u,∇τ ∈ Wm,q(Ω), for all m ≥ 0 and q ≥ 2;
(iv) For all |α| ≥ 0, lim

|x|→∞
Dαu(x) = 0, lim

|x|→∞
Dατ (x) = 0, uniformly pointwise.

We shall not prove this result here and refer the interested reader to Galdi,
loc. cit.. Instead, we limit ourselves to observe that the proof is given by
contradiction, namely, if (XII.6.2) has only the zero solution, u ≡ ∇τ ≡ 0, in
the class (i)–(iv), then problem (XII.6.1) has at least a solution in the class
C (λ) for all λ belonging to a suitable unbounded set.

We would like to make some comments about the above result. A sufficient
condition to show that (XII.6.2) has only the zero solution is the existence of
an unbounded sequence of numbers {Rm}m∈N, such that

lim
Rm→∞

∫ 2π

0

(
1
2u

2(Rm, θ) + τ (Rm, θ)
)
u(Rm, θ) · xm = 0, (XII.6.3)

2 From Theorem XII.7.2, we know that existence holds for all λ ∈ (0, λ0], for some
λ0 > 0.
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where xm = (Rm, θ). Actually, multiplying both sides of (XII.6.2)1 by u and
integrating by parts over ΩR, we find

∫

ΩR

|∇u|2 =

∫

|x|=R

(
u · ∂u

∂n
− (1

2u
2 + φ)u · n

)
. (XII.6.4)

Since ∇u ∈ W 1,2(Ω), we deduce

lim
R→∞

∫

|x|=R

∣∣∣∣
∂u

∂n

∣∣∣∣ = 0.

Therefore, from (XII.6.4) and the fact that u is bounded, we obtain

∫

ΩR

|∇u|2 = − lim
R→∞

∫

|x|=R

(
1
2u

2 + φ
)
u · n,

and so, if (XII.6.3) is satisfied, we conclude u ≡ 0, by “classical” uniqueness
method.

We also notice that in the case when Ω = R2 (an unrealistic assumption
in our present situation) the uniqueness of the zero solution to (XII.6.2) fol-
lows from Theorem XII.3.1, and it appears very intriguing the idea that the
introduction of a compact boundary may derail this property.

Finally, the possibility that (XII.6.2) may admit a non-zero smooth solu-
tion is very questionable on physical grounds, and the occurrence of such a
situation would give less credibility to the Navier–Stokes model, or, at the
very least, would cast serious doubts on the meaning of the two-dimensional
assumption.

XII.7 Global Summability of Generalized Solutions
when v∞ 6= 0

In this and the next section we shall analyze the asymptotic properties of
generalized solutions corresponding to v∞ 6= 0. Specifically, we shall prove a
result analogous to that obtained in Section X.5 for three-dimensional mo-
tions, namely, that every generalized solution tending at infinity to a nonzero
velocity field v∞ shows asymptotically the same behavior as the Oseen fun-
damental solution.

On the other hand, if v∞ = 0, the structure of a generalized solution at
large distances is a completely open question. In this regard, it should be
emphasized that, when v∞ = 0, generalized solutions that are regular in a
neighborhood of infinity need not be represented there by an expansion in
“reasonable” functions of r ≡ |x| with coefficients independent of r. Actually,
the fields given in (XII.2.7) for R ∈ (1, 2) provide examples of generalized
solutions that decay more slowly than any negative power of r.
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In the current section we shall prove some preliminary results based on
the work of Galdi and Sohr (1995) and Sazonov (1999). In particular, we
deduce that every generalized solution corresponding to v∞ ≡ (1, 0)1 has
the same global summability properties of the Oseen fundamental tensor,
provided f is of bounded support.2 This will imply, in particular, that the
velocity field and the associated pressure of these generalized solutions satisfy
the energy equality. Moreover, we obtain representation formulas identical to
those derived in Section X.5 for the three-dimensional case.

We begin by showing some existence and uniqueness results for a suitable
linearization of (XII.0.1), (XII.0.2). Specifically, let us consider the following
problem

∆u+
∂u

∂x1
= a

∂u

∂x1
+Au2 + ∇π +G

∇ · u = g,

(XII.7.1)

where a, A, G and g are prescribed functions.

Lemma XII.7.1 Let

G ∈ Lq(R2), g ∈W 1,q(R2), q ∈ (1, 3/2)

A ∈ L2(R2), a ∈ L∞(R2).

Moreover, let u, π be any solution to (XII.7.1) such that for some q ∈ (1, 2),

u2 ∈ L2q/(2−q)(R2), D2u,
∂u

∂x1
∈ Lq(R2),

and

lim
|x|→∞

u1(x) = 0.

Then, there exists a positive constant c = c(q, q) (cf. (XII.7.4) and (XII.7.11))
such that if

‖a‖∞ + ‖A‖2 < c,

we have for some π0 ∈ R

u ∈ D2,q(R2) ∩D1,3q/(3−q)(R2) ∩ L3q/(3−2q)(R2),

u2 ∈ D1,q(R2) ∩L2q/(2−q)(R2)

(π − π0) ∈ D1,q(R2) ∩ L2q/(2−q)(R2).

1 Of course, this choice causes no loss of generality whenever v∞ 6= 0.
2 More generally, we may assume f to satisfy suitable decay properties in a neigh-

borhood of infinity.
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Proof. Let Xq , 1 < q < 3/2, denote the Banach space of solenoidal functions
w ∈ L1

loc(R
2) such that the norm

‖w‖Xq := ‖w2‖2q/(2−q) + ‖∇w2‖q +

∥∥∥∥
∂w

∂x1

∥∥∥∥
q

+ ‖∇w‖3q/(3−q)

+‖D2w‖q + ‖w‖3q/(3−2q)

is finite. Denote by B
(δ)
q the ball in Xq of radius δ (> 0) and consider the map

L : w′ ∈ B(δ)
q → w ∈ Xq,

where w solves the problem

∆w+
∂w

∂x1
= a

∂w′

∂x1
+Aw′

2 + ∇τ +G

∇ ·w = g.

(XII.7.2)

Since for all q ∈ (1, 2), by the Hölder inequality, we have
∥∥∥∥a
∂w′

∂x1
+Aw′

2

∥∥∥∥
q

≤ ‖a‖∞
∥∥∥∥
∂w′

∂x1

∥∥∥∥
q

+ ‖A‖2‖w′
2‖2q/(2−q), (XII.7.3)

by the hypotheses made on G and g, the map L is well defined for all q ∈
(1, 3/2). Furthermore, by Theorem VII.4.1 and (XII.7.3), for all w′ ∈ B

(δ)
q we

find
‖w‖Xq ≤ c1

[
(‖a‖∞ + ‖A‖2)‖w′‖Xq + ‖G‖q + ‖g‖1,q

]

for some c1 = c1(q). Thus, assuming (for instance)

‖a‖∞ + ‖A‖2 <
1

2c1
, (XII.7.4)

and choosing δ ≥ 2c1(‖G‖q + ‖g‖1,q), it follows that L transforms B
(δ)
q into

itself. Moreover, from (XII.7.2) with G ≡ g ≡ 0, and by (XII.7.3), (XII.7.4)
we obtain

‖w‖Xq ≤ 1
2
‖w′‖Xq ,

and so the existence of a solution w, τ to (XII.7.1) with w ∈ Xq follows from
the contraction mapping theorem. Moreover, τ ∈ D1,q(R2) and, therefore, by
Theorem II.6.1, τ − τ0 ∈ L2q/(2−q)(R2), for some τ0 ∈ R. We shall now show
that u = w, τ = π+const a.e. in R2. To this end, letting

w = w − u, s = τ − π,

it follows that

∆w +
∂w

∂x1
= a

∂w

∂x1
+Aw2 + ∇s

∇ ·w = 0.

(XII.7.5)
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It is easy to show that

w2 ∈ L2q/(2−q)(R2),
∂w

∂x1
∈ Lq(R2).

To this end, it is enough to prove that

w2 ∈ L2q/(2−q)(R2),
∂w

∂x1
∈ Lq(R2). (XII.7.6)

Assume q < q (the other case q > q can be treated likewise by interchanging
the role of q and q). Since w ∈ D2,q(R2), q < 2, by Theorem II.6.1 we have

w2 ∈ D1,2q/(2−q)(R2) (XII.7.7)

and so, since w2 ∈ L2q/(2−q)(R2), from this, from (XII.7.7), and from Theorem
II.9.1 we obtain

w2 ∈ L∞(R2),

which proves the first relation in (XII.7.6). Furthermore, by the properties

w ∈ D2,q(R2),
∂w

∂x1
∈ Lq(R2),

and Lemma II.3.3 we find that

∂w

∂x1
∈ Ls(R2), for all s ∈ [q, 2]

and also the second relation in (XII.7.6) follows. From (XII.7.4) with w′ re-
placed by w we may thus conclude that

F ≡ a
∂w

∂x1
+Aw2 ∈ Lq(R2).

Therefore, in view of Theorem VII.4.1, the problem

∆z +
∂z

∂x1
= F + ∇σ

∇ · z = 0

admits at least one solution w∗, s∗, such that

‖D2w∗‖q + ‖w∗
2‖2q/(2−q)+

∥∥∥∥
∂w∗

∂x1

∥∥∥∥
q

≤ c2‖F ‖q

≤ c2 (‖a‖∞ + ‖A‖2)

(∥∥∥∥
∂w

∂x1

∥∥∥∥
q

+ ‖w2‖2q/(2−q)

)

(XII.7.8)
with c2 = c2(q). We shall now show that
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D2(w∗ −w) ≡ ∂(w∗ −w)

∂x1
≡ 0, w∗

2 ≡ w2. (XII.7.9)

Actually, setting v = w∗ −w, p = s∗ − s, it follows that

∆v+
∂v

∂x1
= ∇p

∇ · v = 0.

We may now use a local representation for v in terms of the Oseen-Fujita
truncated fundamental tensor (Section VII.6):

Dαvj(x) = −
∫

BR(x)

Hij(x− y)Dαvi(y)dy

:= −
∫

BR(x)

H(R)
ij (x− y)Dα(w∗

i (y) − wi(y) − ui(y))dy

(XII.7.10)

where
|H(R)

ij (x− y)| ≤ CR−3/2

for all sufficiently large R and with C independent of R. Recalling the summa-
bility properties ofw∗,w and u and using this latter inequality and the Hölder
inequality at the right hand side of (XII.7.10) for various values of α, we can
easily show the validity of (XII.7.9). For instance, with |α| = 2 we find that

|D2vj(x)| ≤ C1

[
R−3/2R2(1−1/q)(|v|2,q + |u|2,q) +R−3/2R2(1−1/q)|w|2,q

]

and so, noticing that −3/2 + 2(1 − 1/s) < 0 for all s < 4, we prove the
first relation in (XII.7.9) by letting R → ∞ in this last inequality. The other
relations in (XII.7.9) follow in a similar manner. From (XII.7.9) and (XII.7.8)
we then obtain

‖D2w‖q + ‖w2‖2q/(2−q)+

∥∥∥∥
∂w

∂x1

∥∥∥∥
q

≤ c2 (‖a‖∞ + ‖A‖2)

(∥∥∥∥
∂w

∂x1

∥∥∥∥
q

+ ‖w2‖2q/(2−q)

)

and so, if

‖a‖∞ + ‖A‖2 <
1

2c2
, (XII.7.11)

we conclude

D2(w − u) ≡ ∂(w − u)

∂x1
≡ 0, w2 ≡ u2

and the lemma follows from the properties of w and the fact that u1 tends to
zero as |x| tends to infinity.

ut
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Remark XII.7.1 We do not know if the result just shown continues to hold
under the following conditions on u:

D2u,
∂u

∂x1
∈ L2(R2), lim

|x|→∞
u(x) = 0.

Nevertheless, we can treat the case q = 2 if we suppose A ≡ 0, as shown in
the following. �

Lemma XII.7.2 Let u, π be a solution to (XII.7.1) with A ≡ 0, such that

u ∈ D2,2(R2),
∂u

∂x1
∈ L2(R2).

Suppose, further,

G ∈ Lr(R2), g ∈W 1,r(R2), for some r ∈ (1, 2).

Then, there exists a positive constant c = c(r) such that if

‖a‖∞ < c,

we have

D2u,
∂u

∂x1
∈ Lr(R2).

Proof. Reasoning exactly as in the proof of Lemma XII.7.1, we can show the
existence of a solution w, τ to the problem (XII.7.1) with A ≡ 0, satisfying

w ∈ D2,r(R2), τ ∈ D1,r(R2),
∂w

∂x1
∈ D1,r(R2).

Letting w = w − u, s = τ − π, it follows that

∆w +
∂w

∂x1
= a

∂w

∂x1
−∇s

∇ ·w = 0.

Again as in the proof of Lemma XII.7.1, we may use Lemma II.3.3 to show
that

a
∂w

∂x1
∈ L2(R2)

and so, by Theorem VII.4.1, and by means of the same procedure used in
Lemma XII.7.1, we obtain

‖D2w‖2 +

∥∥∥∥
∂w

∂x1

∥∥∥∥
2

≤ c‖a‖∞
∥∥∥∥
∂w

∂x1

∥∥∥∥
2

.

Therefore, if ‖a‖∞ is sufficiently small, we find that

D2w ≡ ∂w

∂x1
≡ 0,

and the lemma is proved. ut
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We need another preparatory result.

Lemma XII.7.3 Let v be a D-solution to (XII.0.1) with f of bounded sup-
port and satisfying (XII.3.67) uniformly, with v0 6= 0. Then, for sufficiently
large ρ,

(v − v0) ∈ Ls(Ωρ) for all s > 16 .

Proof. Without loss of generality, we take v0 = −e1 and set u := v + e1. We
take R > R0 with R0 given in Theorem XII.4.3, and pick x with |x| ≥ 2R.
Taking into account (XII.3.2), we may use the representation formula (V.3.14)
with u = u1, u2 and f = ∂ω/∂x2,−∂ω/∂x1, respectively. After integrating by
parts this formula, with the help of (V.3.9) and (V.3.13), we easily deduce the
following inequality

|u(x)| ≤ c1

(
R−2+η

∫

βR(x)

|u(y)|dy +

∫

BR(x)

|ω(y)|
|x− y|dy

)
, (XII.7.12)

where βR(x) := BR(x) − BR/2(x), and η > 0 is arbitrary. From (XII.5.1) we

know that there exists R > R0 such that |ω(y)| ≤ c2|y|−3/4, for all |y| ≥ R.
Since for y ∈ BR(x) it is |y| ≥ |x|−R, and since |x| ≥ 2R, by choosing R > R,
we find

|ω(y)| ≤ c2|y|−3/4 ≤ 2c2|x|−3/4 , y ∈ BR(x) .

Replacing this information back into (XII.7.12) we deduce

|u(x)| ≤ c3

(
R−2+η

∫

βR(x)

|u(y)|dy + |x|−3/4

∫ R

0

dr

)
,

= c3

(
R−2+η

∫

βR(x)

|u(y)|dy + |x|−3/4R

)
.

(XII.7.13)

Furthermore, by Schwarz inequality, Theorem XII.4.3, and recalling |x| ≥ 2R,
we obtain

∫

βR(x)

|u(y)|dy ≤
(∫

ΩR0

|u|2
|y|1+ε

)1/2(∫

BR

|y|1+εdy

)1/2

≤ c4R
(1+ε)/2+1

≤ c5 |x|(1+ε)/2R ,

where ε is arbitrary in (0, 1) Substituting this latter into (XII.7.13) and choos-
ing η = ε/2 it follows that

|u(x)| ≤ c6

(
|x|1/2+εR−1 + |x|−3/4R

)
, |x| ≥ 2R ,

so that, minimizing with respect to R, we conclude |u(x)| ≤ c|x|(−1+4ε)/8 for
sufficiently large |x| and arbitrary ε ∈ (0, 1), which concludes the proof of the
lemma.

ut



864 XII Two-Dimensional Flow in Exterior Domains

With these lemmas in hand, we are now able to establish the main result
of this section, which is the two-dimensional counterpart of the result given
in Theorem X.6.4 for the three-dimensional case.

Theorem XII.7.2 Let v, p be a solution to the Navier–Stokes system (XII.0.1)
in Ω of class C2, with

f ∈ Lq(Ω) with bounded support, v∗ ∈W 2−1/q0,q0(∂Ω),

for some q0 > 2, all q ∈ (1, q0], and such that

v ∈ D1,2(Ω),

lim
|x|→∞

(v(x) + e1) = 0.
(XII.7.14)

Then, we have
(v1 + 1) ∈ Lt1(Ω) for all t1 > 3,

v2 ∈ Lt2(Ω) for all t2 > 2,

∂v1
∂x2

∈ Lt3(Ω) for all t3 > 3/2,

∂v1
∂x1

,∇v2 ∈ Lt4(Ω) for all t4 > 1,

(p− p0) ∈ Lt5(Ω) for all t5 > 2,

where p0 is a constant.

Proof. From (XII.7.14)1 and from the regularity results near the boundary
for the solutions to the Stokes problem (Theorem IV.5.1), we easily deduce

v ∈ W 2,q0(Ωr), p ∈W 1,q0(Ωr), (XII.7.15)

for all r > δ(Ωc). Then, by Lemma XII.3.2 it follows that

∇v ∈W 1,2(Ω). (XII.7.16)

From the assumption, (XII.7.15), (XII.7.16), and (XII.0.1) we also have

∇p ∈ L2(Ω). (XII.7.17)

Now, for R ≥ ρ, let ψR be a smooth “cut-off” function defined by

ψR(x) =

{
0 if |x| < R/2

1 if |x| ≥ R.

Setting
u = ψR(v − e1) ≡ ψRv, π = ψRp,

from (XII.0.1) we deduce that u, π satisfy the following system in R2
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∆u+
∂u

∂x1
= (ψR/2v1)

∂u

∂x1
+

(
ψR/2

∂v

∂x2

)
u2 + ∇π +G1

∇ · u = g,

(XII.7.18)

where

G1 = ψRf + 2∇ψR · ∇v +∆ψRv − ∂ψR

∂x1
v − v1v

∂ψR

∂x1
− p∇ψR

g = v · ∇ψR

Clearly, we have

G1 ∈ Lq(R2), g ∈W 1,q(R2) for all q ∈ (1, q0].

Moreover, we observe that in view of the assumption, by taking R sufficiently
large, the quantities

‖ψR/2v1‖∞,
∥∥∥∥ψR/2

∂v

∂x2

∥∥∥∥
2

can be made less than any prescribed constant. Setting

q =
2s

2 + s
(< 2),

with s given in Lemma XII.7.3, by the Hölder inequality and assumption we
find that

u2
∂v

∂x2
∈ Lq(R2),

and so by Lemma XII.7.2 with a = ψR/2v1, G = G1 + u2
∂v

∂x2
, r = q, and by

(XII.7.16), (XII.7.18), and by the properties of ψR, we deduce

D2v,
∂v

∂x1
∈ Lq(ΩR).

From this and (XII.7.15) we find

u2 ∈ L2q/(2−q)(R2), D2u,
∂u

∂x1
∈ Lq(R2). (XII.7.19)

We next apply Lemma XII.7.1 with a = ψR/2v1, A = ψR/2
∂v

∂x1
and G =G1.

In view of (XII.7.14)2, (XII.7.18), (XII.7.19), and the properties of ψR we find
that for any given q ∈ (1, 3/2) there exists a sufficiently large R such that
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(v1 + 1) ∈ L3q/(3−2q)(ΩR)

v2 ∈ L2q/(2−q)(ΩR)

∂v1
∂x2

∈ L3q/(3−q)(ΩR)

∂v1
∂x1

, ∇v2 ∈ Lq(ΩR)

(p− p0) ∈ L2q/(2−q)(ΩR)

These conditions along with (XII.7.15), (XII.7.16)–(XII.7.17), and Theorem
II.3.4, allow us to conclude the validity of the summability properties stated
in the theorem. ut

Remark XII.7.2 By the same method of proof, we can also show for all
s ∈ (1, 3/2) that

v ∈ D2,s(Ω), p ∈ D1,s(Ω).

Therefore, if, in addition to the assumptions of Theorem XII.7.2, we suppose
Ω of class C3 and

v∗ ∈W 3−1/r,r(∂Ω), some r > 2, (XII.7.20)

from Theorem X.1.1 and Theorem XII.3.3 we obtain

v ∈ D2,τ (Ω), p ∈ D1,τ (Ω), for all τ > 1. (XII.7.21)

�

We shall next draw some interesting consequences of Theorem XII.7.2.
First of all, we have the following theorem.

Theorem XII.7.3 Let the assumptions of Theorem XII.7.2 be satisfied.
Then v and the corresponding pressure field p obey the energy equation
(X.2.29).

Proof. By Theorem XII.7.2,

v + v∞ ∈ L4(Ω) ∩ Lq(Ω), for all q > 3. (XII.7.22)

In addition,
∂v

∂x1
∈ Ls(Ω), for all s > 1,

and so, in particular,
∂v

∂x1
∈ Lq′

(Ω). (XII.7.23)

Therefore, the result follows from (XII.7.22), (XII.7.23), Theorem X.2.2 and
Exercise X.2.2. ut
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Theorem XII.7.3 at once gives the following corollary.

Corollary XII.7.1 The solution v, p determined in Theorem XII.5.1 satisfies
the energy equality (X.2.29).

Another consequence of Theorem XII.7.2 is that v and p can be repre-
sented in a way analogous to that determined for the three-dimensional case.
Specifically, we have the following.

Theorem XII.7.4 Let the assumption of Theorem XII.7.2 be satisfied. As-
sume, further, Ω of class C2 and

f ∈ Lt(Ω), v∗ ∈W 2−1/r,r(∂Ω) t ∈ (1,∞), r ∈ (2,∞) .

Then, setting u = v + v∞, the following representations hold for all x ∈ Ω

uj(x) = R
∫

Ω

Eij(x− y)(fi(y) + ul(y)Dlui(y))dy

+

∫

∂Ω

[ui(y)Til(wj, ej)(x − y)

−Eij(x− y)Til(u, p)(y) −Rui(y)Eij(x− y)δ1l ]nldσy

(XII.7.24)

and

uj(x) = R
∫

Ω

Eij(x − y)fi(y)dy −R
∫

Ω

ul(y)ui(y)DlEij(x− y)dy

+

∫

∂Ω

[ui(y)Til(wj, ej)(x− y) −Eij(x− y)(Til(u, p)(y)

−Rul(y)ui(y)) −Rui(y)Eij(x− y)δ1l ]nldσy

(XII.7.25)

and

p(x) = p0 −R
∫

Ω

ei(x− y)(fi(y) + ul(y)Dlui(y))dy

+

∫

∂Ω

{ei(x− y)Til(u, p)(y) − 2ui(y)
∂

∂xl
ei(x− y)

−R[e1(x− y)ul(y) − ui(y)ei(x− y)δ1l ]nldσy.

(XII.7.26)

In these relations E, e is the Oseen fundamental solution, while wj is defined
in (VII.6.3) and p0 is a constant. All volume integrals in (XII.7.24)–(XII.7.26)
are absolutely convergent.

Proof. The proof is, in fact, completely analogous to (and, in some steps, even
simpler than) that given in Theorem X.5.2 for the three-dimensional case; it
is left to the reader as an exercise. ut
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From Theorem XII.7.4 and Theorem VII.6.2 we at once obtain the follow-
ing.

Theorem XII.7.5 Let the assumptions of Theorem XII.7.4 be satisfied.
Then setting u = v + v∞, the following asymptotic representation formu-
las hold for all sufficiently large |x|

uj(x) = MiEij + R
∫

Ω

Eij(x− y)ul(y)Dlui(y)dy + s
(1)
j (x)

uj(x) = miEij(x) −R
∫

Ω

ul(y)ui(y)DlEij(x − y)dy + s
(2)
j (x)

p(x) = p0 −M∗
i ei(x) −R

∫

Ω

ei(x − y)ul(y)Dlui(y)dy + h(x)

(XII.7.27)

where p0 ∈ R,

Mi = −
∫

∂Ω

[Til(u, p) + Rδ1lui]nl + R
∫

Ω

fi

mi = −
∫

∂Ω

[Til(u, p) + R(δ1lui − uiul)]nl + R
∫

Ω

fi

M∗
i = −

∫

∂Ω

[Til(u, p) + R(δ1lui − δ1iul)]nl + R
∫

Ω

fi

(XII.7.28)

i = 1, 2, and, for |α| ≥ 0, j = 1, 2, and |x| → ∞,

Dαs
(k)
j (x) = O(|x|−(2+|α|)/2),

Dαh(x) = O(|x|−2−|α|).
(XII.7.29)

Remark XII.7.3 A proof of (XII.7.24)–(XII.7.26) under the following as-
sumption on the behavior at infinity of u

∫

Ω

|u|2
|x|2 <∞

has been given by Smith (1965, Theorems 2 and 3). However, the volume
integrals appearing in the representations are to be understood as a limit of
integrals over the intersection of Ω with concentric discs whose radii tend to
infinity. �

XII.8 The Asymptotic Structure of Generalized
Solutions when v∞ 6= 0

In this section we will prove that the asymptotic behavior of every generalized
solution satisfying the assumptions of Theorem XII.7.2 is governed by the
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fundamental solution of Oseen. To reach this goal, we shall follow, more or
less, the same argument employed for the analogous three-dimensional result.
In what follows, we shall set, without loss, v∞ = e1.

We need some preliminary lemmas.

Lemma XII.8.1 Let v satisfy the assumptions of Theorem XII.7.2, and let
the support of f be contained in Ωρ. Then, for all R ≥ ρ, the following
estimate holds: ∫

ΩR

∇v : ∇v ≤ cR−1/3+ε

where ε is an arbitrary positive number and c is independent of R.1

Proof. Multiplying (XII.0.1) by u = v + v∞ and integrating by parts over
ΩR,R∗ , ρ ≤ R < R∗, we find

∫

ΩR,R∗

∇u : ∇u = F (R) + F (R∗) (XII.8.1)

where

F (r) =

∫

∂Br

{
u · ∂u

∂n
− 1

2u
2v · n− p(u ·n)

}
.

Using the summability properties of u, p, given in Theorem XII.7.2, one can
show that there exists at least one sequence {Rk}k∈N with Rk → ∞ as k → ∞,
along which F (Rk) goes to zero. Thus, replacing R∗ by Rk in (XII.8.1) and
letting k → ∞ we find

G(R) = F (R) (XII.8.2)

where

G(R) ≡
∫

ΩR

∇u : ∇u.

Taking into account that, by Theorem XII.7.2,

u · ∇u ∈ L1(Ωρ),

we find

g1(R) ≡
∫

∂BR

u · ∂u
∂n

∈ L1(ρ,∞). (XII.8.3)

Furthermore, recalling that v ∈ L∞(Ωρ), by Young’s inequality we obtain for
α > 0

R−αg2(R) ≡ R−α

∫

∂BR

|u2v · n| ≤ c1

{
R−αq′+1 +

∫

∂BR

u2q

}

and so, by Theorem XII.7.2,

1 Of course, the constant c –as all the other constants, given in subsequent proofs,
that will enter similar estimates– depends on ε in such a way that c → ∞ as
ε → 0.
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R−αg2(R) ∈ L1(ρ,∞) for all α > 2/3. (XII.8.4)

Finally, again by Young’s inequality,

R−αg3(R) ≡ R−α

∫

∂BR

|pu · n| ≤ c2

{
R−αs′+1 +

∫

∂BR

|p|s|u|s
}
.

Since, by Theorem XII.7.2, pu ∈ Ls(Ωρ) for all s > 6/52 we deduce

R−αg3(R) ∈ L1(ρ,∞) for all α > 1/3. (XII.8.5)

Observing that

R−αG(R) ≤ R−α (g1(R) + g2(R) + g3(R)) ,

from (XII.8.3)–(XII.8.5) we find

R−αG(R) ∈ L1(ρ,∞) for all α > 2/3

and since

G′(R) = −
∫

∂BR

∇u : ∇u < 0,

we conclude from Lemma X.8.1 that

G(R) ≤ cR−1+α

which proves the estimate. ut

Using this result we can show the following.

Lemma XII.8.2 Let v satisfy the assumptions of Lemma XII.8.1. Then, for
all large |x|,

v(x) + v∞ = O(|x|−1/2+ε),

where ε is a positive number arbitrarily close to zero.

Proof. We collect some asymptotic properties of the Oseen tensor E which
will be frequently used during the proof. In fact, from (VII.3.42), (VII.3.43)
and (VII.3.46) we have

|E(x)| ≤ c|x|−1/2

|∇E2(x)| ≤ c|x|−2

}
for all x ∈ A (XII.8.6)

and

2 We may take, without loss, the constant p0 in Theorem XII.7.2 to be zero.
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E1 ∈ Lq(R2), for all q > 3

E2 ∈ Lq(R2), for all q > 2,

∂Ei

∂x1
∈ Lq(R2) for all q ∈ (1, 2), i = 1, 2

∂Ei

∂x2
∈ Lq(R2) for all q ∈ (3/2, 2), i = 1, 2,

(XII.8.7)

where A is the exterior of a ball of sufficiently large radius and E1,E2 are
defined in (XII.5.17). We begin to show that

v(x) + v∞ = O(|x|−1/3+ε). (XII.8.8)

In view of (XII.7.27)1 and (XII.7.29), to show (XII.8.8) it is enough to prove
that

Nj(x) ≡
∫

Ω

Eij(x − y)ul(y)Dlui(y)dy = O(|x|−1/3−ε),

where, we recall, u = v+v∞. To this end, setting |x| = 2R (sufficiently large),
we split N as follows:

Nj(x) =

∫

ΩR

Eij(x− y)ul(y)Dlui(y)dy +

∫

ΩR

Eij(x− y)ul(y)Dlui(y)dy

≡ N
(1)
j +N

(2)
j .

(XII.8.9)
Since for y ∈ ΩR it is |x− y| ≥ R = |x|/2, by (XII.8.6) we find

|N (1)
j | ≤ c

|x|1/2

∫

ΩR

|u · ∇u|.

Therefore, taking into account that by Theorem XII.7.2 we have u · ∇u ∈
L1(Ω), we conclude that

|N (1)
j | ≤ c1

|x|1/2
. (XII.8.10)

By the Hölder inequality we obtain

|N (2)
j | ≤ ‖E‖q,R2‖u‖s,ΩR‖∇u‖2,ΩR (XII.8.11)

where
1

s
+

1

q
=

1

2
. (XII.8.12)

Choosing, for instance, s = q = 4 and using Theorem XII.7.2, Lemma XII.8.1,
and (XII.8.7)1,2 we deduce

|N (2)
j | ≤ c2

|x|γ ,

for arbitrary γ < 1/6. From this condition, (XII.7.27)1, (XII.8.9), and
(XII.8.10) we then recover
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|u(x)| ≤ c3
|x|γ , for arbitrary γ < 1/6. (XII.8.13)

We now use (XII.8.13) to improve the uniform bound on N (2). To this end,
we observe that, by (XII.8.7)1,2, we can take the exponent q in (XII.8.12) to
be any number greater than 3 which, in turn, by Theorem XII.7.2, implies
that we can choose s arbitrarily in the interval (3, 6). Thus, writing

|u|s = |u|6−ε−σ|u|σ, (XII.8.14)

with arbitrary small positive ε, and σ arbitrarily close to 3 − ε, from Lemma
XII.8.1, (XII.8.11) and (XII.8.13) we deduce that

|N (2)
j | ≤ c2

1

|x|γ
1

|x|γσ/s
=

c2

|x|γ(1+σ/s)
.

This condition together with (XII.7.27)1, (XII.8.9) and (XII.8.10) then gives

|u(x)| ≤ c3

|x|γ(1+σ/s)
. (XII.8.15)

Using this estimate, we can give a further improvement on the bound forN (2)

which will eventually lead to (XII.8.8). We again use (XII.8.11), (XII.8.14),
and (XII.8.15) to deduce that

|N (2)
j | ≤ c2

1

|x|γ
1

|x|γ(1+σ/s)
= c2|x|−γ(1+σ/s+(σ/s)2),

which in turn furnishes

|u(x)| ≤ c3|x|−γ(1+σ/s+(σ/s)2).

Iterating this procedure as many times as we please, we thus conclude the
validity of the following bound for u

|u(x)| ≤ c

|x|γ`

where

` =

∞∑

k=0

(σ
s

)k

Recalling that σ/s and γ can be taken arbitrarily less then 1/2 and 1/6 respec-
tively, we deduce γ` = 1/3− ε, which proves (XII.8.8). Next, using (XII.8.8),
we shall show that u2 satisfies the following improved estimate

u2 = O(|x|−1/2+ε). (XII.8.16)

To this end, we observe that from (XII.8.9) and the Hölder inequality, we have
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∣∣∣N (2)
2 (x)

∣∣∣ =

∣∣∣∣
∫

ΩR

Ei2(x − y)ul(y)Dlui(y)dy

∣∣∣∣ ≤ ‖E2‖q,R2‖u‖s,ΩR‖∇u‖2,ΩR

(XII.8.17)
where s and q satisfy (XII.8.12). For 0 < α < s, from (XII.8.8), Lemma
XII.8.1, and (XII.8.17) we obtain

∣∣∣N (2)
2 (x)

∣∣∣ ≤ c

|x|1/6+α/3s−η1
‖E2‖q,R2‖u‖(s−α)/s

s−α,ΩR
, (XII.8.18)

for a positive η1 arbitrarily close to zero. If we choose

α

s
= 1 − 3

s
− η2, η2 > 0 (XII.8.19)

we find s − α > 3, which in turn, by Theorem XII.7.2, implies that the
right-hand side of (XII.8.18) is finite for all those values of q such that E2 ∈
Lq(A). As we know from (XII.8.7)2, we may take q = 2 + η3, for a positive η3

arbitrarily close to zero. Thus, from (XII.8.12) and (XII.8.19) it follows that

α

s
= 1 − 3

(
1

2
− 1

q

)
− η2 = 1 − η4

where η4 is positive and arbitrarily close to zero. Therefore, from (XII.8.17)
we obtain ∣∣∣N (2)

2 (x)
∣∣∣ ≤ c

|x|1/2−ε
,

which along with (XII.7.27)1, (XII.7.29)1, (XII.8.9), and (XII.8.10) proves
(XII.8.16). Finally, we shall prove that also u1 satisfies the following improved
estimate

u1(x) = O(|x|−1/2+ε). (XII.8.20)

To reach this goal, we observe that, from (XII.7.27)2, (XII.7.29)2 and (XII.8.6),
it is enough to show that

n(x) ≡
∫

Ω

ul(y)ui(y)DlEi2(x− y)dy = O(|x|−1/2+ε). (XII.8.21)

As before, we split n into two integrals as follows

n(x) =

∫

ΩR

ul(y)ui(y)DlEi2(x− y)dy

+

∫

ΩR

ul(y)ui(y)DlEi2(x− y)dy

≡ n(1) + n(2),

where 2R = |x|. Recalling that for y ∈ ΩR it is |x− y| ≥ R, from (XII.8.6)2
and the Hölder inequality we find
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|n(1)(x)| ≤ cR2/q‖u‖2
2q.

Since, by Theorem XII.7.2, we may take 2q = 3+η1, for arbitrary η1 > 0, the
previous inequality furnishes

|n(1)(x)| ≤ c|x|−2/3+η, arbitrary η > 0. (XII.8.22)

Concerning n(2), we notice that

n(2) =

∫

ΩR

{
u2

1(y)D1E11(x − y) + u1(y)u2(y) (D1E21(x− y)

+D2E11(x− y)) + u2
2(y)D2E21(x− y)

}
dy

≡
4∑

i=1

Ii.

(XII.8.23)

From the Hölder inequality we have, for any η ∈ (0, 2)

|I1| ≤ max
x∈ΩR

|u(x)|2−η‖u‖ηs,ΩR‖D1E11‖s′,R2 ,

and so, taking s = 3/η+ε1 with ε1 positive and arbitrarily close to zero, from
(XII.8.7)3, (XII.8.8) and this latter inequality we find

|I1| ≤ c|x|−2/3+ε. (XII.8.24)

Likewise, we show that
|I2| ≤ c|x|−2/3+ε. (XII.8.25)

To estimate I3, we observe that, again from the Hölder inequality, for any
η ∈ (0, 1) we have that

|I3| ≤ max
x∈ΩR

|u2(x)|1−η‖u2‖ηq2,ΩR‖u1‖q1,ΩR‖D2E11‖q3,R2 , (XII.8.26)

where
1

q1
+

1

q2
+

1

q3
= 1. (XII.8.27)

Since, by Theorem XII.7.2 and (XII.8.7)4, we may choose q1 and q2 arbitrarily
close to 3 and 3/2, respectively, from (XII.8.27) we deduce that, for given η > 0
we may select q2 in such a way that q2η > 2. Thus, from (XII.8.26), Theorem
XII.7.2, and (XII.8.15) we find that

|I3| ≤ c|x|−1/2+ε (XII.8.28)

for a positive ε arbitrarily close to zero. In a similar way we show that

|I4| ≤ c|x|−1/2+ε,

and therefore, from this inequality, (XII.8.22)–(XII.8.25), and (XII.8.28) we
infer (XII.8.20). The lemma then follows from (XII.8.16) and (XII.8.20). ut
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We need another preliminary result.

Lemma XII.8.3 Let g(y) be a nonnegative function satisfying the estimate

g(y) ≤ C1 min
{
1, |y|−1+ε

}
,

for arbitrarily small ε > 0 and with a positive constant C1 independent of y.
Then, setting |x| = R, for all sufficiently large R, we have

∫

ΩR/2

g(y) (g(y) + |E1(y)|) |∇E11(x− y)|dy ≤ C2|x|−1+ε,

where E = {Eij} is the Oseen fundamental tensor and E1 = (E11, E12).

Proof. From (VII.3.45) we have

|∇E11(x− y)| ≤ c1|x− y|−1.

Let R (> 1) be a positive number such that the representations (VII.3.37) are
valid for all |y| ≥ R. Then, for all R > 2R,

∫

ΩR/2

g(y)[g(y) + |E1(y)|]|∇E11(x − y)|dy

≤ c2|x|−1

(∫

ΩR

g(y)|E1(y)|dy +

∫

ΩR,R/2

g(y)|E1(y)| +
∫

ΩR/2

g2(y)dy

)

≤ c3|x|−1

(
1 +

∫

ΩR,R/2

g(y)|E1(y)|dy +

∫

ΩR/2

g2(y)dy

)
.

Now, from (VII.3.371,2) with r = |y| it follows that (for simplicity, we put
λ = R/2 = 1)

E11(y) = c4
e−r(1+cos ϕ)

√
r

(1 − cosϕ) + O(r−1)

E22(y) = O(r−1).

Therefore
∫

ΩR,R/2

g(y)|E1(y)|dy

≤ c5

{∫ R/2

1

[
r−1+ε + r−1/2+ε

(∫ 2π

0

e−r(1+cos ϕ)(1 − cosϕ)dϕ

)]
dr

}
.

However, from the inequality given before (VII.3.43) we know that
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∫ 2π

0

e−r(1+cos ϕ)(1 − cosϕ)dϕ ≤ c6r
−1/2.

As a consequence, ∫

ΩR,R/2

g(y)|E1(y)|dy ≤ c7|x|ε.

Finally, from the Hölder inequality,

∫

ΩR/2

g2 ≤ |ΩR/2|1/q′‖g‖2
2q

and since g ∈ Lr(Ω) for all r > 2, we can take q′ as large as we please to
conclude that ∫

ΩR/2

g2 ≤ c8|x|ε,

and the lemma follows. ut

We shall next derive the asymptotic structure of the velocity field.

Theorem XII.8.1 Let the assumptions of Theorem XII.7.2 be satisfied.
Then for all sufficiently large |x|, we have

v(x) + v∞ = m ·E(x) + V(x)

where (i = 1, 2)

mi = −
∫

∂Ω

[Til(u, p) + R(δ1lui − uiul)]nl + R
∫

Ω

fi , (XII.8.29)

E is the Oseen fundamental tensor, u = v+v∞ and V(x) verifies the estimate

V(x) = O(|x|−1+ε) (XII.8.30)

for arbitrarily small ε > 0.

Proof. From the representation (XII.7.27)2, (XII.7.28)2, (XII.7.29)1 it follows
that, to show the result, it is enough to prove that the nonlinear term:

ni[u(x)] =

∫

Ω

u(y) · ∇Ei(x− y) · u(y)dy, i = 1, 2,

with Ei defined in (XII.5.17), verifies the estimate

n(x) = O(|x|−1+ε). (XII.8.31)

Writing down the integrand in components we find
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ni[u(x)] =

∫

Ω

[u2
1(y)D1E1i(x− y) + u1(y)u2(y)(D2E1i(x− y)

+D1E2i(x− y)) + u2
2(y)D2E2i(x− y)]dy

:=

4∑

k=1

Ii,k .

(XII.8.32)

We set R = |x| and split each integral Ii,k into the sum of two integrals over

ΩR/2 and ΩR/2 and denote these latter by Ii,k,R/2 and I
R/2
i,k , respectively. We

begin to estimate Ii,k,R/2. From (VII.3.45) we have (at least)

|D1E1i(x− y)| ≤ c|x− y|−3/2, y ∈ ΩR/2, i = 1, 2,

and so, by the Hölder inequality, it follows that

|Ii,1,R/2| ≤ c1R
−1|ΩR/2|1/s‖D1E1i‖3

q/3,R2‖u1‖2
2r,ΩR/2

(XII.8.33)

with
1/q + 1/r+ 1/s = 1. (XII.8.34)

By Theorem XII.7.2, we may take r any number strictly greater than 3/2,
while (XII.8.7)3 implies

D1E1i ∈ Lλ(R2) for all λ ∈ (1, 2). (XII.8.35)

Thus, choosing q = 3 + η, η > 0 and arbitrarily small, we can take s as large
as we please. Consequently, (XII.8.33) furnishes for any positive small ε

Ii,1,R/2 = O(|x|−1+ε), i = 1, 2. (XII.8.36)

Moreover, since by (VII.3.45),

|D2E1i(x− y)| ≤ c|x− y|−ti , y ∈ ΩR/2, i = 1, 2, (XII.8.37)

where

ti =

{
1 if i = 1

3/2 if i = 2,

again by the Hölder inequality, it follows that

|I2,2,R/2| ≤ c1R
−1‖D2E12‖3

q/3,R2‖u1u2‖q′,ΩR/2
. (XII.8.38)

Now, by Theorem XII.7.2,

u1u2 ∈ Lr(Ω) for all r > 6/5, (XII.8.39)

while (XII.8.7)4 implies

D2E1i ∈ Lσ(R2) for all σ ∈ (τi, 2), i = 1, 2, (XII.8.40)
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with

τi =

{
3/2 if i = 1

1 if i = 2.

Thus, choosing q ∈ (3, 6), from (XII.8.38), (XII.8.39), and (XII.8.40) we find

I2,2,R/2 = O(|x|−1). (XII.8.41)

Likewise, for all α ∈ (0, 1),

|I1,2,R/2| ≤ c1R
−1+α‖D2E11‖α

αq,R2‖u1u2‖q′,ΩR/2
(XII.8.42)

and so, selecting for arbitrarily small ε > 0

α = 1/4 + ε, 3/2α < q < 6,

in view of (XII.8.39), (XII.8.40) and (XII.8.42) we obtain

I1,2,R/2 = O(|x|−3/4+ε). (XII.8.43)

The estimates for Ii,3,R/2 and Ii,4,R/2 are somewhat simpler. In fact, from
(VII.3.45) we have

|∇E2i(x− y)| ≤ c|x− y|−3/2, y ∈ ΩR/2, i = 1, 2,

and so, for i = 1, 2,

|Ii,3,R/2| ≤ cR−3/2|ΩR/2|1/q′‖u1u2‖q,ΩR/2

|Ii,4,R/2| ≤ cR−3/2|ΩR/2|1/s′‖u2‖2
2s,ΩR/2

.

By (XII.8.39) we can take q′ arbitrarily less than 6 while, by Theorem XII.7.2,
s is an arbitrary number greater than 1. Therefore,

Ii,k,R/2 = O(|x|−1), i = 1, 2, k = 3, 4. (XII.8.44)

It remains to estimate the integrals I
R/2
i,k . By the Hölder inequality and Lemma

XII.8.2, for arbitrarily small η > 0 we have

|IR/2
i,1 | ≤ ‖u1‖2

2q,ΩR‖D1E1i‖q′,R2

≤ c1‖D1E1i‖q′,R2

(∫ ∞

R/2

r−q+1+ηdr

)1/q

≤ c2R
−1+(2+η)/q‖D1E1i‖q′,R2 .

Since, by (XII.8.35), we can take q′ as close to 1 as we please, we deduce
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I
R/2
i,1 = O(|x|−1+ε), i = 1, 2. (XII.8.45)

In a similar way, one shows

I
R/2
i,3 = O(|x|−1+ε), i = 1, 2. (XII.8.46)

To estimate I
R/2
i,k , i = 1, 2, k = 2, 4 we argue as follows. For α ∈ (0, 1), by

Lemma XII.8.2 and the Hölder inequality we have for arbitrarily small η > 0

|IR/2
i,2 | ≤ c4R

−1+α+η‖D2E1i‖q′,R2‖u1u2‖α
αq. (XII.8.47)

In view of (XII.8.39) and (XII.8.40), for i = 2 we may take α arbitrarily close
to zero to deduce, for any ε > 0, that

I
R/2
2,2 = O(|x|−1+ε). (XII.8.48)

On the other hand, if i = 1, we choose α = 2/5 + δ, arbitrarily small δ > 0,
and q ∈ (6/5α, 3), so that, again by (XII.8.39) and (XII.8.40), the inequality
(XII.8.47) delivers

I
R/2
1,2 = O(|x|−3/5+ε). (XII.8.49)

In a completely analogous way we obtain

I
R/2
2,4 = O(|x|−1+ε) (XII.8.50)

and
I

R/2
1,4 = O(|x|−3/5+ε). (XII.8.51)

We shall now show that estimates (XII.8.49), (XII.8.51) can, in fact, be im-
proved. Actually, from (XII.7.27)–(XII.7.29), (XII.8.32), (XII.8.36), (XII.8.41),
(XII.8.43)–(XII.8.46), and (XII.8.48)–(XII.8.51)we deduce the following asymp-
totic uniform bounds for u:

u1(x) = O(|x|−1/2), u2(x) = O(|x|−1+ε). (XII.8.52)

Let us now split the integral I
R/2
1,2 as the sum of two integrals: one over ΩR/2,2R

and the other over Ω2R. Let us denote them by I1 and I2, respectively. In
view of (XII.8.52), for arbitrarily small ε > 0, we have

|I1| ≤ cR−3/2+ε‖∇E11‖1,B4R(x)

and so the estimate of Exercise VII.3.4 implies

|I1| ≤ c1R
−3/2+ε

(∫ 4R

1

r−1/2dr + 1

)
,

which, in turn, gives
I1 = O(|x|−1+ε). (XII.8.53)
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Consider, next, I2. For |y| ≥ 2R = 2|x|, by the triangle inequality it follows
that

2|y| ≥ |x− y|
and so, with the aid of (XII.8.52) and Exercise VII.3.4, we find for arbitrarily
small ε > 0 that

|I2| ≤ c

∫

Ω2R

|x− y|−3/2+ε|∇E11(x− y)|dy

≤ c

∫

BR(x)

|x− y|−3/2+ε|∇E11(x− y)|dy

≤ c1

∫ ∞

R

ρ−2+εdρ.

Therefore
I2 = O(|x|−1+ε). (XII.8.54)

From (XII.8.53), (XII.8.54) we infer

I
R/2
1,2 = O(|x|−1+ε). (XII.8.55)

In an entirely analogous way we show

I
R/2
1,4 = O(|x|−1+ε). (XII.8.56)

To complete the proof of the theorem we need to improve the estimate on the
term I1,2,R/2 given in (XII.8.43). From what we have proved so far we know
that u admits the following asymptotic estimates

u1(x) = m ·E1(x) + n1[u(x)] + O(|x|−1)

u2(x) = O(|x|−1+ε),
(XII.8.57)

where
n1 = I1,2,R/2 +O(|x|−1+ε). (XII.8.58)

Recalling the expression of I1,2,R/2 and using (XII.8.43), (XII.8.57), and
(XII.8.58) we deduce that

|I1,2,R/2| ≤ c1

∫

ΩR/2

g(y) (|n1(y)| + |E1(y)| + g(y)) |D2E11(x− y)|dy,

where g satisfies the assumptions of Lemma XII.8.1. Using this lemma along
with the Hölder inequality, from the preceding inequality we deduce

|I1,2,R/2| ≤ c2

∫

ΩR/2

g(y)|n1(y)||D2E11(x− y)|dy + O(|x|−1+ε). (XII.8.59)
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In view of (XII.8.58), again employing Lemma XII.8.1 we have3

|I1,2,R/2| ≤ c3

∫

ΩR/2

g(y)|I1,2,R/2(y)||D2E11(x− y)|dy + O(|x|−1+ε).

Now assume that for some β ∈ [3/4, 1),

|I1,2,R/2(x)| ≤ c4|x|−β+ε. (XII.8.60)

Recalling that g satisfies the assumptions of Lemma XII.8.1 we find

|I1,2,R/2| ≤ c5R
−1+α‖D2E11‖α

αq[R
−1−β+2/q′+ε + 1] +O(|x|−1+ε). (XII.8.61)

We want the quantity in square brackets to be bounded in R and so we require

1 + β − 2/q′ > 0.

Recalling that q is a number strictly greater than 3/2α which can be taken
arbitrarily close to 3/2α (cf. (XII.8.40), (XII.8.42)), we thus find

1 − β = 4α/3 − η, (XII.8.62)

for arbitrarily small positive η. With this restriction for α, from (XII.8.61) we
obtain a new value for β, that is,

β1 = 1 − α,

for which (XII.8.60) holds. We may iterate this procedure along sequences
{βk}, {αk} which, by virtue of this last condition, (XII.8.43), and (XII.8.62),
satisfy

1 − βk = 4αk/3 − η, βk+1 = 1 − αk, β0 = 3/4.

Solving for βk we see

βk+1 = 1/4 + 3βk/4 − 3η/4.

Since {βk} is increasing, by the arbitrariness of η, from this relation we find
βk → 1 as k → ∞, and from (XII.8.60) we conclude

I1,2,R/2 = O(|x|−1+ε),

which completes the proof of the theorem. ut

Remark XII.8.1 As in the three-dimensional situation, from Theorem XII.8.1
we obtain that the component v1 parallel to the velocity at infinity v∞ = (1, 0)
exhibits a paraboloidal wake behavior in the direction of v∞. Actually, for all
sufficiently large |x| we obtain the uniform estimate

3 Throughout the rest of the proof, the symbol ε in the various formulas need not be
the same. However, it will denote, as usual, an arbitrarily small positive number.
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v1(x) + 1 = O(|x|−1/2).

Moreover, let ϕ be the angle made by a ray starting from the origin (in Ωc,
say) with the negatively directed x1-axis, and define the parabolic-like region:4

Pσ :=
{
(x, ϕ) ∈ R2 × (−π/2, π/2) : (1 + cosϕ) ≤ |x|−1+2σ, σ ∈ (0, 1/2]

}
.

(XII.8.63)
Then, in view of (VII.3.40), (VII.3.41), we have the faster decay

v1(x) + 1 = O(|x|−1/2−α) , x 6∈ Pσ , (XII.8.64)

with α = min(2σ, 1/2 − ε), arbitrary small ε > 0. Estimate (XII.8.64) can
be slightly improved, due to the fact that estimate (XII.8.31) is not the best
possible. A detailed study in this direction has been performed by Smith
(1965), who shows sharp bounds for the nonlinear term and, therefore, for the
remainder V defined in (XII.8.30). In particular, (XII.8.30) can be improved
to the following:

V(x) = O
(
|x|−1 log2 |x|

)
.

Sharper estimates for V1 can also be obtained in the region (XII.8.63), cf.
Smith (1965, Theorem 5). Specifically, in this region and for large |x|, one can
prove

V1(x) = O
(
|x|−1−σ log |x|(1 + |x|−σ log |x|)

)
.

On the other hand, unlike the three-dimensional case, the component v2 of v
orthogonal to v∞ “essentially” exhibits no wake region. In fact, from Theorem
XII.8.1 we have that for all sufficiently large |x|, inside and outside the wake
region,

v2(x) = O(|x|−1+ε).

It should be observed that this uniform estimate can be slightly improved to
the following:

v2(x) = O
(
|x|−1 log |x|

)
,

as shown by Smith (1965, formula (28b)). Sharper estimates for the remainder
V2 can be proved in the region (XII.8.63), cf. Smith (1965, Theorem 5), where
we have for |x| large enough,

V2(x) = O
(
|x|−1−σ(1 + |x|−σ log |x|)

)
.

An asymptotic expansion for v up to |x|−3/2 has been given by Babenko (1970,
Theorem 6.1). �

Remark XII.8.2 The uniform estimate

v(x) + v∞ = O(|x|−1/2)

is sharp in the sense that the condition

4 See Remark VII.3.1.
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v(x) + v∞ = o(|x|−1/2) (XII.8.65)

holds if and only if we impose some restriction on the flow. Specifically, we
have that (XII.8.65) is valid if and only if the first component of the vector
m defined in (XII.8.29) is vanishing. The proof follows the same lines as that
given in Corollary X.8.1 for the three-dimensional case and is therefore left to
the reader as an exercise.5 This result differs from the corresponding one in
three dimensions where v(x) + v∞ = o(|x|−1) if and only if all components
of m are zero. The fact that in two dimensions only m1 needs to be zero is a
consequence of the property that, in such a case, the component E12 of the
Oseen fundamental tensor exhibits no wake. �

Our next (and final) task in this section is to study the behavior at infinity
of the first derivatives of v and of the pressure field p. This study is performed
along the same lines as the proof of Theorem XII.8.1. From the representation
formulas (XII.7.27)1–(XII.7.29) we obtain for i, k = 1, 2 and all sufficiently
large |x|

Dkvi(x) = M ·DkEi(x) + RNi,k[u(x)] +Dks
(2)
i (x), (XII.8.66)

with Ei defined in (XII.5.17) and

Ni,k[u(x)] =

∫

Ω

u(y) · ∇u(y) ·DkEi(x− y)dy. (XII.8.67)

As in Theorem XII.8.1, the asymptotic behavior of ∇v is determined once
we establish that for Ni,k. It is expected that the behavior of Dkv will be
different for different values of k, as a consequence of the unequal behavior at
large distances of DkE, cf. (VII.3.45) and (VII.3.46). However, the method of
proof is essentially the same for both k = 1, 2 and, therefore, we shall restrict
our attention to k = 1, limiting ourselves to state the result for k = 2 in
Theorem XII.8.2. Setting |x| = R, we split Ni,1 as the sum of two integrals

Ii,R/2 and I
R/2
i on the domains ΩR/2 and ΩR/2, respectively. By (VII.3.45)

we have, for i = 1, 2,

|D1Ei(x− y)| ≤ c|x− y|−3/2, as |x− y| → ∞,

with Ei defined in (XII.5.17). On the other hand, by Theorem XII.7.2 we also
have

u · ∇u ∈ Lq(Ω), for all q > 1, (XII.8.68)

so that we deduce

|Ii,R/2| ≤ c|x|−3/2|ΩR/2|−1/q′‖u · ∇u‖q ≤ c1|x|−3/2|ΩR/2|−1/q′
.

Taking q′ arbitrarily large, we infer

5 See also Smith (1965, Theorem 11).
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Ii,R/2 = O(|x|−3/2+ε), i = 1, 2, (XII.8.69)

where ε > 0 is arbitrarily small. We now pass to estimate I
R/2
i . From Theorem

XII.8.1 and with the help of the local representation (IX.8.33) we show

Dkv(x) = O(|x|−1/2), k = 1, 2. (XII.8.70)

We have

I
R/2
i =

∫

ΩR/2

[u1(y)D1u(y) ·D1Ei(x− y)

+u2(y)D2u(y) ·D1Ei(x− y)]dy

≡ I1 + I2.

From Theorem XII.8.1 and (XII.8.69) it follows for q < 2 that

|I1| ≤ c2

∫

ΩR/2

|y|−1|D1Ei(x− y)|dy

≤ c3R
−1+2/q′‖D1Ei‖q,R2

|I2| ≤ c4

∫

ΩR/2

|y|−3/2+ε|D1Ei(x − y)|dy

≤ c5R
−3/2+(2+ε)/q′‖D1Ei‖q,R2 .

In view of (XII.8.35), we may take in these relations q′ arbitrarily large to
find

I1 = O(|x|−1+ε)

I2 = O(|x|−3/2+ε).
(XII.8.71)

From (XII.8.66), (XII.8.67), (XII.8.69), and (XII.8.71) we obtain

D1v(x) = O(|x|−1+ε), k = 1, 2,

which improves on (XII.8.69) with k = 1. We may then use this latter estimate
in bounding the integral I1. If we do this and proceed as before, we find

|I1| ≤ c6

∫

ΩR/2

|y|−3/2+ε|D1Ei(x− y)|dy

which, together with the Hölder inequality and (XII.8.35), in turn, implies

I1 = O(|x|−3/2+ε).

We may then conclude
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Ni,1[u(x)] = O(|x|−3/2+ε), i = 1, 2, (XII.8.72)

for arbitrary ε > 0. In a completely analogous way we show

Ni,2[u(x)] = O(|x|−1+ε), i = 1, 2. (XII.8.73)

We thus have proved the following.

Theorem XII.8.2 Let v be as in Theorem XII.8.1. Then as |x| → ∞,

Dkv(x) = M ·DkE(x) + T k(x), k = 1, 2,

holds, where (i = 1, 2)

Mi = −
∫

∂Ω

[Til(u, p) + Rδ1lui]nl + R
∫

Ω

fi,

E is the Oseen fundamental tensor, and

T k(x) = O(|x|−αk+ε),

with α1 = 3/2 and α2 = 1.

Remark XII.8.3 Slightly improved uniform estimates can be given for the
remainder T k(x); see Smith (1965). Specifically, for large |x|, one has the
uniform estimate

T12(x) = O(|x|−1 log2 |x|)
T11(x), T2,2 = O(|x|−3/2 log2 |x|)

T21(x) = O(|x|−3/2).

Outside the wake region (XII.8.63), one can prove the following sharper esti-
mates

T12(x) = O(|x|−1−2σ log2 |x|)
T11(x), T2,2 = O(|x|−3/2−σ log2 |x|)

T21(x) = O(|x|−3/2−σ).

For details, we refer the interested reader to Theorem 6 of Smith (1965). �

Our next objective is to derive an asymptotic formula for the pressure
field. To this end, we start with the representation (XII.7.27)3, which can be
written as

p(x) = p0 −M∗
i ei(x) −R

3∑

k=1

Pk(x) + h(x) (XII.8.74)

where
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P1(x) =

∫

ΩR/2

ei(x− y)ul(y)Dlui(y)dy

P2(x) =

∫

ΩR/2,2R

ei(x− y)ul(y)Dlui(y)dy

P3(x) =

∫

Ω2R

ei(x− y)ul(y)Dlui(y)dy

(XII.8.75)

and R = |x|. Furthermore, the quantities M∗, h are defined in (XII.7.23) and
(XII.7.24). Using the uniform estimate

|e(x − y)| ≤ c|x− y|−1

together with (XII.8.68), Theorem XII.8.1, Theorem XII.8.2, and Lemma
II.9.1, we deduce, with ε meaning an arbitrary positive number, that

|P1(x)| ≤ c1R
−1|ΩR/2|1/q′‖u · ∇u‖q ≤ c2|x|−1+ε

|P2(x)| ≤
∫

ΩR/2,2R

(|u1(y)D1(y)| + |u2(y)D2(y)D2u(y)|) |e(x− y)|dy

≤ c3|x|2−ε

∫

ΩR/2,2R

|e(x− y)|dy ≤ c4|x|−1+ε

|P3(x)| ≤ c5

∫

Ω2R

|y|2−ε|x− y|−1dy ≤ c6|x|−1+ε.

(XII.8.76)
Collecting (XII.7.24)2, and (XII.8.74)–(XII.8.76) furnishes the following.

Theorem XII.8.3 Let v be as in Theorem XII.8.1. Then there is a p0 ∈ R
such that as |x| → ∞,

p(x) = p0 −M∗
i ei(x) + P(x),

where (i = 1, 2)

M∗
i = −

∫

∂Ω

{Til(u, p) + R[δ1lui − δ1iul]}nl + R
∫

Ω

f,

e(x) is the pressure associated to the Oseen fundamental tensor E, and

P(x) = O(|x|−1+ε)

for arbitrary ε > 0.

Remark XII.8.4 A minor improvement on the behavior of the term P(x)
can be obtained starting with a representation formula slightly different from
(XII.8.74); cf. Smith (1965, Theorem 7). �
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Finally, we wish to mention some properties regarding the asymptotic
structure of the vorticity field:

ω =
∂v1
∂x2

− ∂v2
∂x1

(XII.8.77)

associated to a solution v to (XII.0.1), (XII.0.2) in the case v∞ 6= 0. This
problem has been studied in full detail by Babenko (1970) and Clark (1971).
The main result states, essentially, that if f is of bounded support and if v
satisfies an estimate of the form

v(x) + v∞ = O(|x|−1/4−ε) (XII.8.78)

for some ε > 0, then ω decays exponentially fast in the region outside the
paraboloidal wake region. Now, as we obtain from Lemma XII.8.2, every gen-
eralized solution that tends pointwise and uniformly to v∞(6= 0) at infinity
obeys (XII.8.78), and so the vorticity field of every such generalized solution
corresponding satisfies the above mentioned property. In particular, this holds
for solutions determined in Theorem XII.5.1. Thus from Lemma XII.8.2 and a
theorem of Babenko (1970, Theorem 8.1) (cf. also Clark 1971, Theorem 3.5′),
one can show the following result, whose proof will be omitted.

Theorem XII.8.4 Let the assumptions of Theorem XII.8.1 be satisfied.
Then the vorticity field (XII.8.77) obeys the following representation for all
sufficiently large |x|6

ω(x) = ∇Ψ(x) ×m+ B(x),

where
Ψ(x) ≡ eRx1/2K0 (R|x|/2) ,

K0 is the modified Bessel function of the second type of order zero (cf.
(VII.3.10), and (VII.3.15)), m is defined in (XII.8.29), and

B(x) = O(e−s(x)|x|−3/2 log |x|), s(x) := (|x|+ x1).

XII.9 Limit of Vanishing Reynolds Number: Transition
to the Stokes Problem

In this section we shall investigate the behavior of solutions constructed in
Theorem XII.5.1, in the limit of vanishing Reynolds number. We shall prove, in
particular, that they converge to a uniquely determined solution of a suitable

6 As usual, if a = (a1, a2) and b = (b1, b2), by the notation a × b we mean the
quantity a1b2 − a2b1.
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Stokes problem. However, similarly to what we proved for the linear case in
Section VII.8, this limiting process need not preserve the condition at infinity
on the velocity field and, in fact, this condition is preserved if and only if the
data are prescribed in a certain way.

For the sake of simplicity, we assume throughout that the body force f is
identically vanishing. Furthermore, as in Section XII.5, we shall denote by λ
the Reynolds number R.

The first step is to show a uniform bound (independent of λ) for solutions
determined in Theorem XII.5.1. This will be established in the following.

Lemma XII.9.1 Let the assumptions of Theorem XII.5.1 be satisfied and
let f ≡ 0. Then, there is a c = c(Ω, q, v∗, λ0) > 0 such that

∫

Ω

∇v : ∇v ≤ c.

Proof. We suppose, as usual, the origin of coordinates in Ωc. Set

σ = Φ∇ log |x|

with m such that ∫

∂Ω

(v∗ − σ) · n = 0.

In view of this latter property, by the results of Exercise III.3.5, there is a
field V satisfying

(i) ∇ · V = 0 in Ω,
(ii) V = v∗ − σ at ∂Ω,
(iii) V ∈ W 1,2(Ω),
(iv) V ≡ 0 in ΩR, for some R > δ(Ωc).

Setting
v = w − e1 + σ + V , (XII.9.1)

from the property of v, σ, and V , and with the help of the embedding The-
orem II.3.4, we deduce that the field w verifies the following properties

〈w〉λ,q <∞
w = 0 at ∂Ω

lim
|x|→∞

w(x) = 0.

(XII.9.2)

By Corollary XII.7.1, v satisfies the energy equality (X.2.7) and so, by virtue
of (XII.9.1), (XII.9.2), and by an integration by parts that uses the relation

∂σi

∂xj
=
∂σj

∂xi
i, j = 1, 2,
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we find

|w|21,2 =

∫

Ω

{∇w : ∇V −λ[w·∇w·(σ+V )+V ·∇w·V +V · ∂w
∂x1

]}. (XII.9.3)

By the properties of V and Theorem II.3.4, we have

‖V ‖r <∞ for all r ∈ [1,∞).

Therefore, by using the Schwarz inequality along with inequality (II.2.5) in
(XII.9.3), we show

|w|21,2 ≤ λ

∣∣∣∣
∫

Ω

w · ∇w · (σ + V )

∣∣∣∣+ c1 (XII.9.4)

where c1 depends on V , Ω, and λ0 but not on λ. We now observe that, by
the Hölder inequality, it follows that

∣∣∣∣
∫

Ω

w · ∇w · (σ + V )

∣∣∣∣ ≤ ‖w‖3q/(3−2q)|w|1,3q/(3−q)‖σ + V ‖q/(2q−2)

and so, since q/(2q − 2) > 2, from (XII.9.4) and (XII.5.4) we recover

|w|21,2 ≤ c2〈w〉2λ,q + c1 (XII.9.5)

with c2 independent of λ ∈ (0, λ0]. From the estimate (XII.5.47) and (XII.9.1)
we then obtain, at once,

〈w〉λ,q ≤ c3

with c3 independent of λ ∈ (0, λ0]. As a consequence, the lemma follows from
this latter inequality, (XII.9.5), and (XII.9.1). ut

The next lemma shows other uniform bounds for solutions on every com-
pact set in Ω.

Lemma XII.9.2 Let the assumptions of Lemma XII.9.1 be satisfied. Then
there exists a constant c = c(Ω,R, q, λ0,v∗) such that for all R > δ(Ω)c

‖v‖2,q,ΩR + ‖p‖1,q,ΩR ≤ c

.

Proof. Using Theorem IV.4.1 and Theorem IV.5.1 in equation (XII.0.1), we
find

‖v‖2,q,ΩR + ‖p‖1,q,ΩR ≤ c1 (λ‖v · ∇v‖q,ΩR1
+ ‖v‖1,q,ΩR1

+ ‖p‖q,ΩR1
+ ‖v∗‖2−1/q,q(∂Ω))

(XII.9.6)

for all R1 > R > δ(Ωc) and with c = c(Ω, q, R, R1). From Theorem II.3.4 and
(II.5.18) we find for any s ∈ [1,∞) and any R > δ(Ωc)
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‖v‖s,ΩR ≤ c2(‖v‖2,ΩR + |v|1,2,ΩR)

≤ c3(|v|1,2 + ‖v∗‖2−1/q,q(∂Ω))

and so, by Lemma XII.9.1,

‖v‖s,ΩR ≤ c4, s ≥ 1, R > δ(Ωc) (XII.9.7)

with c4 = c4(Ω,R, s). Since

‖v · ∇v‖q,ΩR1
≤ ‖v‖2q/(2−q),ΩR1

|v‖1,2,ΩR1
,

coupling (XII.9.6) and (XII.9.7) with the help of Lemma XII.9.1,

‖v‖2,q,ΩR + ‖p‖1,q,ΩR ≤ c5(‖p‖q,ΩR1
+ 1) (XII.9.8)

with c5 independent of λ ∈ (0, λ0]. To estimate the pressure term on the
right-hand side of (XII.9.8), we use Lemma IV.1.1 to obtain (after the possible
modification of p by adding a constant)

‖p‖q,ΩR1
≤ c6(λ‖v‖2

2q,ΩR1
+ |v|1,2),

which, by (XII.9.7) and Lemma XII.9.1, in turn implies

‖p‖q,ΩR1
≤ c7,

with c7 independent of λ ∈ (0, λ0]. The lemma then follows from this latter
inequality and (XII.9.8). ut

The next result shows that solutions of Theorem XII.5.1 tend, in the limit
λ→ 0, to solutions of a suitable Stokes problem.

Lemma XII.9.3 Let the assumptions of Lemma XII.9.1 be satisfied. Denote
by w , π the unique solution to the following Stokes problem

∆w = ∇π
∇ ·w = 0

}
in Ω

w = v∗ at ∂Ω

|w|1,2 <∞.

(XII.9.9)

Then as λ→ 0, the solutions v , p constructed in Theorem XII.5.1 satisfy

∇v w→ ∇w in L2(Ω)

v
w→ w in W 2,q(ΩR)

p
w→ π in W 1,q(ΩR)

(XII.9.10)

for any R > δ(Ωc).
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Proof. Let {λn}n∈N be any sequence converging to zero. From Lemma XII.9.1
and Lemma XII.9.2 it readily follows that, along a subsequence at least, con-
ditions (XII.9.10) hold. However, the field w satisfying (XII.9.9) is uniquely
determined, whatever the sequence may be (cf. Theorem V.2.1) and, therefore,
the result is proved. ut

We are now in a position to show the following main result.

Theorem XII.9.1 Let the assumptions of Theorem XII.5.1 hold and let
(v, p) be the solution constructed in that theorem corresponding to f ≡ 0.
Then, denoting by w, π the solution to the Stokes problem (XII.9.9) we have
that, as λ → 0, v , p tend to w , π in the sense specified by Lemma XII.9.3.
Moreover, there is a w0 ∈ R2 such that

lim
|x|→∞

w(x) = w0 (XII.9.11)

and we have

w0 + e1 =
1

4π
lim
λ→0

T (v)| logλ| (XII.9.12)

where

T (v) =

∫

∂Ω

T (v, p) · n.

Finally, the limit process preserves the prescription at infinity, i.e., w0 = −e1

if and only if the data satisfy the conditions
∫

∂Ω

(v∗ + e1) · T (hi, πi) · n = 0 i=1,2 (XII.9.13)

where {hi, πi} are the “exceptional” solutions to the homogeneous Stokes
system constructed in Lemma V.5.1. In the particular case where Ω is exterior
to a unit circle, (XII.9.13) reduces to

∫

∂Ω

(v∗i + δ1i) = 0 i=1,2.

Proof. The first part of the statement follows from Lemma XII.9.3. Moreover,
from Theorem V.3.2 we know that w satisfies the representation

wj = w0j +

∫

∂Ω

[v∗iTil(uj, qj)(x− y) − Uij(x− y)Til(w, π)(y)]nl(y)dσy

(XII.9.14)
for some w0 ∈ R2, which, by the regularity of v∗, proves (XII.9.11). On the
other hand, by Theorem XII.7.4, we have

uj(x) = λ

∫

Ω

Eij(x− y)ul(y)Dlui(y)dy +

∫

∂Ω

[ui(y)Til(wj, ej)(x− y)

−Eij(x− y)Til(u, p)(y) − λui(y)Eij(x− y)δ1l]nldσy,
(XII.9.15)
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where u = v + e1. We wish to take λ → 0 into (XII.9.14). From the Hölder
inequality, (VII.3.41), (VII.3.43), (XII.5.4), and (XII.5.15) it follows for q ∈
(1, 6/5) that

|
∫

Ω

Eij(x − y)ulDlui(y)dy| ≤ ‖u‖3q/(3−2q)|u|1,3q/(3−q)‖E‖q/(2q−2)

≤ λ−1λ−4(1−1/q)〈u〉2λ,q

where c1 = c1(q, Ω). However, the solutions of Theorem XII.5.1 verify the
estimate (XII.5.47) and so, from the preceding inequality, we obtain

λ

∣∣∣∣
∫

Ω

Eij(x− y)ul(y)Dlui(y)dy

∣∣∣∣ ≤ c2| logλ|−2, (XII.9.16)

where c2 is independent of λ ∈ (0, λ0]. Now, integrating by parts over the
region Ωc, we find

∫

∂Ω

[Til(wj, ej(x− y)) − λEij(x− y)δ1l]nl(y)dσy = 0. (XII.9.17)

Moreover, by Lemma XII.9.2 and the compact embedding theorems of trace
at the boundary (cf. Theorem II.4.1 and Theorem II.5.2; cf. also the Notes
for Chapter II), it follows that

‖v −w‖1,q,∂Ω + ‖p− π‖q,∂Ω → 0 as λ→ 0. (XII.9.18)

With the aid of (XII.9.17), (XII.9.18), and the asymptotic formula (VII.3.36)
we thus obtain

lim
λ→0

∫

∂Ω

[ui(y)Til(wj , ej)(x− y)− λui(y)Eij(x− y)δ1l]nldσy

=

∫

∂Ω

v∗i(y)Til(uj , qj)(x− y)dσy .

(XII.9.19)
Finally, again from (VII.3.36) and (XII.9.18) we find

− lim
λ→0

∫

∂Ω

Eij(x − y) Til(u, p)(y)nl(y)dσy

=
1

4π
lim
λ→0

[
∫

∂Ω

Til(u, p)nl]| logλ|

−
∫

∂Ω

Uij(x− y)Til(w, π)(y)nl(y)dσy.

(XII.9.20)

Collecting (XII.9.14)–(XII.9.16), (XII.9.19), and (XII.9.20) we obtain (XII.9.12).
The last part of the theorem is proved as in Section VII.8. Precisely, we have
w0 = −e1 if and only if u0 ≡ w + e1 is a solution to the problem
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∆u0 = ∇π
∇ · u0 = 0

}
in Ω

u0 = v∗ + e1 at ∂Ω

lim
|x|→∞

u0(x) = 0.

However, as we know from the results of Section V.7, such a solution exists if
and only if (XII.9.13) is satisfied. The theorem is therefore proved.

ut

Remark XII.9.1 An interesting consequence of Theorem XII.9.1 is the
derivation of an asymptotic formula (in the limit of vanishing Reynolds num-
ber) for the force, F(v) := −T (v) exerted by the liquid on a body moving in
it with constant velocity e1. Specifically, taking v∗ ≡ 0, from Theorem XII.9.1
we have that the limit solution w is identically zero so that from (XII.9.12)
it easily follows in the limit λ→ 0

F(v) = (− 4πe1 + o(1))| logλ|−1 (XII.9.21)

where o(1) denotes a vector quantity tending to zero with λ. This formula tells
us that, in the limit of vanishingly small Reynolds number, the total force
exerted from the liquid on the body is determined entirely by the velocity
at infinity e1 and that it is directed along the line of this vector, namely, it
produces only “drag” and no “lift”. Surprisingly enough, it does not depend
on the shape of the body.

Equation (XII.9.21) was obtained for the first time by Finn & Smith
(1967b, Theorem 5.4).1 However, due to the lack of suitable uniqueness theory,
the solutions v, p used by these authors differ a priori from those in Theorem
XII.5.1, for which (XII.9.21) was derived. �

Remark XII.9.2 Condition (XII.9.13) is satisfied if the body moves by self-
propulsion; see Galdi (1999a, 2004 §1.2.2). �

XII.10 Notes for the Chapter

Section XII.1. The first systematic treatment of the two-dimensional ex-
terior problem for the Navier–Stokes equations traces back to the work of
Goldstein (1933a, 1933b) and Leray (1933). In particular, the latter author
proved existence of a solution to (XII.0.1) with finite Dirichlet integral. Leray’s
solution is obtained as a suitable limit of a sequence of solutions {vk, pk} of

1 Due to a different definition of T (v), the left-hand side of formula (XII.7.4) of
Finn and Smith (1967b) differs from the left-hand side of (XII.9.21) by a factor
λ−1.
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suitable problems Pk defined on a family {ΩRk} of bounded domains with
Rk → ∞ as k → ∞. For example, in the physically relevant case when
v∗ ≡ f ≡ 0 and v∞ 6= 0 (steady plane motion of a viscous liquid past a
translating long cylinder), the generic Pk is given by

∆vk = vk · ∇vk + ∇pk

∇ · vk = 0

}
in ΩRk

vk = 0 at ∂Ω

vk = −v∞ at ∂BRk ,

(∗)

where, for simplicity, we have put R = 1. Leray proved the existence of a
uniform bound for the Dirichlet integral of vk, that is,

∫

ΩRk

∇vk : ∇vk ≤M (∗∗)

with M independent of k. Passing to the limit k → ∞, he showed that (at
least along a subsequence) vk, pk converges to vL, pL with vL, pL solving
(XII.0.1). The limit solution vL still has a finite Dirichlet integral. However,
Leray was not able to show that vL also verifies (XII.0.2); cf. loc. cit. pp.
54-55. The study of the asymptotic behavior of Leray’s solution was initiated
by Gilbarg & Weinberger (1974). These authors obtained, in particular, that
vL converges (in the mean) to some vector, v0, which, as we have noticed in
the general context of Section XII.3, need not coincide with −v∞.

However, a more fundamental question concerning Leray’s solution is the
following one (cf. Finn 1970, p. 88): Is vL nontrivial? Actually, we are not
assured, a priori that vL is nonidentically zero. As a matter of fact, Leray’s
construction in the linear case would lead to an identically vanishing solution

v
(s)
L as a consequence of the Stokes paradox.To see this, let us disregard in

(∗) the nonlinear term vk · ∇vk for each k ∈ N. Applying Leray’s procedure,

we would obtain that v
(s)
L solves the Stokes problem with zero boundary data

and that, in view of (∗∗), v(s)
L has a finite Dirichlet integral. Therefore, by

Theorem V.2.2 we infer v
(s)
L ≡ 0.

It is worth emphasizing that the above question arises also if, instead of
a Leray’s solution, we consider a generalized solution to (XII.0.1), (XII.0.2)
constructed via Galerkin’s method. Actually, in such a case, we look for v =
u+V , where u ∈ D1,2

0 (Ω) and V is a solenoidal extension of −v∞, such that
V (x) = −v∞, for all sufficiently large |x|, and V = 0 at ∂Ω; see Remark
X.4.2. Therefore, as we know from Theorem II.7.6(ii) and Theorem III.5.1,
V ∈ D1,2

0 (Ω), for Ω locally Lipschitz (for example). As a consequence, we can
not exclude u = −V , namely, we can not exclude v ≡ 0.

In the general nonlinear case, the answer to the question is still unknown.
However, for symmetric flow (cf. Remark XII.3.2) Amick (1988, §4.2) has
shown that vL is nontrivial; see also Galdi (1999b, Theorem 3.1). On the
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other hand, it is very likely that if v0 = 0, then vL ≡ 0, but no proof is
available yet; see Section XII.6. The validity of this latter condition has the
following important consequence. In fact, if it is true, we would obtain, in
particular, that, for symmetric flow, vL must converge to a non-zero limit at
infinity. Since, as observed in Remark XII.3.2, this convergence is uniformly
pointwise, from Theorem XII.8.1 we could then conclude that every symmetric
solution vL, pL has at large distances the same asymptotic structure of the
Oseen fundamental solution. Moreover, one could prove v0 = αv∞, for some
α ∈ (0, 1]; see Galdi (1998, Section 3).

Section XII.2. The counterexample given here is the same that appears in
Ladyzhenskaya’s book (1969, pp. xi-xii).

Section XII.3. Theorem XII.3.1 and Lemma XII.3.3 were obtained for the
first time by Gilbarg & Weinberger (1978). Their proof of the theorem is
different from ours since it relies on the maximum principle for the vorticity
field, which only holds in dimension two. Likewise, the proof of the lemma
given by these authors is based on the Cauchy integral formula of complex
functions (cf. (XII.4.29)) which, of course, is applicable only to plane flow. On
the other hand, our proof relies on a general theorem concerning pointwise
behavior of functions in spaces D1,q. Theorem XII.3.2 is due to me.

Section XII.4. The question of the pointwise rate of decay of higher order
derivatives for ∇v and p of the type considered in Exercise XII.4.1 is treated
in Russo (2010a). However this author’s estimates turn out to be more con-
servative than those given in (XII.4.6) and (XII.4.7).

Section XII.5. Existence with v∞ 6= 0 was first shown by Finn & Smith
(1967b), and it relies on their work for the analogous linear problem, cf. Finn
& Smith (1967a). However, this result is obtained under somewhat more re-
strictive assumptions on the body force and the smoothness of Ω and v∗ than
those required in Theorem XII.5.1, which is taken from Galdi (1993). More-
over, the method of Finn and Smith is completely different than that of Galdi.
Another approach to existence with v∞ 6= 0 is provided in Galdi (2004, §2.1).

As we already mentioned, in the case v∞ = 0, to date, no general existence
theory has been developed, and few results are available only under suitable
symmetry assumptions on the data. In particular, we refer the reader to the
work by Galdi (2004, §3.3) and to the more recent one by Yamazaki (2009).

More precisely, the former author assumes the domain
◦
Ωc to have two

orthogonal axes of symmetry, that we may take coinciding with the x1 and x2

directions. Moreover, denote by S the class of vector functions w = (w1, w2)
such that

w1(x1, x2) = −w1(−x1, x2) = w1(x1,−x2) ,

w2(x1, x2) = w2(−x1, x2) = −w2(x1,−x2) .

Then, in Galdi (2004, Theorem 3.2) it is shown that for every boundary data
v∗ ∈ W 1/2,2(∂Ω) ∩ S , with flux through ∂Ω sufficiently small,1 there exists

1 By a mere oversight, this latter assumption is not mentioned in Galdi, loc. cit.
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at least one generalized solution to (XII.0.1)–(XII.0.2) with f = 0.2 This
solution, which is, in fact, of class C∞(Ω) along with the associated pressure
field p, is also in the class S . The simple (but crucial) observation for the
proof of this result consists in the fact that a vector field w ∈ D1,2

0 (Ω) ∩ S

obeys the following inequality

∫

Ω

|w|2
|x|2 ≤ c

∫

Ω

|∇w|2 ,

and this, in turn, implies

lim
r→∞

∫ 2π

0

|w(r, θ)|2dθ = 0 ;

see Galdi, loc. cit., for details. As a matter of fact, this latter condition in
conjunction with Theorem XII.3.4 implies the stronger property for the gen-
eralized solution:

lim
|x|→∞

v(x) = 0 , uniformly .

However, we are not expecting, in general, to give a specific order of decay for
such solutions in terms of negative powers of |x|. The reason is because, when
Ω is the exterior of a circle, they belong to the same class where solutions
(XII.2.7) belong, for which, as we know, no order of decay of the above type
can be given.

In the paper of Yamazaki (2009) the case Ω = R2 is considered, and it

is assumed that f =

(
∂F

∂x2
,− ∂F

∂x1

)
, where F belongs to the “antisymmetry

class” A defined by the following conditions

w(x1, x2) = −w1(−x1, x2) , w(x1,−x2) = −w(x1, x2) ,

w(x1, x2) = −w(x2, x1) , w(−x1,−x2) = −w(x2, x1) .

Under the further assumption that F = O(|x|−2) as |x| → ∞, and its magni-
tude is suitably restricted, in Theorem 2.1 of Yamazaki, loc. cit., it is shown
the existence of a corresponding generalized solution which satisfies further
summability properties. Moreover, the vorticity decays like |x|−2.

I conjecture that the two-dimensional, plane exterior problem correspond-
ing to v∞ = 0 is, generically, not solvable. In the spirit of the approach
followed by Galdi (2009) where an analogous result is proved in the three-
dimensional case, a way of showing this conjecture could be by assessing that
the relevant nonlinear Navier–Stokes operator, properly defined, is Fredholm
of negative index.

2 The case f 6= 0 can be easily handled, provided f ∈ S and decays suitably fast
at large distances.
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Section XII.7. The result of Galdi & Sohr (1995) on the summability prop-
erties of generalized solutions was later rediscovered by Sazonov (1999), under
more stringent assumptions.

The “cut-off” technique employed in Theorem XII.7.2 has been extended
to dimension greater than two by Farwig and Sohr (1995, 1998).

Section XII.8. Though inspired by the work of Smith (1965), the method
presented here is due to me.

Employing the results of Smith (1965), Amick (1991) proved an analog of
Theorem XII.8.1–Theorem XII.8.3 for the case of symmetric flows.

Section XII.9. The main result of this section is from the work of Galdi
(1993).





XIII

Steady Navier–Stokes Flow in Domains with

Unbounded Boundaries

Őν oί ϑεoὶ ϕιλoeυσιν, ὰπoϑνήσκει νέoς.

MENANDROS

Introduction

Let us consider a steady Navier–Stokes flow of a liquid filling a domain with
two unbounded “outlets.” The relevant region of flow is thus a domain Ω ⊂
Rn, n = 2, 3 such that

Ω =

2⋃

i=0

Ωi

whereΩ0 is a compact set of Rn while, in possibly different coordinate systems,

Ωi = {x ∈ Rn : xn > 0, x′ ≡ (x1, . . . , xn−1) ∈ Σi(xn)} i = 1, 2,

and Σi = Σi(xn) are domains of Rn−1 smoothly varying with xn. The diffi-
culties one encounters in studying the mathematical properties of such a flow
have already been discussed at some length in the Introduction to Chapter
VI and, therefore, they will not be repeated here. In this respect, we wish
only to recall that, even in the linearized Stokes approximation, many funda-
mental problems continue to be open when the cross sections Σi remain either
bounded or unbounded. As expected, in the Navier–Stokes case, in addition to
these unsolved questions, we have others that are merely due to the nonlinear
character of the equations.
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The objective of the present chapter is to study two characteristic prob-
lems (one with bounded cross section, the other with an unbounded one)
which, though completely solved in the linearized case, when analyzed in the
nonlinear context present several basic aspects that are still far from clear.

The first one is the so-called Leray’s problem; cf. also Section VI.1. In this
case Ω is a “distorted channel” of Rn, n = 2, 3, that is, Σi are bounded and
independent of xn, so that each outlet Ωi reduces to a semi-infinite straight
cylinder for n = 3 and to a semi-infinite strip for n = 2. One has to study
steady flow that corresponds to a given velocity flux Φ through the cross sec-

tion of Ω and whichin each Ωi tends to the Poiseuille flow v
(i)
0 corresponding

to Φ. As we know, these fields satisfy

v
(i)
0 = v

(i)
0 (x′)en

n−1∑

j=1

∂

∂x2
j

v
(i)
0 (x′) = −Ci in Σi

v
(i)
0 (x′) = 0 at ∂Σi

(XIII.0.1)

with Ci constants uniquely related to Φ; see Exercise VI.0.1.
The second is a problem introduced by Heywood (1976); cf. also Section

VI.5. Here Ω is an “aperture domain” of R3, namely,

Ω =
{
x ∈ R3 : x3 6= 0 or x′ ∈ S

}

with S a two-dimensional bounded domain. Therefore, the cross sections Σi

coincide with the whole of R2. The question is to determine a flow correspond-
ing to a given velocity flux Φ through S and whose velocity field tends to zero
at large distances.

In both cases we wish to analyze existence, uniqueness, and asymptotic
behavior of corresponding solutions. To solve these questions we shall use an
approach that is similar in principle to that employed in the linear case. Of
course, we now have the further complication of the nonlinear term. This com-
plication manifests itself in several ways, which we shall now briefly describe.

As in the linear case, we look for a generalized solution v in the form

v = u + a.

In this relation a is a flux carrier, i.e., a smooth solenoidal field in Ω that
vanishes on ∂Ω, tends to the prescribed velocity field at large distances, and
satisfies ∫

Σ

a ·n = Φ

with n unit normal to Σ, whereas

u ∈ D1,2
0 (Ω).
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As we have already seen in the case of a region of flow with a compact bound-
ary, in the case at hand in order to guarantee the existence of a solution it is
enough to prove an a priori estimate for the Dirichlet integral of u. Moreover,
again as in the case of a compact boundary (cf. Sections VII.4 and IX.4),
to show existence without restrictions on |Φ|, we have to show that, for each
α > 0 there is a flux carrier a = a(Φ;α) such that

−
∫

Ω

u · ∇a · u ≤ α|u|21,2, for all u ∈ D(Ω). (XIII.0.2)

However, if the exits Ωi are cylindrical (or, more generally, have bounded cross
section) the existence of flux carriers satisfying (XIII.0.2) is not yet known.
Nevertheless, one can construct, in such a case, fields a verifying the following
condition: ∣∣∣∣

∫

Ω

u · ∇a · u
∣∣∣∣ ≤ c|Φ||u|21,2, for all u ∈ D(Ω),

for some c = c(Ω, n). The consequence of this fact is that, unlike the linear
case, so far, one is able to produce existence of solutions to Leray’s problem
only for small values of |Φ| (compared to the coefficient of kinematical viscosity
ν). The question of whether Leray’s problem is solvable for any value of the
flux therefore remains open. On the other hand, if the outlets Ωi contain
a semi-infinite cone, Ladyzhenskaya & Solonnikov (1977) have shown that
there are vector fields a verifying condition (XIII.0.2) and, as a consequence,
for domains with this type of outlets it is possible to show existence “in the
large,” that is, for arbitrary values of the flux Φ. Thus, in particular, this kind
of existence holds for an “aperture domain.”

Once a solution has been determined, the next task is to investigate its
asymptotic structure. In the case of Leray’s problem, one shows that, again if
|Φ| is sufficiently small, all generalized solutions (together with their deriva-
tives of arbitrary order) must tend to the corresponding Poiseuille velocity
field exponentially fast. Similarly, for Heywood’s problem, one is able to give
a detailed asymptotic expansion, which resembles that given for the linear
case, provided |Φ| is sufficiently small. If these problems can be solved for
arbitrary values of the flux, it remains an open question.1

Another point that we would like to emphasize is the two-dimensional
version of the flow through an aperture. The situation is in a sense similar
to the plane exterior flow which we have analyzed in the preceding chapter.
Specifically, in the case at hand we can prove, with no restriction on the flux,
existence of vector fields v which solve the momentum equation, satisfy the
flux and boundary conditions and such that

∫

Ω

∇v : ∇v <∞. (XIII.0.3)

1 It is likely that in the case of the (three-dimensional) aperture flow the restriction
on Φ can be removed, but no proof is known.
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The difficulty is to show that (XIII.0.3) guarantees that v vanishes at large
distances. We shall not investigate this question here, and refer the reader
to the paper by Galdi, Padula, & Passerini (1995), where it is shown that v
tends to zero uniformly pointwise. Moreover, if the aperture S is symmetric
around the x2-axis,2 and if |Φ| is sufficiently small, it can be shown that the
solution behaves at large distances as a suitable Jeffery–Hamel solution, see
Galdi, Padula, & Solonnikov (1996); see also Remark XIII.9.5. If S is not
symmetric, the question of the asymptotic behavior is open.

Finally, we wish to remark that, even though obtained for particular re-
gions of flow, most of the results we find could be extended without conceptual
difficulties to more general situations. For example, we could show existence of
generalized solutions (with no restriction on the flux) in domains whose out-
lets contain and are contained in suitable semi-infinite cones or for domains
of the type considered in Section VI.3. Likewise, we could furnish a complete
asymptotic description (for small values of the flux) of generalized solutions in
domains whose outlets contain the body of revolution {|x′| < xα

n, α > 1}. For
other results concerning steady flow in domains with unbounded boundaries,
we refer the reader to the Notes for this Chapter.

XIII.1 Leray’s Problem: generalized Solutions and
Related Properties.

Let us consider the steady flow of a viscous liquid moving in a smooth infinite
“distorted channel.” We shall thus assume that the relevant region of flow is
a domain Ω ⊂ Rn, n = 2, 3, of class C∞1 with two cylindrical ends, namely,

Ω =

2⋃

i=0

Ωi (XIII.1.1)

where Ω0 is a compact subset of Ω and Ωi, i = 1, 2, are disjoint domains
which, in possibly different coordinate systems, are given by

Ω1 = {x ∈ Rn : xn < 0, x′ ∈ Σ1}
Ω2 = {x ∈ Rn : xn > 0, x′ ∈ Σ2}.

Here, x′ = (x1, . . . , xn−1) and Σi, i = 1, 2, are C∞–smooth simply connected
domains of the plane if n = 3, while, if n = 2 (the case of plane flow),
Σi = (−di, di), for some di > 0. Denote by Σ a cross section of Ω, that is,
any bounded intersection of Ω with an (n− 1)–dimensional plane that in Ωi

2 Orthogonal to S.
1 Here applies the same remark we made for the linear case in Footnote 1 of Section

VI.1.
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reduces to Σi, and by n a unit vector orthogonal to Σ and oriented from Ω1

toward Ω2 (say).
The main objective of this and of the next three sections is to study the

solvability of the following Leray’s problem:2 Given Φ ∈ IR, to find a pair v, p
such that

ν∆v = v · ∇v+ ∇p
∇ · v = 0

}
in Ω (XIII.1.2)

with
v = 0 at ∂Ω
∫

Σ

v · n = Φ
(XIII.1.3)

and

v → v
(i)
0 as |x| → ∞ in Ωi (XIII.1.4)

where v
(i)
0 , i = 1, 2, are the velocity fields (XIII.0.1), of the Poiseuille flow in

Ωi, corresponding to the flux Φ.

We begin to give a generalized formulation of this problem, which parallels
that furnished for the linearized case in Section VI.1. Specifically, multiplying
(XIII.1.2)1 by ϕ ∈ D(Ω) and integrating by parts, we deduce

ν(∇v,∇ϕ) = (v · ∇ϕ, v), for all ϕ ∈ D(Ω). (XIII.1.5)

We thus have the following definition

Definition XIII.1.1. A vector field v : Ω → Rn is called a weak (or gener-
alized) solution to Leray’s problem (XIII.1.2)–(XIII.1.4) if and only if

(i) v ∈W 1,2
loc (Ω);

(ii) v satisfies (XIII.1.5);
(iii) v is (weakly) divergence-free in Ω;
(iv) v satisfies (XIII.1.3) in the trace sense;

(v) (v − v(i)
0 ) ∈W 1,2(Ωi), i = 1, 2.

Remark XIII.1.1 As shown in Section VI.1, for all v with v − v(i)
0 (x′) ∈

W 1,2(Ωi) one has

∫

Σi

|v(x′, xn) − v(i)
0 (x′)|2dx′ → 0 as |xn| → ∞ in Ωi.

Therefore, condition (v) of Definition XIII.1.1 is the generalized version of
(XIII.1.4). �

2 For simplicity, we shall assume that no body forces are acting on the liquid.
Obvious generalizations are left to the reader as an exercise.
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Remark XIII.1.2 Since

|(v · ∇ϕ, v)| ≤ sup
σ

|∇ϕ|‖v‖2,σ

with σ = suppϕ, identity (XIII.1.5) is well defined for a generalized solution.
�

The following result shows that to every weak solution we can associate a
corresponding pressure field.

Lemma XIII.1.1 Let v be a generalized solution to Leray’s problem (XIII.1.2)–
(XIII.1.4). Then there exists p ∈ L2

loc(Ω) such that

ν(∇v,∇ψ) = (v · ∇ψ, v) + (p∇ · ψ) for all ψ ∈ C∞
0 (Ω). (XIII.1.6)

Proof. In view of (i) of Definition XIII.1.1 and Corollary III.5.2, it suffices to
show that

F(ψ) ≡ (v · ∇ψ, v) , ψ ∈ D1,2
0 (Ω′)

defines a bounded linear functional on D1,2
0 (Ω′), with Ω′ any bounded domain

of Ω. However, by the Hölder inequality and the embedding Theorem II.3.4,
we have the following.

|F(ψ)| ≤ |ψ|1,2,Ω′‖v‖2
4,Ω′ ≤ c|ψ|1,2,Ω′‖v‖2

1,2,Ω′

with c = c(Ω′, n), and the lemma follows. ut

We end this section by establishing the differentiability properties of gen-
eralized solutions. Specifically, we have the following

Theorem XIII.1.1 Let v be a generalized solution to Leray’s problem
(XIII.1.2)–(XIII.1.4) and let p be the corresponding pressure field associated
to v by Lemma XIII.1.1. Then

v, p ∈ C∞(Ω′) (XIII.1.7)

for all bounded domains Ω′ with Ω′ ⊂ Ω.

Proof. We show the proof for n = 3; the case where n = 2 is treated analo-
gously. Since v ∈W 1,2

loc (Ω), we have

v · ∇v ∈ L
3/2
loc (Ω) (XIII.1.8)

and, therefore, from Theorems IV.4.1 and IV.5.1 it follows that

v ∈W
2,3/2
loc (Ω), p ∈W

1,3/2
loc (Ω).
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Thus v and p have a better regularity than assumed at the outset and, with
the help of Theorem II.2.4 we infer

v · ∇v ∈ Lq
loc(Ω) for all q < 3,

which improves on (XIII.1.8). Again using Theorem IV.4.1 and Theorem
IV.5.1, we find

v ∈W 2,q
loc (Ω), p ∈W 1,q

loc (Ω), for all q < 3.

We then obtain a further improvement on the (local) summability of the
solution and iterating this procedure, we prove, by induction, the validity of
(XIII.1.7). ut

Remark XIII.1.3 If the domainΩ is not of class C∞, we can prove a weaker
version of (XIII.1.7), namely,

v, p ∈ C∞(Ω′)

only for every bounded Ω′ with Ω
′ ⊂ Ω. The regularity up to the boundary

will then depend on the assumed regularity of Ω, as specified by the assump-
tions of Theorem IV.5.1; cf. Footnote 1. �

XIII.2 On the Uniqueness of generalized Solutions to
Leray’s Problem.

In this section we shall prove a general uniqueness result for generalized solu-
tions to Leray’s problem (XIII.1.2)–(XIII.1.4). To this end, we need to study
in some detail the continuity properties of the trilinear form (v · ∇u,w).

We begin to show some embedding inequalities in the domainsΩi, i = 1, 2.
For t ≥ 0, t2 > t1 > 0, we set

Ωt
1 = {x ∈ Ω1 : xn < −t}

Ωt
2 = {x ∈ Ω2 : xn > t}

Ω0,t = Ω − [Ω
t

1 ∪Ω
t

2]

Ωi,t1,t2 = Ωt1
i ∩Ωt2

i , i = 1, 2.

(XIII.2.1)

Lemma XIII.2.1 Let Ω ≡ Ωi, and Σ ≡ Σi, i = 1, 2, and let u ∈
Wm,q(Ωt,t+1), m ≥ 0, q ≥ 1. Then the embedding inequalities (II.3.17)–
(II.3.18) hold in Ωt,t+1 with constants c1, c2, and c3 independent of t. More-
over, for all u ∈ D1,2(Ω) with u = 0 at ∂Ω − {xn = 0} we have

‖u‖4,Ωt,t+1 ≤ κ|u|1,2,Ωt,t+1

‖u‖6,Ωt,t+1 ≤ K|u|1,2,Ωt,t+1

(XIII.2.2)
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where1

κ =





(
1
4 |Σ| + 1√

2
|Σ|1/2

)1/4

if n = 3

[
8d2

π

(
d

π
+ 1

)]1/4

if n = 2

and

K =





[
9
8(1 + 1√

2
|Σ|1/2)

]1/3

if n = 3

(4κd2)1/6 if n = 2.

Proof. The first part of the lemma is an immediate consequence of Theorem
II.3.4. Actually, once we establish, from this theorem, inequalities (II.3.17)–
(II.3.18) for t=0 with constants ci, i = 1, 2, 3, independent of t, by virtue of
the translational invariance xn → xn− t they remain established for all t > 0,
with the same constants ci. We shall now show the second part of the lemma.
From (II.3.9) (in the case n = 3) and the elementary inequality

|u(x1, x2)|2 ≤
∫ d

−d

|u(ξ1, x2)|
∣∣∣∣
∂u(ξ1, x2)

∂ξ1

∣∣∣∣dξ1 x1 ∈ (−d, d)

(in the case n = 2), we have

‖u‖4
4,Σ ≤ λ‖u‖2

2,Σ |u|21,2,Σ, (XIII.2.3)

where

λ =

{
1
2

if n = 3

2d if n = 2.

Furthermore, from (II.5.3) we have

‖u‖2
2,Σ ≤ µ|u|21,2,Σ, (XIII.2.4)

where µ is the Poincaré constant for Σ. An upper bound for µ is obtained
from Exercise II.5.2 and (II.5.5), and we have

µ ≤





|Σ|
2

if n = 3

(2d)2

π2 if n = 2.

Integrating (XIII.2.3) over the variable x3, we derive

‖u‖4
4,Ωt,t+1

≤ λ

∫ t+1

t

‖u‖2
2,Σ (XIII.2.5)

1 Recall that |Σ| = 2d if n = 2.
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On the other hand, for all x′ ∈ Σ, ξ3 ∈ (t, t+ 1) and q ≥ 1,

|u(x′, t)|q ≤ |u(x′, ξ3)|q + q

∫ t+1

t

|u(x′, ξ)|q−1 |∇u(x′, ξ)|dξ, (XIII.2.6)

and so, integrating this latter inequality with q = 2 over x′ and ξ3, with the
help of the Schwarz inequality we find

‖u‖2
2,Σ ≤ ‖u‖2

2,Ωt,t+1
+ 2‖u‖2,Ωt,t+1|u|1,2,Ωt,t+1.

Using (XIII.2.4) in this relation furnishes

‖u‖2
2,Σ ≤ (µ + 2

√
µ)|u|21,2,Ωt,t+1

.

Inequality (XIII.2.2)1 becomes then a consequence of the latter and of
(XIII.2.5). The case where n = 2 is treated in a completely similar way.
Finally, we show (XIII.2.2)2. We consider the case where n = 3, leaving to the
reader the two-dimensional case as an exercise. From (II.3.9) we have

‖u‖6
6,Σ ≤ 9

8
‖u‖4

4,Σ|u|21,2,Σ

and so, integrating between t and t+ 1 we find

8

9
‖u‖6

6,Ωt,t+1
≤
∫ t+1

t

‖u‖4
4,Σ|u|21,2.

Using (XIII.2.6) with q = 4 and integrating over x′ ∈ Σ and ξ3 ∈ [t, t+ 1], it
follows that

‖u‖4
4,Σ ≤ ‖u‖4

4,Ωt,t+1
+ 4

∫

Ωt,t+1

|u|3|∇u|

and so, observing that from the Hölder inequality and (XIII.2.4),

‖u‖4
4,Ωt,t+1

≤ ‖u‖3
6,Ωt,t+1

‖u‖2,Ωt,t+1 ≤
√
µ‖u‖3

6,Ωt,t+1
|u|1,2,Ωt,t+1

∫

Ωt,t+1

|u|3|∇u| ≤ ‖u‖3
6,Ωt,t+1

|u|1,2,Ωt,t+1,

from the last four displayed inequalities and recalling the value of µ, we con-
clude that

‖u‖6
6,Ωt,t+1

≤ 9

8

(
1 +

|Σ|1/2

√
2

)
‖u‖3

6,Ωt,t+1
|u|31,2,Ωt,t+1

,

and (XIII.2.2)2 follows. The lemma is proved. ut
Next we shall investigate the continuity of the trilinear form (v · ∇u,w)

in suitable function spaces. To this end, set

CΦ = {v ∈W 1,2
loc (Ω) : |v − v(i)

0 |1,2,Ωi <∞, i = 1, 2}
where, we recall, v

(i)
0 is the (uniquely determined) velocity field of the

Poiseuille flow in Ωi corresponding to the flux Φ.
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Remark XIII.2.1 Every weak solution to Leray’s problem (corresponding
to the flux Φ) is in the class CΦ. �

Lemma XIII.2.2 Let Ω be as in (XIII.1.1) and let u,w ∈ D1,2
0 (Ω). Then if

v ∈ D1,2
0 (Ω) we have

|
(
v · ∇u,w

)
| ≤ c1|v|1,2|u|1,2|w|1,2 (XIII.2.7)

with c1 = c1(Ω, n). Moreover, if v ∈ D1,2
0 (Ω), we have

(
v · ∇u,w

)
= −

(
v · ∇w,u

)
(XIII.2.8)

so that (
v · ∇u,u

)
= 0. (XIII.2.9)

Finally, if v ∈ CΦ, and

Ai ≡ |v− v(i)
0 |1,2,Ωi,

there is ci = ci(Ω, n) > 0, i = 2, 3 such that

|
(
u · ∇v,w

)
| ≤ c2

(∑2
i=1 Ai + |v|1,2,Ω0 + |Φ|

)
|u|1,2|w|1,2

|
(
v · ∇w,u

)
| ≤ c2

(∑2
i=1 Ai + |v|1,2,Ω0 + |Φ|

)
|u|1,2|w|1,2

|
(
v · ∇v,u

)
| ≤ c3

(∑2
i=1 A2

i + |v|21,2,Ω0
+ |Φ|2

)
|u|1,2.

(XIII.2.10)

If, in addition, ∇ · v = 0, then

(v · ∇u,u) = 0. (XIII.2.11)

Proof. We split (v · ∇u,w) as the sum of three integrals I1, I2, and I0 over
the regions Ω1, Ω2, and Ω0, respectively. We have, by the Hölder inequality,

|I1| ≤ ‖v‖4,Ω1‖w‖4,Ω1|u|1,2. (XIII.2.12)

However, from Lemma XIII.2.1, it follows that

‖u‖4,Ω1 ≤ κi|u|1,2 for all u ∈ D1,2
0 (Ω), i = 1, 2, (XIII.2.13)

and so (XIII.2.12) yields

|I1| ≤ κ2
1|v|1,2|w|1,2|u|1,2. (XIII.2.14)

Likewise, we prove

|I2| ≤ κ2
2|v|1,2|w|1,2|u|1,2. (XIII.2.15)
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From the embedding Theorem II.3.4 it follows that2

|I0| ≤ ‖v‖4,Ω0‖w‖4,Ω0|u|1,2

≤ c‖v‖1,2,Ω0‖w‖1,2,Ω0|u|1,2.

However, since v and w vanish (in the trace sense) at the boundary ∂Ω,
from (II.5.18) we find that ‖ ·‖1,2,Ω0 and | · |1,2,Ω0 are equivalent norms so that
the latter inequality furnishes, in particular,

|I0| ≤ c|v|1,2|w|1,2|u|1,2. (XIII.2.16)

Relation (XIII.2.7) is a consequence of (XIII.2.14)–(XIII.2.16). To show
(XIII.2.8) we notice that it is trivially verified (by integration by parts) if
w, v ∈ C∞

0 (Ω). Under the assumptions on w, v stated in the theorem, condi-
tion (XIII.2.8) follows from the continuity property (XIII.2.7) and the density
of C∞

0 (Ω) into D1,2
0 (Ω). Of course, (XIII.2.8) implies (XIII.2.9). Let us now

prove (XIII.2.10). We split, as before, (u · ∇v,w) as the sum of I1, I2, and
I0. We have

|I1| ≤ |(u · ∇(v − v(i)
0 ),w)Ω1

| + |(u · ∇v(i)
0 ,w)Ω1

|.

Thus, by (XIII.2.13) and the Hölder inequality, we deduce that

|I1| ≤ κ2
1A1|u|1,2|w|1,2 +

∫ ∞

1

|v(1)
0 |1,2,Σ‖u‖4,Σ‖w‖4,Σ,

where integration is performed over the x3 variable. Because of Exercise
VI.0.1, (XIII.2.3), and (XIII.2.4), it readily follows that

|I1| ≤ c(A1 + |Φ|)|u|1,2|w|1,2. (XIII.2.17)

Likewise, we show
|I2| ≤ c(A2 + |Φ|)|u|1,2|w|1,2. (XIII.2.18)

Concerning I0, we have

|I0| ≤ c|v|1,2,Ω0‖u‖1,2,Ω0‖w‖1,2,Ω0,

where use has been made of the Hölder inequality and the embedding Theorem
II.3.4. However, as already remarked, ‖ · ‖1,2,Ω0 and | · |1,2,Ω0 are equivalent

norms for functions from D1,2
0 (Ω0) and so

|I0| ≤ c|v|1,2,Ω0|u|1,2|w|1,2, (XIII.2.19)

and (XIII.2.10)1 becomes a consequence of (XIII.2.17)–(XIII.2.19). The proof
of (XIII.2.10)2 is very much the same as that just furnished for (XIII.2.10)1

2 Throughout the rest of the proof, the symbol c will denote a quantity depending
(at most) on Ω and n.
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and, therefore, it will be omitted. Also the proof of (XIII.2.10)3 is obtained
in a similar fashion, once we notice that

v
(i)
0 · ∇v(i)

0 ≡ 0 in Ωi i = 1, 2.

To show the last property (XIII.2.11), we observe that, since by (XIII.2.10)2

v · ∇u · u ∈ L1(Ω),

it follows that
∫

Ω

v · ∇u ·u = lim
R→∞

∫

Ω0,R

v · ∇u · u (XIII.2.20)

with Ω0,R is defined in (XIII.2.1). By integration by parts, for all R > 0,

∫

Ω0,R

v · ∇u ·u =
1

2

[∫

Σ1(R)

v · nu2 +

∫

Σ2(R)

v · nu2

]
(XIII.2.21)

where Σ1(R) [respectively Σ2(R)] denotes the cross section Σ1 [respectively
Σ2] calculated at xn = −R [respectively xn = R] in the system of coordinates
that Ω1 [respectively Ω2] is referred to. Since

IR ≡
∫

Σ1(R)

v ·nu2 =

∫

Σ1(R)

(v − v(1)
0 ) · nu2 +

∫

Σ1(R)

v
(1)
0 · nu2,

it follows that

|IR| ≤ (‖v − v(1)
0 ‖2,Σ1(R) + ‖v(1)

0 ‖2,Σ1(R))‖u‖2
4,Σ1(R).

By Remark XIII.1.1 and Exercise VI.0.1 we have

(‖v − v(1)
0 ‖2,Σ1(R) + ‖v(1)

0 ‖2,Σ1(R)) ≤ c1

for some c1 independent of R. Therefore,

|IR| ≤ ‖u‖2
4,Σ1(R). (XIII.2.22)

By the trace inequality of Theorem II.4.1 and (XIII.2.4) we readily see that

‖u‖4,Σ1(R) ≤ c‖u‖1,2,ΩR
1
≤ c

√
µ|u|1,2,ΩR

1
,

which, along with (XIII.2.22) and the condition u ∈ D1,2
0 (Ω), implies

lim
R→∞

IR = 0.

Likewise, one shows

lim
R→∞

∫

Σ2(R)

v · nu2 = 0

so that, by this relation, (XIII.2.20), and (XIII.2.21) we conclude the validity
of (XIII.2.11). The lemma is proved. ut
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Remark XIII.2.2 Explicit values for the constants ci, i = 1, 2, 3 appearing
in the statement of Lemma XIII.2.2 can be of some interest. In particular,
c2 is related to uniqueness conditions for generalized solutions; see Theorem
XIII.2.1. Even though it appears difficult to give an estimate valid for a general
domain Ω, this is actually possible if Ω is of special shape. For instance, if Ω
is an infinite straight cylinder of circular cross section Σ, one can show

c2 = 2 max

{
κ,
cP√

2
|Σ|1/2

}

where κ is the constant given in (XIII.2.2) while cP is the Poiseuille constant
defined in Exercise VI.0.1. �

We are now in a position to show the main result of this section.

Theorem XIII.2.1 Let v be a generalized solution to Leray’s problem
(XIII.1.2), (XIII.1.4) corresponding to the flux Φ. If

2∑

i=1

|v − v(i)
0 |1,2,Ωi + |v|1,2,Ω0 + |Φ| < ν

c2
,

with c2 given in (XIII.2.10)1, then v is the only generalized solution corre-
sponding to Φ.

Proof. Let v1 be another generalized solution corresponding to Φ. Setting

u = v1 − v

from (XIII.1.5), it follows that

ν(∇u,∇ϕ) + (u · ∇u,ϕ) + (u · ∇v,ϕ) + (v · ∇u,ϕ) = 0 (XIII.2.23)

for all ϕ ∈ D(Ω). It is readily shown that

u ∈ D1,2
0 (Ω). (XIII.2.24)

Actually, in Ωi, i = 1, 2,

u = (v1 − v(i)
0 ) − (v − v(i)

0 )

and, as a consequence of (i), (iv), and (v) of Definition XIII.1.1 and in view
of Exercise VI.1.1, it follows that

u ∈ D1,2
0 (Ω).

Since u is solenoidal, we have, in fact

u ∈ D̂1,2
0 (Ω);
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cf. Section III.5. However, by Exercise III.5.1,

D̂1,2
0 (Ω) = D1,2

0 (Ω)

and (XIII.2.24) is proved. By virtue of Lemma XIII.2.2 we can now extend
(XIII.2.23) to all ϕ ∈ D(Ω) and, because of (XIII.2.24), we may take ϕ = u.
By properties (XIII.2.9) and (XIII.2.11),

(v · ∇u,u) = (u · ∇u,u) = 0,

and so (XIII.2.23) with ϕ = u delivers

ν |u|21,2 + (u · ∇v,u) = 0. (XIII.2.25)

Employing (XIII.2.10)1, we find

|(u · ∇v,u)| ≤ c2

(
2∑

i=1

|v − v(i)
0 |1,2,Ωi + |v|1,2,Ω0 + |Φ|

)
|u|21,2,

and the theorem follows from this inequality and (XIII.2.25). ut

Remark XIII.2.3 In the case when Ω is an infinite straight cylinder an
estimate from above for the constant c2 is given in Remark XIII.2.1. �

XIII.3 Existence and Uniqueness of Solutions to Leray’s
Problem

Existence will be proved by the same Galerkin technique employed in Chapters
IX–XI for analogous questions in domains with compact boundaries. To this
end, we need, as in the linear case, a suitable extension of the Poiseuille

velocity fields v
(i)
0 , i = 1, 2. However, since in the case at hand the equations

are nonlinear, we have to face the same problem we already encountered in
Section IX.4 and Section X.4. Actually, let us denote by a an extension of

v
(i)
0 , i = 1, 2, that is, a sufficiently smooth solenoidal vector field in Ω that

vanishes on ∂Ω, equals v
(i)
0 at large distances in Ωi, i = 1, 2, and such that

∫

Σ

a · n = Φ.

We then look for a solution to (XIII.1.2)–(XIII.1.4) of the form

v = u + a, u ∈ D1,2
0 .

As we have learned from the Galerkin technique, for such a solution to exist
we need an a priori bound for |u|1,2 depending only on the data. Replacing
formally this v into (XIII.1.2) we find
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ν∆u = u · ∇u + u · ∇a+ a · ∇u+ ∇p− ν∆a+ a · ∇a
∇ · u = 0



 in Ω

u = 0 at ∂Ω
∫

Σ

u ·n = 0

lim
|x|→∞

u = 0 in Ωi.

Dot-multiplying the first equation by u , which, according to the Galerkin
method, can be assumed to be a member of D(Ω), integrating by parts and
employing the boundary conditions we formally derive the following identity

ν

∫

Ω

∇u : ∇u = −
∫

Ω

u · ∇a ·u − ν

∫

Ω

∇a : ∇u−
∫

Ω

a · ∇a · u.

Using the results of Lemma XIII.2.2 along with the properties of a , it is not
difficult to show that the latter identity leads to the following estimate1

ν

∫

Ω

∇u : ∇u ≤ −
∫

Ω

u · ∇a · u+ C

(
ν

∫

Ω

∇u : ∇u
)1/2

with C depending only on the data. Thus, exactly as in the case of a region
of flow with a compact boundary, if we want to prove existence without re-
strictions from below on the kinematical viscosity ν , we should show that for
any α ∈ (0, ν) there exists a(x;α) such that

−
∫

Ω

u · ∇a · u < α

∫

Ω

∇u : ∇u for all u ∈ D(Ω).

However, the existence of such an extension is not known and, perhaps, in
view of what we have seen in the case of a bounded region of flow, it may
not hold. Nevertheless, in place of the preceding property, one does prove the
existence of an extension a verifying

∣∣∣∣
∫

Ω

u · ∇a · u
∣∣∣∣ < c−1|Φ|

∫

Ω

∇u : ∇u for all u ∈ D(Ω)

for some c = c(Ω, n), which, therefore, furnishes the desired bound on |u|1,2

provided
|Φ| < cν.

As a consequence, the question of existence of solutions to Leray’s problem
for arbitrary values of ν or (equivalently) for arbitrary values of the flux Φ
remains open.

We shall now pass to the construction of the field a that will satisfy this
property.

1 See also the proof of Theorem XIII.3.2.
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Lemma XIII.3.3 There exists a field a : Ω → Rn such that

(i) a ∈W 2,2
loc (Ω);

(ii) ∇ · a = 0 in Ω;
(iii) a = 0 at ∂Ω;

and, for some R > 0,

(iv) a = v
(i)
0 in ΩR

i ;
(v) |a|1,2,Ω0,R ≤ c|Φ|;
with ΩR

i and Ω0,R defined in (XIII.2.1) and with c = c(Ω, n, R).

Proof. The field a is constructed exactly as in Section VI.1. The only thing
to prove is condition (v). However, we know that in Ω0,R a satisfies

|a|1,2,Ω0,R ≤ c

2∑

i=1

|v(i)
0 |1,2,Σi,

with c = c(Ω0,R, n), so that (v) follows from this inequality and Exercise
VI.0.1. ut

The preceding lemma allows us to show the following existence result.

Theorem XIII.3.2 There is a constant c = c(Ω, n) > 0 such that if

|Φ| < cν, (XIII.3.1)

Leray’s problem (XIII.1.2)–(XIII.1.4) admits at least one generalized solution
v. Moreover, for some positive C = C(Ω, n),

2∑

i=1

|v − v(i)
0 |1,2,Ωi + |v|1,2,Ω0 ≤ C(1 +

1

ν
)(|Φ|+ |Φ|2). (XIII.3.2)

Proof. We look for a solution of the form

v = u + a

with a given in Lemma XIII.3.3 and u ∈ D1,2
0 (Ω) satisfying

ν(∇u,∇ϕ)− (u · ∇ϕ,u) = −(u · ∇a,ϕ) + (a · ∇ϕ,u)
−(a · ∇a,ϕ) + ν(∆a,ϕ).

(XIII.3.3)

It is clear that v satisfies all the requirements (i)-(v) of Definition XIII.1.1.
A solution to (XIII.3.3) is determined via the Galerkin method. Thus, let

{ϕk} ⊂ D(Ω)

denote a sequence whose linear hull is dense in D1,2
0 (Ω). By Lemma VII.2.1

and the embedding Theorem II.3.4, we can take {ϕk} satisfying the following
conditions:
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(i) (ϕi,ϕj) = δij;
(ii) Given ϕ ∈ D(Ω) and ε > 0, there are a positive integer m = m(ε) and

real numbers γ1 , . . . , γm such that

‖ϕ−
m∑

i=1

γiϕ‖C1 < ε.

A sequence of “approximating solutions” {um} to (XIII.3.3) is then sought of
the type

um =
m∑

k=1

ξkmϕk

ν(∇um,∇ϕk) − (um · ∇ϕk,um) = −(um · ∇a,ϕk) + (a · ∇ϕk,um)

−(a · ∇a,ϕk) + ν(∆a,ϕk),
(XIII.3.4)

with k = 1, . . . , m. Existence to (XIII.3.4), for each m ∈ N, can be established
exactly as in Theorem IX.3.1 and Theorem X.4.1 (see Lemma IX.3.2), pro-
vided we show a suitable bound for |um|1,2. To obtain this bound, we multiply
(XIII.3.4)2 by ξkm and sum over k from 1 to m. Recalling that, by Lemma
XIII.2.2, for all m ∈ N,

(um · ∇um,um) = (a · ∇um,um) = 0, (XIII.3.5)

we find

ν |um|21,2 = −(um · ∇a,um) + (a · ∇a,um) + ν(∆a,um). (XIII.3.6)

From Lemma XIII.2.2 and Lemma XIII.3.3 it follows that

|(um · ∇a,um)| ≤ c1|Φ| |um|21,2

|(a · ∇a,um)| ≤ c1|Φ|2 |um|1,2

(XIII.3.7)

with c1 = c1(Ω, n). Furthermore, from (VI.1.9) and (VI.1.10) we have

|(∆a,um)| = |(∇a,∇um)
Ω0,R

|

and so, again by Lemma XIII.3.3

|(∆a,um)| ≤ c2|Φ| |um|1,2, (XIII.3.8)

with c2 = c2(Ω, n). Thus, if we take, for instance,

|Φ| < 1

2c1
ν,

using (XIII.3.5)–(XIII.3.8) and Lemma IX.3.2 we show existence to problem
(XIII.3.4) for all m ∈ N. Furthermore,
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|um|1,2 ≤ 2c3
ν

(|Φ|+ |Φ|2). (XIII.3.9)

Using (XIII.3.9) and the weak compactness property of the spaces Ḋ1,2(Ω),
we may find a subsequence {um′} and a vector field u ∈ D1,2

0 (Ω) such that

um′ → u weakly in D1,2
0 (Ω)

um′ → u strongly in L2(Ω′), for all bounded Ω′ ⊂ Ω.

Reasoning as in Theorem IX.3.1 and Theorem X.4.1 and taking advantage
of condition (ii) on {ϕk}, we then show that u satisfies (XIII.3.3) for all
ϕ ∈ D(Ω). Since in view of (XIII.3.9) and the property of weak limits, we
have

|u|1,2 ≤ 2c3
ν

(|Φ|+ |Φ|2),

with the help of Lemma XIII.3.3 and Exercise VI.0.1 we also have

|v − v(i)
0 |1,2,Ωi ≤ |a− v(i)

0 |1,2,Ωi + |u|1,2

≤ |a|1,2,Ω0,R + |v(i)
0 |1,2,Ωi∩Ω0,R +

2c3
ν

(|Φ|+ |Φ|2)

≤ c4

(
1 +

1

ν

)
(|Φ|+ |Φ|2).

(XIII.3.10)

Likewise, again by Lemma XIII.3.3 and Exercise VI.0.1, we find

|v|1,2,Ω0 ≤ |a|1,2,Ω0 + |u|1,2

≤ c5

(
1 +

1

ν

)
(|Φ|+ |Φ|2).

Therefore, estimate (XIII.3.2) follows from this inequality and (XIII.3.10),
and the theorem is proved. ut

Remark XIII.3.4 Theorem XIII.3.2 states, in particular, that, unlike the
linearized case, the nonlinear Leray’s problem is solvable under the restriction
(XIII.3.1) for the flux Φ. The investigation of whether this restriction can be
removed is, undoubtedly, one of the most challenging problems in theoretical
fluid dynamics. In this respect, it should be observed that if we relax require-
ment (v) of Definition XIII.1.1, that is, if we do not impose a priori that
the solution converges to the corresponding Poiseuille flows in the outlets Ωi,
then one can show existence of solutions for arbitrary values of Φ. Specifically,
Ladyzhenskaya & Solonnikov (1980, Theorems 3.1, 3.2) have shown2 that for
any Φ ∈ R there exists a pair v , p obeying (XIII.1.2)–(XIII.1.4). Concerning
the behavior at infinity, this solution satisfies the following conditions:3

2 Actually, in a class of domains larger (for shape) than that considered by us here.
3 See (XIII.2.1) for the definition of the domains involved in (XIII.3.11).
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∫

Ωt
i

∇v : ∇v ≤ c1t, for all t > 0

∫

Ωt,t+1

∇v : ∇v ≤ c2 for all t > 0,

(XIII.3.11)

with c1 and c2 independent of t. Moreover, v , p is unique if |Φ| is “sufficiently
small.” These results resemble in a sense those for D-solutions of the two-
dimensional nonlinear exterior problem, since in the case at hand the main
problem also remains the investigation of the asymptotic behavior, starting
with a certain regularity at large distances, here expressed by (XIII.3.11). In
particular, denoting by Si = Si(Φ,Σi), i = 1, 2, the “limit sets,” i.e., the set
constituted by those vector fields that the solution v satisfying (XIII.3.11)

tends to eventually as |x| → ∞ in Ωi, one should investigate if Si = {v(i)
0 }. �

Remark XIII.3.5 Also in view of what was observed in the preceding re-
mark, it appears of a certain interest to determine an explicit and possibly
sharp value for the constant c entering condition (XIII.3.1). In this respect
we have a result due to Amick (1977) that ensures that, if Ω0 is simply con-
nected, c depends only on Ωi (through their sections Σi) and not on Ω0; see
Amick, loc. cit. Theorem 3.6. Moreover, c can be determined in an “optimal”
way by solving a suitable variational problem strictly related to the nonlinear
stability property of Poiseuille flow and, if the cross sections Σi are of special
shape, c can be explicitly evaluated. For instance, if Σi is a circle of radius
Ri, we have

c = 127.9 min{R1, R2};
see Amick loc. cit. §3.4. �

Exercise XIII.3.1 (Generalization of Theorem XIII.3.2 to domains with more
than two cylindrical ends). Assume that instead of two exits to infinity, Ω1 and Ω2,
the domain Ω has m ≥ 3 exits Ω′

1, . . . , Ω
′
l, where Ω′

1, . . . , Ω
′
j can be represented as

Ω1 (“upstream” exits) and Ω′
j+1, . . . , Ω

′
l as Ω2 (“downstream” exits). Assume also

that

Ω −
l[

i=1

Ω′
i

is bounded and that Ω is of class C∞. Denote by Φi the fluxes in Ω′
i. Then show

that for every choice of Φi satisfying the compatibility condition of zero total flux,
i.e.,

jX

i=1

Φi =

lX

i=j+1

Φi,

there is a c = c(Ω,n) > 0 such that if

lX

i=1

|Φi| < cν

Leray’s problem is solvable in Ω.
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With the help of Theorem XIII.2.1 we can readily obtain conditions under
which solutions determined in Theorem XIII.3.2 are unique. Actually, com-
bining Theorem XIII.2.1 with (XIII.3.2) we immediately find the following
result.

Theorem XIII.3.3 Let v be a generalized solution to Leray’s problem con-
structed in Theorem XIII.3.2, corresponding to flux Φ. If

[
C

(
1 +

1

ν

)
+ 1

]
|Φ|+ C

(
1 +

1

ν

)
|Φ|2 < ν

c2

with c2 and C given in Theorem XIII.2.1 and Theorem XIII.3.2, respectively,
then v is the only generalized solution corresponding to Φ.

XIII.4 Decay Estimates for Steady Flow in a
Semi–Infinite Straight Channel

Our objective in this section is to establish the rate at which solutions de-
termined in Theorem XIII.3.2 decay to the corresponding Poiseuille velocity
fields. We shall show that, as |x| → ∞, they decay pointwise and exponentially
fast. As in the linear case, this will follow as a corollary to a more general
result holding for a class of solutions wider than that determined in Theorem
XIII.3.2. More generality regards, essentially, the behavior at infinity, while a
restriction on Φ of the type (XIII.3.1) is always needed.

We shall restrict our attention to flows occurring in the straight cylinder

Ω = {xn > 0} ×Σ,

where the cross section Σ is a C∞–smooth, bounded, and simply connected
domain in Rn−1 (n = 2, 3). However, some of the results we find can be
extended to cover more general situations. The cross section at distance a
from the origin will be denoted by Σ(a), despite all cross sections having the
same shape and size. Let v0 = v0(x

′) be the vector field associated with the
Poiseuille flow in Ω and corresponding to flux Φ. Further, let u , τ be a smooth
solution1 to the following boundary-value problem:

ν∆u = u · ∇u+ u · ∇v0 + v0 · ∇u+ ∇τ
∇ · u = 0

}
in Ω

u = 0 at ∂Ω − {xn = 0}
∫

Σ

un = 0.

(XIII.4.1)

1 For simplicity, we assume u ,τ smooth, that is, indefinitely differentiable in the
closure of any bounded subset of Ω. We note, however, that the same conclusions
may be reached merely by assuming that u and τ possess a priori the same
regularity of generalized solutions and then employing Theorem XIII.1.1.
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Remark XIII.4.1 If v is a generalized solution to Leray’s problem, then

u ≡ v − v(i)
0 satisfies (XIII.4.1) with Ω ≡ Ωi, Σ ≡ Σi and v0 ≡ v(i)

0 . �

We begin to show some local estimates for problem (XIII.4.1). To this end,
for R > 0 we let

ΩR = {x ∈ Ω : xn > R}.

Lemma XIII.4.1 Let u , τ be a smooth solution to (XIII.4.1) with

|u|1,2 ≤M <∞.

Then for every m ≥ 0 and R ≥ 0, the following estimate holds

‖u‖m+2,2,ΩR+1 + ‖∇τ‖m,2,ΩR+1 ≤ c‖u‖1,2,ΩR (XIII.4.2)

where c = c(n,m,M,Σ, Φ, ν).

Proof. Throughout the proof, the symbol ci, i = 1, 2, . . ., denotes a generic
quantity depending, at most, on m, M , Σ, and Φ. Let

0 < ε <
1

m+ 2
. (XIII.4.3)

By (XIII.2.2)2 and assumption, for all k = 0, 1, 2, . . . , and all R1 ≥ 0 we
derive2

‖u · ∇u‖3/2,ΩR1+k,R1+k+1
≤ ‖u‖6,ΩR1+k,R1+k+1 |u|1,2,ΩR1+k,R1+k+1

≤ c1|u|1,2,ΩR1+k,R1+k+1

and so, summing over k we obtain, in particular,

‖u · ∇u‖3/2,ΩR1 ≤ c1|u|1,2,ΩR1 for all R1 ≥ 0.

In a similar fashion, from the Hölder inequality, the regularity of v0, and
inequality (XIII.2.4) we readily find

‖v0 · ∇u+ u · ∇v0‖3/2,ΩR1 ≤ c2|u|1,2,ΩR1 for all R1 ≥ 0.

Thus, setting
f = u · ∇u+ v0 · ∇u+ u · ∇v0,

it follows that

‖f‖3/2,ΩR1 ≤ c3|u|1,2,ΩR1 , for all R1 ≥ 0. (XIII.4.4)

2 We give a proof that applies equally to both cases n = 2 and 3. However, for
n = 2 the proof could be simplified.
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Employing (VI.1.13) with s = R1 + k, k = 0, 1, 2, . . ., δ = ε and taking into
account (XIII.4.4), after summing over k we find

‖u‖2,3/2,ΩR2 ≤ c4‖u‖1,2,ΩR2−ε for all R2 ≥ 1.

From this relation and the first part of Lemma XIII.2.1 it then follows that

sup
ΩR2

|u| ≤ c5. (XIII.4.5)

Thus,
‖u · ∇u‖2,ΩR2 ≤ c6‖u‖1,2,ΩR2

which, by the regularity properties of v0, in turn implies

‖f‖2,ΩR2 ≤ c7|u|1,2,ΩR2 . (XIII.4.6)

We next employ (XIII.4.5) together with (VI.1.13) calculated for s = R3 + k,
k ∈ N, and δ = ε. Summing over k and taking into account (XIII.4.5) we
deduce

‖u‖2,2,ΩR3 + ‖∇τ‖2,ΩR3 ≤ c8|u|1,2,ΩR3−ε , (XIII.4.7)

for all R3 such that
R3 ≥ R2 + ε. (XIII.4.8)

We now choose
R2 = R+ ε , R3 = R + 1. (XIII.4.9)

Since ε obeys (XIII.4.3) (with m = 0), it follows that (XIII.4.7) is satisfied
and that R3 − ε = R + 1 − ε ≥ R. Therefore, (XIII.4.7)–(XIII.4.9) prove
(XIII.4.2) for m = 0. Iterating this method, it is possible to show the validity
of (XIII.4.2) for all m ≥ 0. We show this for m = 1, leaving to the reader
the proof of the general iterative procedure. By assumption, the first part of
Lemma XIII.2.1, and (XIII.4.5) it readily follows that

|u · ∇u|1,2,ΩR3 ≤ |u|21,4,ΩR3 + c5|∇u|1,2,ΩR3

≤ c9(‖u‖2
2,2,ΩR3 + ‖u‖2,2,ΩR3 ).

In view of (XIII.4.7) and the assumptions on u we deduce

|u · ∇u|1,2,ΩR3 ≤ c10‖u‖1,2,ΩR3−ε .

Likewise, from the regularity properties of v0 and (XIII.4.7) we find

‖v0 · ∇u+ u · ∇v0‖1,2,ΩR3 ≤ c11‖u‖1,2,ΩR3−ε .

As a consequence, we infer that

‖f‖1,2,ΩR3 ≤ c12‖u‖1,2,ΩR3−ε . (XIII.4.10)
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We now employ (VI.1.13) with s = R4 + k, k ∈ IN and δ = ε. Summing over
k and taking into account (XIII.4.10), it follows that

‖u‖3,2,ΩR4 + ‖∇τ‖1,2,ΩR4 ≤ c13|u|1,2,ΩR3−ε , (XIII.4.11)

for all R4 such that
R4 ≥ R3 + ε (XIII.4.12)

where R3 satisfies (XIII.4.8) with R2 ≥ 1. If we choose

R2 = R+ ε , R3 = R+ 2ε , R4 = R+ 1 ,

we see that, by (XIII.4.3) withm = 1, conditions (XIII.4.8) and (XIII.4.12) are
satisfied and, furthermore, R3−ε = R+ε > R. We then conclude the validity
of (XIII.4.2) with m = 1. The proof of the lemma can be then considered
accomplished. ut

The conclusions of Lemma XIII.4.1 can be derived under much weaker as-
sumptions on the summability of ∇u, provided that the flux Φ is “sufficiently
small.” To show this, we need a preliminary result concerning a differential
inequality.

Lemma XIII.4.2 Let y ∈ C1(IR+) be nonnegative with a nonnegative first
derivative. Assume for all t > 0

ay(t) ≤ a1y
′(t) + a2(y

′(t))3/2 + b (XIII.4.13)

where a is a positive constant while a1, a2, and b are nonnegative constants.
Then if

lim inf
t→∞

t−3y(t) = 0

we have

y(t) ≤ 2
b+ 1

a
, for all t > 0. (XIII.4.14)

Proof. From Young’s inequality (II.2.7) it follows that there is a c = c(a1)
such that for all t > 0

a1y
′(t) ≤ c(y′(t))3/2 + b1

where b1 = b+ 1. As a consequence, (XIII.4.13) yields

ay(t) ≤ d(y′(t))3/2 + b1 (XIII.4.15)

with d = a2 + c. Assume (XIII.4.14) is false, We can then find t0 > 0 such
that

y(t0) > 2
b1
a
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and, since y′(t) ≥ 0,

y(t) > 2
b1
a

for all t ≥ t0. (XIII.4.16)

Employing (XIII.4.16) in (XIII.4.15) we obtain

A(y(t))2/3 ≤ y′(t), for all t ≥ t0

with3

A2/3 ≡ a

2d
> 0.

Integrating this inequality from t and t1 > t, it follows that

y1/3(t1)

t1
− y1/3(t)

t1
≥ A

3

(
1 − t

t1

)

and so taking the lim inf as t1 → ∞ of both sides of this inequality we derive

lim inf
t1→∞

t−3
1 y(t1) ≥

(
A

3

)3

> 0,

which contradicts the assumption. The lemma is therefore proved. ut

The result just shown allows us to prove the following.

Lemma XIII.4.3 Assume u, τ is a smooth solution to (XIII.4.1) such that

lim inf
xn→∞

x−3
n

∫ xn

0

(

∫

Σ(t)

|∇u(x′, t)|2dΣ)dt = 0.

Assume, further, that the flux Φ associated with the Poiseuille flow v0 satisfies

|Φ| < ν

(cPλµ)1/2
, (XIII.4.17)

where cP is the constant given in Exercise VI.0.1 and λ, µ are given in
(XIII.2.3) and (XIII.2.4), respectively. Then

∫

Ω

∇u : ∇u <∞.

Proof. Multiplying (XIII.4.1)1 by u and integrating by parts over (0, xn)×Σ,
we find

3 Notice that we can always take d > 0.
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ν G(xn) ≡ ν

∫ xn

0

[∫

Σ(t)

∇u : ∇udΣ
]
dt

=

∫

Σ(xn)

[
−τun + ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]

−
∫

Σ(0)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]

−
∫ xn

0

[∫

Σ(t)

u · ∇v0 · udΣ
]
dt

(XIII.4.18)

where v0 = v0en. By using the Schwarz inequality, (XIII.2.3), and (XIII.2.4)
we obtain
∣∣∣∣∣

∫ xn

0

∫

Σ(t)

u · ∇v0 · udΣdt
∣∣∣∣∣ ≤

(∫

Σ(t)

|∇v0|2
)1/2 ∫ xn

0

(∫

Σ(t)

u4dΣ

)1/2

dt

≤ (λµ)
1/2

(∫

Σ(t)

|∇v0|2
)1/2

G(xn)

= (λµcP )1/2|Φ|G(xn),
(XIII.4.19)

where, in the last step, we have used the results of Exercise VI.0.1. Assuming,
now, the validity of (XIII.4.17) and setting

γ = ν − (λµcP )1/2|Φ| (> 0), (XIII.4.20)

from (XIII.4.18) and (XIII.4.19), it follows that

γG(xn) ≤
∫

Σ(xn)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]
+ b

with b a nonnegative quantity independent of xn. Integrating both sides of
this relation from t to t + 1 furnishes

γ

∫ t+1

t

G(xn)dxn ≤
∫

Ωt,t+1

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]
+b. (XIII.4.21)

We wish to estimate the term involving τ . To this end, we proceed as in
the linear case; see Theorem VI.2.1. Specifically, denoting by ω a solution to
(VI.2.14), from (XIII.4.1) we find

∫

Ωt,t+1

τun = −
∫

Ωt,t+1

∇τ · ω

=

∫

Ωt,t+1

[ν∇u : ∇ω − u · ∇ω · u

−u · ∇ω·v0 − v0 ·ω · u] .

(XIII.4.22)
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Taking into account the properties of ω, from Lemma XIII.2.1 and (XIII.2.4)
we find

∣∣∣∣∣

∫

Ωt,t+1

∇u : ∇ω
∣∣∣∣∣ ≤ c0|u|1,2,Ωt,t+1‖u‖2,Ωt,t+1

≤ c0
√
µ|u|21,2,Ωt,t+1∣∣∣∣∣

∫

Ωt,t+1

u · ∇ω · u
∣∣∣∣∣ ≤ c0‖u‖2

4,Ωt,t+1
‖u‖2,Ωt,t+1

≤ c0κ
2√µ|u|21,2,Ωt,t+1∣∣∣∣∣

∫

Ωt,t+1

u · ∇ω·v0

∣∣∣∣∣ ≤ c0v̂‖u‖2,Ωt,t+1|u|1,2,Ωt,t+1

≤ c0v̂
√
µ|u|21,2,Ωt,t+1∣∣∣∣∣

∫

Ωt,t+1

v0 · ω ·u
∣∣∣∣∣ ≤ c0v̂

√
µ|u|21,2,Ωt,t+1

(XIII.4.23)

with
v̂ = max

Σ
|v0(x′)|.

Putting
c1 = c0

√
µ(ν + κ2 + 2v̂),

from (XIII.4.21)–(XIII.4.23) we deduce

γ

∫ t+1

t

G(xn)dxn ≤ c1|u|21,2,Ωt,t+1
− 1

2

∫

Ωt,t+1

[
ν
∂u2

∂xn
− u2(un + v0)

]
+ b.

(XIII.4.24)
We now observe that, again from (XIII.2.4) and Lemma XIII.2.1, it follows
that

∣∣∣∣∣

∫

Ωt,t+1

∂u2

∂xn

∣∣∣∣∣ ≤ 2‖u‖2,Ωt,t+1|u|1,Ωt,t+1 ≤ 2
√
µ |u|21,Ωt,t+1

∣∣∣∣∣

∫

Ωt,t+1

u2v0

∣∣∣∣∣ ≤ v̂µ|u|21,Ωt,t+1

∣∣∣∣∣

∫

Ωt,t+1

u2un

∣∣∣∣∣ ≤ ‖u‖2
4,Ωt,t+1

‖u‖2,Ωt,t+1 ≤ κ2√µ |u|31,2,Ωt,t+1
.

(XIII.4.25)

Replacing these latter inequalities into (XIII.4.24), we find

γ

∫ t+1

t

G(xn)dxn ≤ c2|u|21,2,Ωt,t+1
+ c3|u|31,2,Ωt,t+1

+ b (XIII.4.26)
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where

c2 = c1 +
√
µ(ν + 1

2 v̂
√
µ)

c3 = 1
2κ

2√µ.

Setting

y(t) =

∫ t+1

t

G(xn)

and recalling the definition of G(xn), it follows that

y′(t) = |u|21,2,Ωt,t+1.

Therefore, inequality (XIII.4.25) yields

γy(t) ≤ c2y
′(t) + c3(y

′(t))3/2 + b

which, in turn, by Lemma XIII.4.2, implies

y(t) ≤ 2
b+ 1

γ
.

The result then follows from this estimate and an argument entirely analogous
to that employed at the end of the proof of Theorem VI.2.1. ut

The next result establishes an exponential decay property of the type of
de Saint-Venant.

Lemma XIII.4.4 Let the assumptions of Lemma XIII.4.3 be satisfied. Then,
there are positive constants σi = σi(Σ, n, ‖u‖1,2,Ω, Φ, ν), i = 1, 2, such that

‖u‖1,2,ΩR ≤ σ1‖u‖1,2,Ω exp(−σ2R), for all R > 0.

Proof. We notice that, in view of Lemma XIII.4.3, ‖u‖1,2,Ω is finite. Multi-
plying (XIII.4.1)1 by u and integrating by parts over (R, xn)×Σ ≡ ΩR,xn we
find

ν

∫

ΩR,xn

|∇u|2 =

∫

Σ(xn)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]

−
∫

Σ(R)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]

−
∫

ΩR,xn

u · ∇v0 · u .

(XIII.4.27)

From Lemma XIII.4.1 and the embedding Theorem II.5.2 it follows, in par-
ticular, that
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sup
x′∈Σ

(|u(x′, xn)| + |τ (x′, xn)|) → 0 as xn → ∞,

and so, reasoning as in the proof of Theorem VI.2.2, we can show that, in
the limit xn → ∞, the surface integral over Σ(xn) is vanishing. Thus, in this
limit, (XIII.4.27) yields

νH(R) = −
∫

Σ(R)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]
−
∫

ΩR

u · ∇v0 · u,
(XIII.4.28)

with
νH(R) ≡ ν |u|21,2,ΩR.

Proceeding as in (XIII.4.19), we can show

∣∣∣∣
∫

ΩR

u · ∇v0 · u
∣∣∣∣ ≤ (λµcP )1/2|Φ|H(R),

which, in view of (XIII.4.17), once replaced in (XIII.4.28) furnishes

γH(R) ≤ −
∫

Σ(R)

[
−τun +

ν

2

∂u2

∂xn
− 1

2
u2(un + v0)

]

with γ given in (XIII.4.20). We next integrate both sides of this relation
between t+ l and t+ l+ 1, l = 0, 1, 2, . . ., to obtain

γ

∫ t+l+1

t+l

H(R) ≤ −ν
2

∫

Σ(t+l+1)

u2 +
ν

2

∫

Σ(t+l)

u2

+

∫

Ωt+l,t+l+1

[
τun +

1

2
u2(un + v0)

]
.

(XIII.4.29)

The volume integral on the right-hand side of (XIII.4.29) can be increased
exactly as in (XIII.4.22), (XIII.4.23), and (XIII.4.25)2,3 and so we deduce

∣∣∣∣∣

∫

Ωt+l,t+l+1

τun +
1

2
u2(un + v0)

∣∣∣∣∣ ≤ c1|u|21,2,Ωt+l,t+l+1
(1 + |u|1,2,Ωt+l,t+l+1),

(XIII.4.30)
with c1 = c1(n,Σ, Φ). Collecting (XIII.4.29) and (XIII.4.30) we derive

γ

∫ t+l+1

t+l

H(R) ≤ c2|u|21,2,Ωt+l,t+l+1
− ν

2

∫

Σ(t+l+1)

u2 +
ν

2

∫

Σ(t+l)

u2

(XIII.4.31)
where c2 also depends on |u|1,2,Ω. Summing both sides of (XIII.4.31) from
l = 0 to l = ∞ and taking into account that, by Remark XIII.1.1

lim
t→∞

∫

Σ(t)

u2(x′, t)dΣ = 0,
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we find

γ

∫ ∞

t

H(R) ≤ c2H(t) +
ν

2

∫

Σ(t)

u2. (XIII.4.32)

However, by (XIII.2.4),

∫

Σ(t)

u2 ≤ µ

∫

Σ(t)

|∇u|2 = −µH′(t)

and so from (XIII.4.32) we arrive at

γ

∫ ∞

t

H(R) ≤ c2H(t) − µν

2
H′(t).

Using Lemma VI.2.2 into this inequality furnishes the desired result and the
proof of the lemma is complete. ut

From Lemma XIII.4.1, Lemma XIII.4.3, and Lemma XIII.4.4, and with
the help of Lemma XIII.2.1, we are able to deduce at once the following main
result.

Theorem XIII.4.1 Let u , τ be a smooth solution to (XIII.4.1) satisfying

lim inf
xn→∞

x−3
n

∫ xn

0

(

∫

Σ(t)

|∇u(x′, t)|2dΣ)dt = 0.

Then, if Φ satisfies (XIII.4.17), it follows that

‖u‖1,2,Ω <∞.

Moreover, there is a positive constant c1 = c1(Σ, n, Φ, ‖u‖1,2,Ω, ν) such that

|Dαu(x)|+ |Dα∇τ (x)| ≤ c1 exp(−σ2xn) (XIII.4.33)

for every x ∈ Ω with xn ≥ 1 and all |α| ≥ 0, and where σ2 is given in Lemma
XIII.4.4.

This theorem, along with the uniqueness Theorem XIII.3.3 and the help
of Remark XIII.4.1, immediately produces the following general result con-
cerning the asymptotic behavior of weak solutions to Leray’s problem.

Corollary XIII.4.1 There exists a positive constant c = c(Ω, n) such that,
if

|Φ| < cν,

all generalized solutions v to Leray’s problem (XIII.1.2)–(XIII.1.4) satisfy

the decay property (XIII.4.33) in each outlet Ωi, i = 1, 2 with u = v − v(i)
0

and τ = p −Ci.
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Remark XIII.4.2 Another equivalent way of stating Theorem XIII.4.1 is to
say that, under condition (XIII.4.17) for Φ, every (smooth) solution u to
(XIII.4.1) either verifies

lim inf
xn→∞

x−3
n

∫ xn

0

(

∫

Σ(t)

|∇u(x′, t)|2dΣ)dt > 0

or decays pointwise and exponentially fast with all its derivatives of arbitrary
order. �

Remark XIII.4.3 Reasoning as in Remark VI.2.1, we can show that τ (x)
tends to a constant τ0 exponentially fast. �

Remark XIII.4.4 Corollary XIII.4.1 is similar to the analogous result de-
termined for the linearized Stokes approximation in Section VI.2, with the
addition of the flux restriction (XIII.4.17). �

XIII.5 Flow in an Aperture Domain. Generalized
Solutions and Related Properties

We shall now focus our attention on the investigation of existence and unique-
ness of flows in certain domains with “exits” having an unbounded cross sec-
tion. Even though our method carries over to more general situations, we shall
restrict ourselves to the special case where the region of motion Ω is a three-
dimensional “aperture domain,” that is (cf. also Section III.4.3 and Section
VI.5),

Ω =
{
x ∈ R3 : x3 6= 0 or x′ ≡ (x1, x2) ∈ S

}
(XIII.5.1)

with S (the aperture) a bounded locally Lipschitz domain of R2 that con-
tains a disk of finite radius; Heywood (1976). The reason for this choice is
because the technical details simplify to an extent in such a way that the
analysis becomes formally simpler. However, whenever the case dictates, we
shall explicitly mention possible extensions of our results to more general do-
mains. Moreover, again for the sake of simplicity, we shall assume no body
force acting on the liquid, leaving the obvious generalization to the interested
reader.

We wish to solve the following Heywood’s problem: Given Φ ∈ R (the
flux through the aperture), to determine a pair v, p defined in Ω given by
(XIII.5.1), such that
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ν∆v = v · ∇v + ∇p
∇ · v = 0

}
in Ω

v = 0 at ∂Ω

lim
|x|→∞

v(x) = 0

∫

S

v3 = Φ.

(XIII.5.2)

The reader will immediately recognize that (XIII.5.2) is the fully nonlinear
counterpart of the problem studied within the linear approximation in Section
VI.5.

We begin to give a weak formulation of problem (XIII.5.2). To this end,
multiplying (XIII.5.2)1 by ϕ ∈ D(Ω) and formally integrating by parts we
find

ν(∇v,∇ϕ) = (v · ∇ϕ, v), for all ϕ ∈ D(Ω). (XIII.5.3)

Thus, also in light of what we did for the linear case in Section VI.3 and
Section VI.5, we give the following definition

Definition XIII.5.1. A vector field v : Ω → R3 with Ω given in (XIII.5.1) is
said to be a weak (or generalized) solution to problem (XIII.5.2) if and only if

(i) v ∈ D̂1,2
0 (Ω);

(ii) v satisfies (XIII.5.3);
(iii) v satisfies (XIII.5.2)5 in the trace sense.

Remark XIII.5.1 In view of Lemma II.6.3, it is easy to show that every
function satisfying (i) also satisfies

lim
|x|→∞

∫

S3

|v(|x|, ω)|dω = 0. (XIII.5.4)

Actually, let ψ be a function that equals zero in a neighborhood of S and
one far from S. Then w ≡ ψv ∈ D1,2(R3

±), w = 0 at {x3 = 0}, and the
assertion follows from the reasonings preceding Theorem II.6.3. With the help
of (XIII.5.4) it is at once recognized that conditions (i)-(iii) of Definition
XIII.5.1 translate (XIII.5.2) into a weak form. �

Our next objective is to associate to every weak solution a suitable pressure
field. Since the “aperture” S is bounded and contains a disk of finite radius,
we shall suppose without loss of generality that

{
x′ ∈ R2 : |x′| < 1

}
⊂ S ⊂

{
x′ ∈ R2 : |x′| < 2

}
.

We have the following lemma.

Lemma XIII.5.1 Let v be a generalized solution to problem (XIII.5.2).
Then there is a p ∈ L2

loc(Ω) such that
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ν(∇v,∇ψ) = (v · ∇ψ, v) + (p,∇ ·ψ) for all ψ ∈ C∞
0 (Ω). (XIII.5.5)

Moreover, there are constants p+, p− ∈ R such that

p− p+ ∈ L3(R3
+ − B3)

p− p− ∈ L3(R3
− − B3).

Proof. Let ψ ∈ D1,2
0 (Ω′) where Ω′ is any bounded domain of Ω. Since

|(v · ∇ψ, v)| ≤ ‖v‖2
4,Ω′ |ψ|1,2,

by the Sobolev inequality (II.3.7) we find

|(v · ∇ψ, v)| ≤ c1‖v‖2
6|ψ|1,2 ≤ c2|v|21,2|ψ|1,2,

and so
(v · ∇ψ, v)

defines a bounded linear functional in D1,2
0 (Ω′). Therefore, the first part of

the lemma is a consequence of Lemma IV.1.1. Let χ = χ(|x|) be a smooth
function that equals zero for |x| ≤ 3 and one for |x| ≥ 4 and set w = χv,
π = χp. Using Definition XIII.5.1 and the identity (XIII.5.5), it is not hard
to show that w, π is a weak solution to the following Stokes problem in R3

+

(an analogous property holding in R3
−)

ν∆w = ∇π + F

∇ ·w = g

}
in R3

+

w = 0 at x3 = 0

(XIII.5.6)

where

F = v · ∇w+ 2∇χ · ∇v + v∆χ− v · ∇χv + p∇χ
g = v · ∇χ.

(XIII.5.7)

Recalling that p ∈ L2
loc(Ω) and using the properties of χ and condition (i) of

Definition XIII.5.1, we find for all ψ ∈ C∞
0 (R3

+)

|(2∇χ · ∇v,ψ) +(v∆χ,ψ) − (v · ∇v,ψ) + (p∇χ,ψ)|
≤ c

(
‖v‖3,σ + ‖v‖2

3,σ + ‖p‖2,σ

)
|ψ|1,3/2

(XIII.5.8)

where σ = supp (χ). As a consequence, (XIII.5.8) implies

2∇χ · ∇v + v∆χ− v · ∇χv+ p∇χ ∈ D−1,3
0 (R3

+). (XIII.5.9)

Moreover, by Theorem II.6.3, by (XIII.5.4) and (i) of Definition XIII.5.1, it is
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v ∈ L6(R3
+)

and so we find

|(v · ∇w,ψ)| = |(v ⊗w,∇ψ)| ≤ ‖v‖2
6,R3

+
|ψ|1,3/2. (XIII.5.10)

Finally,
v · ∇χ ∈ L3(R3

+). (XIII.5.11)

From (XIII.5.7)–(XIII.5.11), it follows that

F ∈ D−1,3
0 (R3

+) , g ∈ L3(R3
+) . (XIII.5.12)

Since, by assumption, w is a generalized solution to (XIII.5.6) (cf. Section
IV.3), from (XIII.5.12) and Theorem IV.3.3 we conclude, in particular, that

π − p+ ∈ L3(R3
+)

for some constant p+ ∈ R3. Recalling that π = p in R3
+ −B3, we obtain the

desired result. ut
Remark XIII.5.2 The preceding lemma shows, among other things, that
the pressure field tends in each outlet to a definite constant in the sense
of L3. This observation, along with the analogy to the linearized case (cf.
Remark VI.4.7), suggests a different formulation of problem (XIII.5.2), where
one prescribes, in place of the flux condition (XIII.5.2)5, the following ones:

lim
|x|→∞, x3>0

p(x) = p+

lim
|x|→∞, x3<0

p(x) = p−,

where p± are prescribed constants.1 This view, which originates with the work
of Heywood (1976), has been taken by several authors. We refer the reader to
the papers of Solonnikov (1981, 1983) and the references cited therein. �

The last result of this section concerns the differentiability of weak solu-
tions to problem (XIII.5.2). Since the aperture S has no “thickness,” we can
prove that these solutions are regular everywhere in Ω except at the bound-
ary ∂S. Of course, if S had “thickness” so that Ω would become smooth,
the corresponding generalized solutions would be equally smooth. In the cur-
rent situation, we have the following result whose proof, which patterns that
furnished in Theorem XIII.1.1, is left to the reader as an exercise.

Theorem XIII.5.1 Let v be a generalized solution to problem (XIII.5.2) and
let p be the corresponding pressure field associated to v by Lemma XIII.5.1.
Then

v, p ∈ C∞
0 (Ω

′
)

where Ω′ is any bounded domain of Ω that does not contain ∂S.

1 Of course, one of the two constants can be taken to be zero.
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Remark XIII.5.3 We wish to observe that some of the concepts and results
introduced so far, can be recovered when Ω is a two-dimensional aperture
domain: {

x ∈ R2 : x2 6= 0 or x1 ∈ (−d, d)
}
,

for some d > 0. Of course, in this case we can also give a weak formulation of
problem (XIII.5.2). In these regards, we notice that the reasoning developed in
Remark XIII.5.1 cannot be repeated here, because of the lack of the Sobolev
inequality. However, one can show the validity of the following inequality

∫

Ω

v2

(|x|+ 1)2
≤ c

∫

Ω

∇v : ∇v

where c > 0 and v ∈ D̂1,2
0 (Ω); see Galdi, Padula, & Passerini (1995). Using this

inequality, it can be proved that (XIII.5.4) is valid also in the two-dimensional
case and that, in fact, v(x) tends to zero uniformly pointwise as |x| → ∞. Fur-
thermore, the first part of Lemma XIII.5.1 continues to hold and the pressure
field tends uniformly pointwise to a suitable constant p+ [respectively p−] at
large distances in R2

+ [respectively R2
−]. Finally, Theorem XIII.5.1 holds also

in the two-dimensional case. For detail we refer the reader to the paper of
Galdi, Padula, & Passerini. �

XIII.6 Energy Equation and Uniqueness for Flows in an
Aperture Domain

The main objective of this section is to formulate conditions under which a
generalized solution is unique. As in the case of the three-dimensional exterior
problem, however, we are not able to furnish such conditions merely in the
class of generalized solutions but, rather in a subclass obeying a suitable
energy inequality. In fact, as we shall prove later, this subclass is certainly
nonempty.

Let us derive formally the energy equation for solutions to problem
(XIII.5.2). To this end, we multiply (XIII.5.2)1 by v and integrate over
ΩR ≡ Ω ∩BR for sufficiently large R to obtain

−ν
∫

ΩR

∇v : ∇v + ν

∫

∂BR

v · ∂v
∂n

=
1

2

∫

∂BR

v2v ·n+

∫

∂B+
R

(p− p+)v · n

+

∫

∂B−
R

(p− p−)v · n+ (p+ − p−)

∫

S

v3

where p+ and p− are the limits to which p tends as |x| → ∞ in R3
+ and R3

−,
respectively, cf. Lemma XIII.5.1, and B±

R = BR ∩ R3
±. Letting R → ∞ and

assuming that all surface integrals tend to zero (at least along a sequence),
we find



XIII.6 Aperture Domain: Energy Equation and Uniqueness 933

∫

Ω

∇v : ∇v = −p∗Φ
ν

(XIII.6.1)

where Φ is the flux of v through S and p∗ = p+ − p−. Relation (XIII.6.1) is
the energy equation for problem (XIII.5.2) and describes the balance between
the energy dissipated by the liquid and the work done on it. Notice that,
in agreement with physical intuition, a positive flux implies p+ < p−, while
p− < p+ otherwise.

As the reader may have noticed, in obtaining (XIII.6.1) we have assumed
that the solution has a certain degree of regularity at large spatial distances
that a priori need not be matched by a generalized solution. We may thus
wonder which extra conditions we must impose on a generalized solution so
that it will obey the energy equation. An answer is furnished by the following.

Theorem XIII.6.1 Let v be a generalized solution to problem (XIII.5.2).
Then, if

v ∈ L3(Ω),

v obeys the energy equation (XIII.6.1), where p∗ = p+ − p− and p± are the
constants associated to p by Lemma XIII.5.1.

Proof. Let ψR = ψR(|x|) be a smooth “cut-off” function such that

ψR(|x|) =

{
1 if |x| ≤ R

0 if |x| ≥ 2R

|∇ψR(|x|)| ≤M, for some M independent of R.

In view of Lemma XIII.5.1, identity (XIII.5.5) continues to hold for all ψ ∈
W 1,2

0 (Ω′), where Ω′ is an arbitrary bounded domain with Ω
′ ⊂ Ω. Thus, we

may take ψ ≡ ψRv to obtain

ν(ψR∇v,∇v) = (ψRv · ∇v, v) + (p,∇ · (ψRv)) + (v · ∇ψR, v · v). (XIII.6.2)

Recalling the properties of ψR and the assumptions on v, we deduce at once
that

lim
R→∞

(ψR∇v,∇v) = |v|21,2

lim
R→∞

(v · ∇ψR, v · v) = 0.
(XIII.6.3)

Moreover,

(p,∇ · (ψRv)) =

∫

R3
+

(p− p+)v · ∇ψR +

∫

R3
−

(p− p−)v · ∇ψR

+p∗

∫

Ω

∇ · (ψRv)

=

∫

R3
+

(p− p+)v · ∇ψR +

∫

R3
−

(p− p−)v · ∇ψR − p∗Φ,
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where p± are the constants associated to p by Lemma XIII.5.1. Taking into
account that, again by Lemma XIII.5.1,

p− p+ ∈ L3(R3
+ −B3),

and setting ΩR,2R = Ω ∩B2R ∩BR, we thus find
∣∣∣∣∣

∫

R3
+

(p − p+)v · ∇ψR

∣∣∣∣∣ ≤ ‖p− p+‖3,ΩR,2R‖v‖3‖∇ψR‖3,ΩR

≤ c‖v‖3‖p− p+‖3,ΩR,2R

∫ 2R

R

dr

r

= c log 2‖v‖3‖p− p+‖3,ΩR,2R.

Therefore,

lim
R→∞

∣∣∣∣∣

∫

R3
+

(p− p+)v · ∇ψR

∣∣∣∣∣ = 0.

Employing a similar argument for the integral over R3
−, we may then conclude

that
lim

R→∞
(p,∇ · (ψRv)) = −p∗Φ. (XIII.6.4)

Furthermore, setting as before B±
R = R3

± ∩BR, after integration by parts we
obtain

(ψRv · ∇v, v) =

∫

B+
R

ψRv · ∇v · v +

∫

B−
R

ψRv · ∇v · v = 1
2

∫

Ω

v · ∇ψRv · v,

so that, recalling the assumption on v and the properties of ψR, it follows
that

lim
R→∞

(ψRv · ∇v, v) = 0. (XIII.6.5)

Equation (XIII.6.1) becomes a consequence of (XIII.6.2)–(XIII.6.5).

Let w be a generalized solution to (XIII.5.2) and let π be the pressure
field associated to w by Lemma XIII.5.1. We shall say that w satisfies the
energy inequality if

|w|21,2 ≤ −π∗Φ
ν

(XIII.6.6)

where π∗ = π+ − π− and π± are the constants associated to π by Lemma
XIII.5.1. The following uniqueness result holds. ut

Theorem XIII.6.2 Let v be a generalized solution to problem (XIII.5.2)
such that

‖v‖3 <

√
3

2
ν.

Then v is unique in the class of all generalized solutions w corresponding to
the same flux Φ and satisfying (XIII.6.6).
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Proof. Let ψR be the “cut-off” function introduced in the proof of Theorem
XIII.6.1. As in that case, we may take ψ = ψRw in the identity (XIII.5.5) to
obtain

ν(ψR∇v,∇w) = −(ψRv ·∇w, v)−(v ·w, v ·∇ψR)+(p,∇·(ψRw)). (XIII.6.7)

Using the summability properties of v, w it is not difficult to show the fol-
lowing relations

lim
R→∞

(ψR∇v,∇w) = (∇v,∇w)

lim
R→∞

(ψRv · ∇w, v) = (v · ∇w, v).
(XIII.6.8)

Moreover, with the aid of (II.3.7), we find

|(v ·w, v · ∇ψR)| ≤ ‖v‖2
3,ΩR,2R

‖w‖6,ΩR,2R‖∇ψR‖6,ΩR,2R

≤ c2
R
‖v‖2

3,ΩR,2R
|w|1,2,

and so
lim

R→∞
(v ·w, v · ∇ψR) = 0. (XIII.6.9)

We next consider the following identity

(p,∇·(ψRw)) =

∫

R3
+

(p−p+)w ·∇ψR+

∫

R3
−

(p−p−)w ·∇ψR−p∗Φ, (XIII.6.10)

where p± are the constants introduced in Lemma XIII.5.1 and p∗ = p+ − p−.
By the Hölder inequality, (II.3.7), and the properties of ψR, it follows that

∣∣∣∣∣

∫

R3
+

(p− p+)w · ∇ψR

∣∣∣∣∣ ≤ ‖p− p+‖3/2,ΩR,2R‖w‖6,ΩR,2R‖∇ψR‖6,ΩR,2R

≤ c

R
‖p− p+‖3/2,ΩR,2R

|w|1,2.

(XIII.6.11)
It is not difficult to see that

p− p+ ∈ L3/2(R3
± −B3). (XIII.6.12)

Actually, we know that χv and χp, with the χ “cut-off” function introduced in
the proof of Lemma XIII.5.1, satisfy the Stokes system (XIII.5.6), (XIII.5.7)
(and an analogous one in R3

−). Because of the assumption on v, we have

v ∈ L3(Ω), v · ∇v ∈ D
−1,3/2
0 (Ω),

from which it readily follows that

F ∈ D
−1,3/2
0 (R3

+) , g ∈ L3/2(R3
+)



936 XIII Steady Navier–Stokes Flow in Domains with Unbounded Boundaries

with F and g given in (XIII.5.7). Thus, applying the results of Theorem
IV.3.3 to (XIII.5.6), (XIII.5.7) and recalling that χv is a generalized solution
to (XIII.5.6), (XIII.5.7), we find (XIII.6.12). As a consequence of (XIII.6.12),
from (XIII.6.11) (and the analogous property in R3

−), we conclude that

lim
R→∞

(p,∇ · (ψRw)) = −p∗Φ. (XIII.6.13)

Therefore, (XIII.6.7)–(XIII.6.12) yield

− ν(∇v,∇w) = −(v · ∇w,∇v) + p∗Φ. (XIII.6.14)

Writing identity (XIII.5.5) with w in place of v and choosing ψRv for ψ, by
means of arguments very close to those just used one can show

− ν(∇w,∇v) = −(w · ∇v,∇w) + π∗Φ. (XIII.6.15)

We next observe that by Theorem XIII.6.1, v obeys the energy equality
(XIII.6.1) while w, by hypothesis, satisfies the energy inequality (XIII.6.6).
Thus, adding the four displayed relations (XIII.6.1), (XIII.6.6), (XIII.6.13),
and (XIII.6.14) and setting u = v −w, we arrive at

ν |u|21,2 ≤ −(v · ∇w, v) − (w · ∇v,w). (XIII.6.16)

The following relations are easily shown:

(w · ∇v,w) = −(w · ∇w, v) , (u · ∇v, v) = 0 . (XIII.6.17)

Assuming, for a while, the validity of (XIII.6.17) and using it into (XIII.6.16)
delivers

ν |u|21,2 ≤ −(v · ∇w, v) + (w · ∇w, v) + (u · ∇v, v)
= (u · ∇u, v).

(XIII.6.18)

Employing the Schwarz inequality on the right-hand side of (XIII.6.18) along
with the Sobolev inequality (II.3.7), we find

|(u · ∇u, v)| ≤ ‖v‖3‖u‖6|u|1,2 ≤ 2√
3
‖v‖3|u|21,2.

If we combine this inequality with (XIII.6.18), we arrive at

(
ν − 2√

3
‖v‖3

)
|u|21,2 ≤ 0,

which, in turn, furnishes u ≡ 0 under the stated assumption on v. To show
the theorem completely, it remains to prove the identities (XIII.6.17). Setting
B+

R = R3
+ ∩BR, we have
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∫

B+
R

w·∇v·w = −
∫

B+
R

w·∇w·v+
∫

∂BR∩R3
+

w·nv·w−
∫

S

w3v·w. (XIII.6.19)

By the Hölder inequality, it follows that
∣∣∣∣∣

∫

∂BR∩R3
+

w · nv ·w
∣∣∣∣∣ ≤ cR2/3‖w‖2

6,∂BR∩R3
+
‖v‖3,∂BR∩R3

+
. (XIII.6.20)

However, since

∫ ∞

0

[∫

∂B+
R

(
|w|6 + |v|3

)
dBR

]
dR <∞,

we have, at least along a sequence,

‖w‖2
6,∂BR∩R3

+
+ ‖v‖3,∂BR∩R3

+
= o(R−2/3)

and therefore, from (XIII.6.20) and (XIII.6.19) we conclude that

∫

R3
+

w · ∇v ·w = −
∫

R3
+

w · ∇w · v −
∫

S

w3v ·w. (XIII.6.21)

Likewise,
∫

R3
+

w · ∇v ·w = −
∫

R3
+

w · ∇w · v +

∫

S

w3v ·w (XIII.6.22)

and (XIII.6.17)1 follows from (XIII.6.21), (XIII.6.22). In a completely analo-
gous way one can show (XIII.6.17)2, whose proof is thus left to the reader as
an exercise. The theorem is proved. ut

Remark XIII.6.1 In the case of a plane aperture domain, Theorem XIII.6.2
continues to hold, provided the assumption on the L3-norm of v is replaced
by the following one

sup
x∈Ω

|v(x)| |x| ≤ cν,

for a suitable c > 0; see Galdi, Padula, & Solonnikov (1996). �

XIII.7 Existence and Uniqueness of Flows in an
Aperture Domain

The objective of this section is to show existence and uniqueness of generalized
solutions to problem (XIII.5.2). The main feature of these solutions is that,
unlike the case of flow in domains with cylindrical ends (Leray’s problem),
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they exist without restriction on the coefficient of kinematical viscosity ν or
on the flux Φ. This nice circumstance is due to the fact that, in the case under
consideration, for any η > 0 there is a solenoidal vector a = a(x; η) ∈ D̂1,2

0 (Ω)
carrying the flux Φ such that

∣∣∣∣
∫

Ω

u · ∇a · u
∣∣∣∣ ≤ η

∫

Ω

∇u : ∇u, for all u ∈ D(Ω). (XIII.7.1)

The validity of (XIII.7.1), in turn, is made possible by the fact that the “out-
lets” to infinity for the domain (XIII.5.1) have an unbounded cross section.
The existence of such fields a(x; η) was discovered by Ladyzhenskaya & Solon-
nikov (1977, §2). It should be remarked that the method used by these authors
to construct the fields a(x; η) applies to domains whose outlets to infinity Ωi

are more general than those of domain (XIII.5.1); in fact, the only condition
required is that each Ωi contains a semi-infinite cone; cf. also Solonnikov &
Pileckas (1977, Lemma 4), Solonnikov (1981), and Solonnikov (1983, §2.4)

The construction of the field a(x; η) is the object of the next lemma. As
the reader will recognize, this construction resembles the one given in Lemma
IX.4.2 for the case of a flow in a bounded domain.

Lemma XIII.7.1 Let Ω be as in (XIII.5.1) and let η > 0. Then there exists
a solenoidal vector field a = a(x; η) ∈ C∞(Ω) vanishing in a neighborhood of
∂Ω such that

(i) |a(x)| ≤M |x|−2; |∇a(x)| ≤M |x|−3, for all sufficiently large |x|;
(ii) a ∈ D̂1,2

0 (Ω);

(iii)

∫

S

a3 = 1;

(iv) a verifies (XIII.7.1).

Proof. Let

b =
1

2π|x′|2 (−x2, x1, 0) .

Clearly,
∇× b = 0

∇ · b = 0

}
in Ω − {0}.

We next introduce a system of cylindrical coordinates (r, θ, x3) with the origin
at the center of the unit disk C = {|x′| < 1} which, without loss, we have as-
sumed to be strictly contained in S. The three unit vectors will be denoted by
er, eθ, and e3, respectively. By a simple computation based on the properties
of b we find ∫

∂S

b× n · e3 = −1, (XIII.7.2)

where n is the exterior unit normal to ∂S.1 In fact, introducing

1 Since S is locally Lipschitz, n exists a.e. on ∂S; cf. Lemma II.4.1.
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w = (b2,−b1, 0)

we have
∇′ ·w = 0 in ω = S − C,

where ∇′ is the divergence operator restricted to the variables x′. Thus, by
the divergence theorem,

∫

∂S

w · n =

∫

∂C
w · er.

Since for any vector s = (s1, s2, 0), w · s = −b × s · e3, it follows that

−
∫

∂S

b×n · e3 = −
∫

∂C
b× er · e3 =

1

2π

∫ 2π

0

(sin2 θ+ cos2 θ)dθ = 1,

which shows (XIII.7.2). Now, let ρ = ρ(x) denote the regularized distance of
x from ∂Ω. By Lemma III.6.1 we obtain, in particular,

δ(x) ≤ ρ(x) ≤ k1δ(x)

|Dαρ(x)| ≤ k2 [δ(x)]
1−|α|

, 0 ≤ |α| ≤ 2
(XIII.7.3)

where δ(x) = dist (x, ∂Ω) and k1, k2 are independent of x. Let γ denote the
x3-axis and set

d = dist (∂S, γ).

Let σ, ψ be smooth nondecreasing functions of the real variable t such that

σ(t) =





d

2
if t ≤ d/2

t if t ≥ d

and

ψ(t) =

{
0 if t ≤ 0

1 if t ≥ 1.

Finally, we set

ζ(x) = ψ

(
ε ln

σ(|x′|)
ρ(x)

)
, ε ∈ (0, 1). (XIII.7.4)

In view of the property of the function ψ, we at once recognize that

ζ(x) =

{
0 if σ(|x′|) ≤ ρ(x)

1 if σ(|x′|) ≥ ρ(x)e1/ε
(XIII.7.5)

which implies, in particular,

supp (∇ζ) ⊂
{
x ∈ Ω : ρ(x) ≤ σ(|x′|) ≤ ρ(x)e1/ε

}
. (XIII.7.6)
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Moreover, setting

C = {x ∈ Ω : |x′| < d/2}
it is immediately seen that

ζ(x) = 0, for all x ∈ C. (XIII.7.7)

In fact, for x ∈ C we have

δ(x) ≥ d− |x′| ≥ d/2

which, by (XIII.7.3), in turn yields

ρ(x) ≥ d/2, for all x ∈ C. (XIII.7.8)

In addition, if x ∈ C, from the definition of the function σ we derive

σ(|x′|) = d/2, for all x ∈ C. (XIII.7.9)

Thus, from (XIII.7.8) and (XIII.7.9) we find

ρ(x) ≥ σ(|x′|), for all x ∈ C,

which, by (XIII.7.5), implies (XIII.7.7). Also, setting

Nε =

{
x ∈ Ω : δ(x) ≤ de−1/ε

2k1

}
,

we have

ζ(x) = 1, for all x ∈ Nε. (XIII.7.10)

In fact, since σ is nondecreasing,

σ(|x′|) ≥ d/2,

and so, by (XIII.7.5), we have ζ = 1 whenever

ρ(x) ≤ d

2
e−1/ε,

which, by (XIII.7.3) implies (XIII.7.10). The next task is to prove an esti-
mate for ∇ζ and D2ζ at large distances. To this end, we observe that, by a
straightforward computation, we obtain

∂ζ

∂xk
= εψ′Sk,

∂2ζ

∂xk∂xl
= ε2ψ′′SkSl + εψ′ ∂Sk

∂xl

where the prime means differentiation with respect to the argument involved
and
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Sk = σ′ ∂|x′|
∂xk

1

σ(|x′|) − 1

ρ(x)

∂ρ(x)

∂xk

∂Sk

∂xl
=

[
σ′′

σ(|x′|) −
(σ′)2

σ2(|x′|)

]
∂|x′|
∂xk

∂|x′|
∂xl

+
σ′

σ(|x′|)
∂2|x′|
∂xk∂xl

+
1

ρ2(x)

∂ρ

∂xk

∂ρ

∂xl
− 1

ρ(x)

∂2ρ

∂xk∂xl
.

Therefore, observing that

|ψ′|, |ψ′′|, |σ′|, |σ′′| ≤M,

for someM independent of x, by virtue of (XIII.7.3), (XIII.7.6), and (XIII.7.7)
we conclude that

|∇ζ(x)| ≤ εc1δ
−1(x)

|D2ζ(x)| ≤ c2δ
−2(x)

}
for all x ∈ Ω, (XIII.7.11)

with c1 and c2 independent of x. The field a is introduced by the following
relation

a = ∇× (ζb). (XIII.7.12)

Clearly, a is solenoidal and, in view of (XIII.7.7) it is also in C∞(Ω). From
the identity ∇× (ζb) = ∇ζ × b+ ζ∇× b and the properties of b we have

a = ∇ζ × b (XIII.7.13)

from which, and with the help of (XIII.7.10), it follows that

a(x) = 0, for all x ∈ Nε. (XIII.7.14)

Furthermore, we have

∫

S

a3 =

∫

S

(D1(ζb2) −D2(ζb1))

and so, by the divergence theorem, (XIII.7.2), and (XIII.7.10), we infer

∫

S

a3 =

∫

∂S

ζ(b2n1 − b1n2) = −
∫

∂S

b× n · e3 = 1,

which proves property (iii). From (XIII.7.11) and (XIII.7.13) we find

|a(x)| ≤ c3
δ(x)|x′|

|∇a(x)| ≤ c4

(
1

δ(x)|x′|2 + 1
δ2(x)|x′|

)





all x ∈ supp (a) ⊂ supp (∇ζ).
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If we take |x| sufficiently large, |x| > R (say), from (XIII.7.6) and the definition
of σ we have

δ(x) ≤ c5|x′| ≤ c6δ(x), x ∈ supp (a).

Therefore, for all x ∈ supp (a) with |x| > R, we find

|a(x)| ≤ c3
2

(
1

δ2(x)
+

1

|x′|2
)

=
c3
2

(
2 +

|x′|2
δ2(x)

+
δ2(x)

|x′|2
)

1

δ2(x) + |x′|2

≤ c7
δ2(x) + |x′|2

and, likewise,

|∇a(x)| ≤ c8

(δ2(x) + |x′|2)3/2
.

Observing that δ2(x) ≥ x2
3, property (i) follows from these latter inequalities.

Using (i) and the fact that a ∈ C∞(Ω
′
), for all bounded Ω′ with Ω

′ ⊂ Ω, we
deduce, in particular, that

∫

Ω

|∇a(x)|2 <∞.

Therefore,
a ∈ D1,2(Ω)

and since a is solenoidal and by (XIII.7.14) it vanishes in a neighborhood of
∂Ω, we may conclude, with the help of a standard “cut-off” argument, the
validity of statement (ii) in the lemma. It remains to prove condition (iv). We
begin to observe that, given η > 0, using integration by parts and the Schwarz
inequality, for all u ∈ D(Ω),

∣∣∣∣
∫

Ω

u · ∇a · u
∣∣∣∣ =

∣∣∣∣
∫

Ω

u · ∇u · a
∣∣∣∣ ≤

η

2

∫

Ω

∇u : ∇u+
1

2η

∫

Ω

u2a2

holds. As a consequence, to prove (iv), we will show that, given an arbitrary
small λ > 0, we may select ε in such a way that

∫

Ω

u2a2 < λ

∫

Ω

∇u : ∇u. (XIII.7.15)

To this end for a fixed h > 0, we split R3
+ into the following three regions (an

analogous splitting holds for R3
−):

R1 =
{
x ∈ R3

+ : x3 > h, x′ ∈ S
}

R2 =
{
x ∈ R3

+ : x3 < h, x′ ∈ S
}

R3 = R3
+ −

{
R1 ∪R2

}
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and denote by R̃i, i = 1, 2, 3, the intersection of Ri with the support of a .
By virtue of (XIII.7.11)1, (XIII.7.13), and the definition of b, we find

∫

eRi

u2a2 ≤ cε

∫

eRi

u2

δ2(x)|x′|2 , i = 1, 2, 3. (XIII.7.16)

with c independent of ε. We wish to show the inequality

∫

eRi

u2

δ2(x)|x′|2 ≤ c1

∫

Ω

∇u : ∇u, i = 1, 2, 3 (XIII.7.17)

which, with the help of (XIII.7.16), implies

∫

R3
+

u2a2 ≤ 3cc1ε

∫

Ω

∇u : ∇u.

Since an analogous reasoning holds for R3
−, we conclude the validity of

(XIII.7.15) and complete the proof of the lemma. It remains to show the
inequality (XIII.7.17). To this end, we notice that, for functions u ∈ D(Ω)
the following estimate holds

∫

Ω

u2

x2
3 + 1

≤ c2

∫

Ω

∇u : ∇u, (XIII.7.18)

with c2 = c2(S); cf. Exercise XIII.7.1. In view of (XIII.7.7), we have

|x′| ≥ d/2, for all x ∈ R̃1. (XIII.7.19)

Moreover, since
δ(x) ≥ x3 ≥ h for all x ∈ R̃1,

it follows that
1

δ2(x)
≤ c3
x2

3 + 1
, for all x ∈ R̃1 (XIII.7.20)

with c3 = c3(h). Thus, from (XIII.7.18)–(XIII.7.20) we infer that

∫

eR1

u2

δ2(x)|x′|2 ≤ 4c2c3
d2

∫

Ω

∇u : ∇u. (XIII.7.21)

Let us next consider the region R̃3. For all x ∈ R̃3,

δ(x) = x3

|x′| ≥ d,

and so ∫

eR3

u2

δ2(x)|x′|2 ≤ 1

d2

∫

eR3

u2

x2
3

.
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However, using the elementary inequality2

∫ ∞

0

f2(t)

t2
≤ 4

∫ ∞

0

(
df

dt

)2

, (XIII.7.22)

holding for (sufficiently smooth) functions vanishing in a neighborhood of zero
and infinity, we at once obtain

∫

eR3

u2

x2
3

≤ 4

∫

Ω

∇u : ∇u

and, as a consequence,

∫

eR3

u2

δ2(x)|x′|2 ≤ 4

d2

∫

Ω

∇u : ∇u. (XIII.7.23)

It remains to estimate the integral over the region R̃2. To this end, setting

δ1(y) = dist (y, ∂S) y ∈ S,

for all x ∈ R̃2 we find that

δ2(x) = x2
3 + δ21(x′)

|x′| ≥ d/2

which, in turn furnishes

∫

eR2

u2(x)

δ2(x)|x′|2 ≤ 4

d2

∫ h

0

dx3

∫

S

u2(x′, x3)

δ21(x′)
dx′. (XIII.7.24)

Since S is locally Lipschitz and u ∈ W 1,2
0 (S), we may use Lemma III.6.3 to

obtain ∫

S

u2(x′, x3)

δ21(x′)
dx′ ≤ c

∫

S

∇u : ∇udx′ (XIII.7.25)

with c = c(S). Integrating (XIII.7.25) over x3 ∈ [0, h) delivers

∫ h

0

dx3

∫

S

u2(x′, x3)

δ21(x
′)

dx′ ≤ c

∫

Ω

∇u : ∇u. (XIII.7.26)

Using (XIII.7.26) in conjunction with (XIII.7.24) allows us to conclude

∫

eR2

u2(x)

δ2(x)|x′|2 ≤ c9

∫

Ω

∇u : ∇u.

Estimate (XIII.7.17) then follows from this inequality, (XIII.7.21), and (XIII.7.23)
and therefore, by what we observed, the proof of the lemma is complete. ut
2 For the (simple) demonstration of (XIII.7.22), see the proof of Lemma III.6.3.
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Exercise XIII.7.1 Show inequality (XIII.7.18), for all u ∈ D(Ω). Hint: Estab-

lish (XIII.7.18) for Ω a half-space. Then use a “cut-off” argument together with

inequality (II.5.18).

The result just shown permits us to obtain the following.

Theorem XIII.7.3 Given arbitrary Φ ∈ R, problem (XIII.5.2) admits at
least one corresponding generalized solution v. This solution obeys the energy
inequality:

|v|21,2 ≤ −p∗Φ
ν

where p∗ = p+ − p− and p± are the constants associated by Lemma XIII.5.1
to the pressure field p corresponding to v.

Proof. We look for a solution of the form

v = u+ Φa

where a = a(x; η) is the vector constructed in Lemma XIII.7.1 corresponding
to a certain value of η that will be specified later, and u ∈ D1,2

0 (Ω) obeys

ν(∇u,∇ϕ) − (u · ∇ϕ,u) = −Φ(u · ∇a,ϕ) + Φ(a · ∇ϕ,u)

−Φ2(a · ∇a,ϕ) − νΦ(∇a,∇ϕ).
(XIII.7.27)

It is clear that v satisfies all requirements of Definition XIII.5.1. As in anal-
ogous circumstances, a solution to (XIII.7.27) will be determined via the
Galerkin method. Let {ϕk} ⊂ D(Ω) denote a sequence of functions whose
linear hull is dense in D1,2

0 (Ω) and satisfying the properties listed in Lemma
VII.2.1. We set

um =

m∑

k=1

ξkmϕk

where the coefficients are required to satisfy the following system

ν(∇um,∇ϕk) − (um · ∇ϕk,um) = −Φ(um · ∇a,ϕk) + Φ(a · ∇ϕk,um)

−Φ2(a · ∇a,ϕk)− νΦ(∇a,ϕk)
(XIII.7.28)

with k = 1, . . . , m. Existence to the algebraic system (XIII.7.28) for each
m ∈ N can be established exactly as in Theorem IX.3.1, provided we show a
suitable bound for |um|1,2. To obtain such a bound, we multiply (XIII.7.28)
by ξkm and sum over the index k from one to m. Observing that

(um · ∇um,um) = (a · ∇um,um) = 0, (XIII.7.29)

we find

ν |um|21,2 = −Φ(um · ∇a,um)−Φ2(a · ∇a,um)− νΦ(∇a,∇um). (XIII.7.30)
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Using the Schwarz and Cauchy inequalities, we deduce for all η > 0

Φ2(a · ∇a,um) = −Φ2(a · ∇um,a) ≤ Φ4

2η
‖a‖4

4 + η
2
|um|21,2

−νΦ(∇a,∇um) ≤ ν2Φ2

2η
|a|21,2 + η

2
|um|21,2.

(XIII.7.31)

Moreover, by Lemma XIII.7.1,

− Φ(um · ∇a,um) ≤ η|Φ||um|21,2. (XIII.7.32)

Thus, choosing

η <
ν

(1 + |Φ|) ,

and recalling that a ∈ L4(Ω) ∩ D1,2(Ω), we may use (XIII.7.29)–(XIII.7.32)
and Lemma IX.3.2 to show existence to (XIII.7.28) for all m ∈ N. Moreover,
we also find that

|um|21,2 ≤ c1(Φ, ν). (XIII.7.33)

Employing (XIII.7.33) together with the weak compactness of the spaces
D1,2

0 (Ω) we may select from {um} a sequence, denoted again by {um}, and a
vector field u ∈ D1,2

0 (Ω) such that

um
w→ u in D1,2

0 (Ω)

um → u in L2(Ω′),
(XIII.7.34)

for any bounded domain Ω′ ⊂ Ω. By these convergence properties and taking
advantage of the properties of the functions {ϕk}, we use a by-now-standard
procedure to show that u solves (XIII.7.28) and that, as a consequence, v is
a weak solution to (XIII.5.2). It remains to show that v satisfies the energy
inequality. For this purpose, setting

vm = um + Φa,

from (XIII.7.30), after a simple manipulation we find

ν |vm|21,2 = −Φ(vm · ∇a, vm) + νΦ(∇a,∇vm) (XIII.7.35)

where use has been made of the property

(vm · ∇a,a) = 0.

With the help of the convergence conditions (XIII.7.34), it is easily shown
that

lim
m→∞

(vm · ∇a, vm) = (v · ∇a, v). (XIII.7.36)

Actually, we have

|(vm · ∇a, vm) − (v · ∇a, v)| ≤ |((vm − v) · ∇a, vm)|
+|(v · ∇a, (vm − v))|

≡ I1(m) + I2(m).
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Recalling that for R sufficiently large

|∇a(x)| ≤ c|x|−3, |x| > R, (XIII.7.37)

we find

I1(m) ≤
(∫

Ω

|∇a|4/3|vm − v|2
)1/2 (∫

Ω

|∇a|2/3v2
m

)1/2

≤ c1

(∫

Ω

v2
m

|x|2
)1/2(∫

Ω

|∇a|4/3|vm − v|2
)1/2

.

Thus, from this inequality, (II.6.10), and (XIII.7.33) it follows that

I1(m) ≤ c2

(∫

Ω

|∇a|4/3|vm − v|2
)1/2

(XIII.7.38)

with c2 independent of m. Setting ΩR = Ω ∩ BR, ΩR = Ω − ΩR, from
(XIII.7.37) we have

∫

Ω

|∇a|4/3|vm − v|2 ≤
∫

ΩR

|∇a|4/3|vm − v|2 +

∫

ΩR

|∇a|4/3|vm − v|2

≤ c3

∫

ΩR

|vm − v|2 +
c4/3

R2

∫

ΩR

|vm − v|2
|x|2

and so, again by (II.6.10) and (XIII.7.33), we find

I1(m) ≤ c4

∫

ΩR

|vm − v|2 +
c5
R2

with c4 and c5 independent of m. Taking the lim sup as m→ ∞ at both sides
of this latter relation and bearing in mind (XIII.7.34)2, by the arbitrarity of
R we conclude that

lim sup
m→∞

I1(m) = 0,

that is,
lim

m→∞
I1(m) = 0.

Likewise, we show
lim

m→∞
I2(m) = 0

and (XIII.7.36) is completely established. Let us now take the lim inf as
m → ∞ of both sides of (XIII.7.35). Employing (XIII.7.36), (XIII.7.34)1,
and Theorem II.2.4 we obtain

ν |v|21,2 ≤ −Φ(v · ∇a, v) + νΦ(∇a,∇v). (XIII.7.39)
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We wish to put the right-hand side of (XIII.7.39) into a different form. To
this end, we recall that v obeys the identity (XIII.5.5). Denoting by ψR the
“cut-off” function of Theorem XIII.6.1, we choose, as test function ψ into
(XIII.5.5) the function ΦψRa. We thus obtain

Φν(ψR∇v,∇a)− Φ(ψRv · ∇a, v) = −Φ(p,∇ · (ψRa))

−Φν(∇v,a⊗∇ψR) + Φ(v · a ⊗∇ψR, v).
(XIII.7.40)

Using the properties of the function a and recalling that |∇ψR| ≤MR−1 with
M independent of R, we readily establish the following relations:

lim
R→∞

(ψR∇v,∇a) = (∇v,∇a)

lim
R→∞

(ψRv · ∇a, v) = (v · ∇a, v)

lim
R→∞

(∇v,a⊗∇ψR) = lim
R→∞

(v · a⊗∇ψR, v) = 0.

(XIII.7.41)

Furthermore, reasoning exactly as in the proof of (XIII.6.4), we show

lim
R→∞

(p,∇ · (ψRa)) = −(p+ − p−) (XIII.7.42)

with p± constants defined in Lemma XIII.5.1. Collecting (XIII.7.40)–(XIII.7.42)
we find

−Φ(v · ∇a, v) + Φ(v · ∇a, v) = −p∗Φ,
which, in view of (XIII.7.39), proves that v obeys the energy inequality. The
theorem is completely proved. ut
Remark XIII.7.2 Existence for arbitrary value of the flux can be established
for a wide class of domains with outlets Ωi whose cross sections Σi(xn) become
unbounded for large values of xn. This class certainly includes domains for
which Ωi are bodies of rotation of the type considered in the linear case in
Theorem VI.3.1. The proof of this result, which patterns that just given in
Theorem XIII.7.3, can be found in Solonnikov & Pileckas (1977, Theorem 8);
cf. also Ladyzhenskaya & Solonnikov (1980, Theorem 4.1). For existence in
domains of more general types, we refer the reader to the work of Solonnikov
(1983, §3.3). �

Remark XIII.7.3 An existence result of the same type as Theorem XIII.7.3
can be proved also in dimension two; see Galdi, Padula, & Passerini (1995)
and Remark XIII.5.3. �

The remaining part of this section is devoted to analyze the uniqueness of
generalized solutions constructed in Theorem XIII.7.3. To reach this goal, we
need an intermediate result that ensures the existence of generalized solutions
to (XIII.5.2) enjoying the additional property of being members of L3(Ω).
This result will be obtained under the assumption that the magnitude of the
flux Φ is suitably restricted.
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Lemma XIII.7.2 Let c be the constant entering the estimate given in The-
orem VI.5.1. Then, if

|Φ| < 3ν

16c2
,

problem (XIII.5.2) has at least one generalized solution v that satisfies

v ∈ D̂1,3/2
0 (Ω) ∩ L3(Ω).

Moreover, the following estimate holds:

‖v‖3 ≤ 2c√
3
|Φ|. (XIII.7.43)

Finally, denoting by p the pressure field corresponding to v according to
Lemma XIII.5.1, and by p± the constants associated to p by the same lemma,
we have

p− p± ∈ L2(R3
±) ∩ L3/2(R3

±). (XIII.7.44)

Proof. Let

X = D̂1,2
0 (Ω) ∩ D̂1,3/2

0 (Ω)

‖ · ‖X = | · |1,2 + | · |1,3/2,

and set
Xδ = {w ∈ X : ‖ · ‖X ≤ δ} .

Clearly,X endowed with the norm ‖ · ‖X is a Banach space and Xδ is a closed
subset of X. Consider the mapping

L : w ∈ Xδ → L(w) = v ∈ X

where v solves

ν(∇v,∇ϕ) = −(w · ∇w,ϕ), for all ϕ ∈ D(Ω)
∫

S

v3 = Φ.
(XIII.7.45)

The map L is well defined. Actually, by the Sobolev inequality (II.3.7),

|w · ∇w|−1,3/2 ≤ ‖w‖2
3 ≤ 1

3
|w|21,3/2. (XIII.7.46)

Moreover, by the interpolation inequality (II.2.7) and again by (II.3.7), for
some θ ∈ (0, 1),

|w·∇w|−1,2 ≤ ‖w‖2
4 ≤ ‖w‖2θ

3 ‖w‖2(1−θ)
6 ≤ 22(1−θ)

3
|w|1,3/2|w|1,2. (XIII.7.47)
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Thus,

w · ∇w ∈ D̂−1,2
0 (Ω) ∩ D̂−1,3/2

0 (Ω),

and from Theorem VI.5.1 we infer that the solution v to (XIII.7.45) is in
the space X, which proves that L is well defined. By the estimate given in
Theorem VI.5.1, (XIII.7.46), and (XIII.7.47), we obtain

‖v‖X ≤ c

(
|Φ|+ 4

3ν
‖w‖2

X

)
. (XIII.7.48)

Using this inequality, it is easy to show that, for suitably restricted |Φ| the
map L transforms Xδ into itself, with δ appropriately chosen. In fact, for
w ∈ Xδ , (XIII.7.48) delivers

‖v‖X ≤
(
|Φ|+ 4

3ν
δ2
)

and so, choosing

δ = 2c|Φ|, (XIII.7.49)

and recalling the assumption of the lemma, we obtain

‖v‖X ≤ δ

(
1

2
+

1

2

)
= δ, (XIII.7.50)

thus proving the desired property of L. Furthermore, for all w1, w2 ∈ Xδ, in
virtue of Theorem VI.5.1, (XIII.7.46), and (XIII.7.47) it easily follows that

‖L(w1) − L(w2)‖X ≤ 2c

ν
(‖w1 −w2‖3‖w1‖3 + ‖w2 −w1‖4‖w‖4)

≤ 8cδ

3ν
‖w1 −w2‖X .

Since, by assumption,
8c

3ν
δ =

16c2|Φ|
3ν

< 1,

we conclude that L is a contraction operator on Xδ and, therefore, it admits
a fixed point in Xδ. The existence of a solution v ∈ X to problem (XIII.5.2)
is thus established. Moreover, the Sobolev inequality (II.3.7), together with
(XIII.7.49) and (XIII.7.50), implies

‖v‖3 ≤ 1√
3
|v|1,3/2 ≤

2c√
3
|Φ|,

proving (XIII.7.43). Finally, the summability properties of the pressure field
are at once established from Lemma XIII.5.1 and Theorem VI.5.1. The lemma
is then completely proved. ut



XIII.8 Aperture Domain: Summability Properties of Generalized Solutions 951

Combining Lemma XIII.7.1 with Theorem XIII.6.2 we obtain the following
uniqueness result.

Theorem XIII.7.4 Assume that Φ verifies the condition

|Φ| < mν,

withm = min{3/4c, 3/16c2} and where c is the constant introduced in Lemma
XIII.7.1. Then the corresponding generalized solution v constructed in The-
orem XIII.7.3 is unique in the class of generalized solutions w satisfying the
energy inequality (XIII.6.6).

Other simple but interesting consequences of Lemma XIII.7.1 and Theorem
XIII.6.2, in light of Theorem XIII.7.4, are given in the following corollary.

Corollary XIII.7.1 Let the assumption of Theorem XIII.7.4 be satisfied.
Then every generalized solution v corresponding to Φ and verifying the in-
equality (XIII.6.6) satisfies the following summability conditions

v ∈ L3(Ω) ∩ D̂1,3/2
0 (Ω).

In particular, v satisfies the energy equation.

XIII.8 Global Summability of Generalized Solutions for
Flow in an Aperture Domain

The remaining part of this chapter is devoted to the investigation of the
asymptotic structure of generalized solutions. As in the case of flows in exte-
rior regions, this study will be performed in two different steps. In the first,
we determine general summability properties of weak solutions of the type
constructed in Theorem XIII.7.3. Successively, using these conditions, we will
furnish a complete representation of the solution at large spatial distances.
However, as we proved in Theorem XIII.7.4, in order for a weak solution to
verify the conditions stated in Theorem XIII.7.3, a small value of the flux Φ is
needed. As a consequence, the asymptotic structure of generalized solutions
corresponding to arbitrary values of Φ remains open.

In this section we shall determine the summability properties of weak
solutions corresponding to fluxes of suitably restricted size. Such a result will
be achieved as a corollary to a more general one, which we are going to derive.

Notation. Unless the contrary is explicitly stated, in the sequel we shall
denote by Ω the half-space R3

+.

Let ϕ ∈ C1(R) be a nonincreasing nonnegative function with ϕ(t) = 1
when t ≤ 1 and ϕ(t) = 0 when t ≥ 2. For a > 0 set

ϕa(x) = ϕ

( |x|
a

)
. (XIII.8.1)
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Clearly, the support of ∇ϕa is contained in the domain

Sa =
{
x ∈ R3 : a < |x| < 2a

}

and
|∇ϕa(x)| ≤ c

a
, x ∈ R3, (XIII.8.2)

with c (> 0) independent of a and x. We put

Ω(a) = R3
+ ∩ Sa , Ωa = R3

+ ∩Ba . (XIII.8.3)

The following result holds.

Lemma XIII.8.1 Let v ∈ L6
loc(Ω) ∩L3(Ω) with ∇ · v = 0.1 Then there is a

sequence {uk} of solenoidal2 functions in Ω such that

uk ∈ Ls(Ω) for all s ∈ (3/2, 6], for all k ∈ N

lim
k→∞

‖uk − v‖3 = 0.
(XIII.8.4)

In addition to (XIII.8.4), given ε > 0, the sequence {uk} can be chosen such
that

uk = u
(1)
k + u

(2)
k

‖u(1)
k ‖3 < ε

supp (u
(2)
k ) ⊂ Ωρ

‖u(2)
k ‖q,Ωρ ≤ ‖v‖q,Ωρ, for all q ∈ (1, 6),

(XIII.8.5)

where the number ρ depends only on ε and v.

Proof. Consider the problem:

∇ · zk = −∇ · (ϕkv) = −∇ϕk · v
zk ∈ D1,r

0 (Ω)

|zk|1,r ≤ c‖∇ϕk · v‖r.

(XIII.8.6)

From Corollary V.3.1 and the assumption on v we know that there is a solution
to problem (XIII.8.6) for any r ∈ (1, 6]. From the Sobolev inequality (II.3.7)
we have (see (XIII.8.3)1)

‖zk‖3 ≤ c|zk|1,3/2 ≤ c‖∇ϕk‖3,Ω(k)
‖v‖3,Ω(k)

and so, in view of (XIII.8.2),

‖zk‖3 ≤ c1‖v‖3,Ω(k)
(XIII.8.7)

1 In the generalized sense.
2 In the generalized sense.
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with c1 independent of k. Moreover, since ∇ϕk · v ∈ Lr(Ω), 1 < r < 3, for all
k ∈ N, again by the Sobolev inequality we deduce that

zk ∈ L3r/(3−r)(Ω), 1 < r < 3,

that is,
zk ∈ Ls(Ω), for all s ∈ (3/2,∞). (XIII.8.8)

Given ε > 0, we choose ρ = ρ(ε, v) such that

‖(1 − ϕρ)v‖3 < ε/2 (XIII.8.9)

and set, for all sufficiently large k,

uk = ϕkv + zk

u
(1)
k = ϕk(1 − ϕρ)v + zk

u
(2)
k = ϕρv.

Since for k large enough
ϕkϕρ = ϕρ,

it follows that
uk = u

(1)
k + u

(2)
k .

The field uk is solenoidal for all k ∈ N. Furthermore, by (XIII.8.8) and as-
sumption, we deduce (XIII.8.4)1. By (XIII.8.7) and the properties of ϕk we
also have

‖uk − v‖3 ≤ ‖(1 − ϕk)v‖3 + ‖zk‖3 → 0 as k → ∞

and we recover (XIII.8.4)2. Statements (XIII.8.5)3 and (XIII.8.5)4 are evident.
Finally, by (XIII.8.7) and (XIII.8.9) for k large enough, it follows that

‖u(1)
k ‖3 ≤ ‖(1 − ϕρ)v‖3 + c1‖v‖3,Ω(k)

≤ ε

2
+
ε

2
= ε.

The lemma is proved. ut

Lemma XIII.8.2 Let v, p be a weak solution to the problem

ν∆v = v · ∇v + ∇p
∇ · v = 0

}
in Ω

v = v∗ at ∂Ω,

where, for all s ∈ (1, 3/2],
v∗ ∈ Ls(∂Ω)

and
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〈〈v∗〉〉1−1/s,s, 〈〈v∗〉〉1/2,2

are finite.3 Then if
v ∈ Ls(Ω)

it follows that

v ∈ D1,q(Ω) ∩ L3q/(3−q)(Ω), for all q ∈ (1, 2].

Proof. For simplicity, we shall put ν = 1. Consider the following sequence of
problems

∆w = uk · ∇w + ∇π
∇ ·w = 0

}
in Ω

w = v∗ at ∂Ω,

(XIII.8.10)

where {uk} is the sequence of functions associated to v by Lemma XIII.8.1
and corresponding to a certain value of ε, which will be specified later.4 It is
simple to show for problem (XIII.8.10) the existence of a weak solution wk,
for each k ∈ N. Actually, we may extend the field v∗ to some U ∈ D1,2(Ω);
see Section II.10. U need not be solenoidal, but we may add to it a field u
such that

∇ · u = −∇ · U

u ∈ D1,2
0 (Ω)

|u|1,2 ≤ c‖∇ · U‖2.

The field u exists by virtue of Corollary V.3.1. Thus,

V = u +U

is a solenoidal extension of v∗ satisfying, by the trace Theorem II.10.2 and
the property of u, the bound

|V |1,2 ≤ c 〈〈v∗〉〉1/2,2. (XIII.8.11)

We look for a solution to (XIII.8.10) of the form w = z + V ,5 where

∆z = uk · ∇z + uk · ∇V −∆V + ∇π
∇ · z = 0

}
in Ω

z = 0 at ∂Ω,

(XIII.8.12)

3 These are the trace norms at the boundary of functions defined in a half-space;
see Section II.10.

4 Notice that, since v ∈ D1,2(Ω), by the embedding Theorem II.3.4, it follows that
v ∈ L6

loc(Ω) so that the assumptions of Lemma XIII.8.1 are satisfied.
5 For simplicity, we shall drop the subscript k in wk and zk.
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Multiplying (XIII.8.12)1 by z, integrating by parts overΩ, and using (XIII.8.12)1
we formally obtain

− |z|21,2 = (uk · V , z) + (∇V ,∇z). (XIII.8.13)

Using the Hölder inequality in the terms at the right-hand side of this relation,
together with the Sobolev inequality (II.3.7), we deduce

|(uk · ∇V , z)| ≤ ‖uk‖3|V |1,2‖z‖6 ≤ γ‖uk‖3|V |1,2|z|1,2

|(∇V ,∇z)| ≤ |V |1,2|z|1,2.

These inequalities along with (XIII.8.11) and (XIII.8.13), yield

|z|1,2 ≤ c1〈〈v∗〉〉1/2,2,

and recalling that w = z + V , we also have

|w|1,2 ≤ c2〈〈v∗〉〉1/2,2. (XIII.8.14)

The above bound on z allows us to determine, for all k ∈ N, a generalized
solution to (XIII.8.10) satisfying (XIII.8.14). Since

uk ∈ Lr(Ω) for all r ∈ (3/2, 6],

and ∇ · uk = 0, by inequality (II.6.22) we find for all q ∈ (6/5, 3/2]

|uk · ∇w|−1,q ≤ ‖ukw‖q ≤ ‖uk‖6q/(6−q)‖w‖6 ≤ c1‖uk‖6q/(6−q)|w|1,2 <∞.

Thus, we may assert

F ≡ uk · ∇w ∈ D−1,q
0 (Ω) for all q ∈ (6/5, 3/2]. (XIII.8.15)

Using (XIII.8.15) and Theorem V.3.3, it follows that

w ∈ D1,q(Ω) ∩ L3q/(3−q)(Ω) for all q ∈ (6/5, 3/2]. (XIII.8.16)

In view of (XIII.8.16), we may give a different estimate for F . Specifically, by
the Hölder inequality and (XIII.8.5)2,4 we have for all q ∈ (6/5, 3/2]

|F |−1,q ≡ |uk · ∇w|−1,q ≤ ‖u(1)
k ‖3‖w‖3q/(3−q) + ‖v‖4,Ωρ‖w‖4q/(4−q),Ωρ

≤ ε‖w‖3q/(3−q) + ‖v‖4,Ωρ‖w‖4q/(4−q),Ωρ
.

(XIII.8.17)
From (XIII.8.17) and estimate (V.3.28) we deduce

(1 − εc)‖w‖3q/(3−q) + |w|1,q + ‖π‖q ≤ c
(
〈〈v∗〉〉1−1/q,q

+‖v‖4,Ωρ‖w‖4q/(4−q),Ωρ

)
,

(XIII.8.18)



956 XIII Steady Navier–Stokes Flow in Domains with Unbounded Boundaries

where c denotes the constant entering (V.3.28). Thus, choosing ε < 1/c, from
(XIII.8.14) and (XIII.8.18) we deduce, for all q ∈ (6/5, 3/2], that

|w|1,2 + ‖w‖3q/(3−q)+ |w|1,q + ‖π‖q

≤ c2
(
〈〈v∗〉〉1/2,2 + 〈〈v∗〉〉1−1/q,q

+‖w‖4q/(4−q),Ωρ

)
.

(XIII.8.19)

Our next objective is to show the existence of a constant c3 = c3(ρ, q, v)
independent of k such that

‖w‖4q/(4−q),Ωρ
≤ c3

(
〈〈v∗〉〉1/2,2 + 〈〈v∗〉〉1−1/q,q

)
. (XIII.8.20)

Contradicting (XIII.8.20) means that there are sequences

{um}, {v∗m}

such that if {wm, πm} are weak solutions to the problem

∆wm = um · ∇wm + ∇πm

∇ ·wm = 0

}
in Ω

wm = v∗m at ∂Ω,
(XIII.8.21)

we have that

〈〈v∗m〉〉1/2,2 + 〈〈v∗m〉〉1−1/q,q → 0 as m→ ∞, (XIII.8.22)

while
‖wm‖4q/(4−q),Ωρ

= 1. (XIII.8.23)

In view of (XIII.8.19) it follows, in particular, that

|wm|1,2 + ‖wm‖3q/(3−q) + |wm|1,q + ‖πm‖q ≤M1,

with M1 independent of m. Therefore, by Theorem II.1.3, Exercise II.6.2, and
Theorem II.5.2 there is w, π such that (at least along a subsequence)

wm
w→ w in Ḋ1,q(Ω) ∩ L3q/(3−q)(Ω) ∩ Ḋ1,2(Ω)

wm → w in Lr(ΩR) for all r ∈ (1, 3q/(3− q)), R > 0

πm
w→ π in Lq(Ω).

(XIII.8.24)

Because of (XIII.8.22) and the trace Theorem II.10.1, it follows that w has
zero trace at ∂Ω; also, ∇ ·w = 0 and so

w ∈ D1,q
0 (Ω) ∩ D1,2

0 (Ω). (XIII.8.25)

Moreover, owing to (XIII.8.5)2,4, we have
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‖u‖3 ≤M2, (XIII.8.26)

with M2 independent of m, and we may select a subsequence (denoted again
by {um}) and find a field U ∈ L3(Ω) such that

um → U weakly in L3(Ω). (XIII.8.27)

By (XIII.8.24), for all ψ ∈ C∞
0 (Ω), we have

(∇wm,∇ψ) → (∇w,∇ψ)

(πm,∇ · ψ) → (π,∇ · ψ).
(XIII.8.28)

Also, by (XIII.8.27), it follows that

(um · ∇ψ,wm) − (U · ∇ψ,w) = ((um − U) · ∇ψ,w)

−(um · ∇ψ, (w−wm))

≡ I1(m) + I2(m).

(XIII.8.29)

By the Hölder inequality,

‖∇ψ ·w‖3/2 ≤ ‖∇ψ‖q/(q−1)‖w‖3q/(3−q)

and (XIII.8.24) and (XIII.8.27) imply

lim
m→∞

I1(m) = 0. (XIII.8.30)

In addition,

|(um · ∇ψ, (w −wm))| ≤ ‖um‖3‖ψ‖s′‖w −wm‖s,%

where % = supp (ψ) and s < 3q/(3− q). Thus, by (XIII.8.24), we find

lim
m→∞

I2(m) = 0. (XIII.8.31)

Collecting (XIII.8.28)–(XIII.8.31), taking into account that wm, πm is a gen-
eralized solution to (XIII.8.21), and using (XIII.8.22), it follows that

0 = lim
m→∞

{(∇wm,∇ψ) − (um · ∇ψ,wm) − (πm,∇ · ψ)}

= (∇w,∇ψ) − (U · ∇ψ,w) − (π,∇ ·ψ).

Therefore, by (XIII.8.25), w solves the homogeneous problem

(∇w,∇ψ) = (U · ∇ψ,w) + (π,∇ · ψ) for all ψ ∈ C∞
0 (Ω)

w ∈ D1,q
0 (Ω) ∩ D1,2

0 (Ω).
(XIII.8.32)

We may take, in particular, ψ ∈ D(Ω) to obtain
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(∇w,∇ψ) = (U · ∇ψ,w) for all ψ ∈ D(Ω)

w ∈ D1,2
0 (Ω).

(XIII.8.33)

Using the density property of D(Ω) into D1,2
0 (Ω) along with Lemma X.2.1,

we may replace ψ with w in (XIII.8.32) to derive

− |w|1,2 = (U · ∇w,w). (XIII.8.34)

However, U is (weakly) divergence-free and, as a consequence,

(U · ∇wr ,wr) = 0

along a sequence {wr} ⊂ D(Ω) approximating w in D1,2
0 (Ω). Thus, again by

Lemma X.2.1, we obtain
(U · ∇w,w) = 0

and (XIII.8.32)2, (XIII.8.34) imply w ≡ 0 a.e. in Ω. From (XIII.8.24)2 we
then find

wm → 0 strongly in L4q/(4−q)(Ωρ),

which contradicts (XIII.8.23). The validity of (XIII.8.20) is therefore estab-
lished and (XIII.8.19) furnishes that, for all k ∈ N, there exists a generalized
solution wk, πk to (XIII.8.10) satisfying the estimate

|wk|1,2 + ‖wk‖3q/(3−q)+ |wk|1,q + ‖πk‖q

≤ c(〈〈v∗〉〉1/2,2 + 〈〈v∗〉〉1−1/q,q)
(XIII.8.35)

with a constant c independent of k. As a consequence, from {wk, πk} we can
select a subsequence, denoted again by {wk, πk}, and find a pair {w, π} obey-
ing the property (XIII.8.24). Taking into account (XIII.8.25)2 and reasoning
as we did to recover (XIII.8.32) we show that {w, π} is a generalized solution
to the problem

∆w = v · ∇w + ∇π
∇ ·w = 0

}
in Ω

w = v∗ at ∂Ω

(XIII.8.36)

such that

w ∈ D1,q(Ω) ∩ L3q/(3−q)(Ω) ∩D1,2(Ω)

π ∈ Lq(Ω).
(XIII.8.37)

However, v, p is also a generalized solution to (XIII.8.36) and by assumption,
(XIII.8.36), and (XIII.8.37) we conclude that the differences

w ≡ v −w, π = p− π
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solve the generalized form of (XIII.8.36) with v∗ ≡ 0. Since w ∈ D1,2
0 (Ω),

reasoning as we did to show that (XIII.8.33) admits only the identically van-
ishing generalized solution, we prove w ≡ 0, π ≡ const. a.e. in Ω. We then
conclude that

v ∈ D1,q(Ω) ∩L3q/(3−q)(Ω), for all q ∈ (6/5, 3/2]. (XIII.8.38)

Since 3q/(3 − q) (> 2) can be chosen as close to 2 as we please by picking
q (> 6/5) suitably close to 6/5, and since

|v · ∇v|−1,r ≤ ‖v‖2
2r

we may assert that

v · ∇v ∈ D−1,q
0 (Ω) for all q ∈ (1, 3/2]

and, as a consequence, by Theorem V.3.3 it follows that

v ∈ D1,q(Ω) ∩L3q/(3−q)(Ω) for all q ∈ (1, 3/2]. (XIII.8.39)

Since v ∈ D1,q(Ω), the lemma follows from (XIII.8.39) after application of
the interpolation inequality (II.2.7). ut

Combining Lemma XIII.8.1, Theorem XIII.7.4, and Corollary XIII.7.1, we
obtain the (first part of the) following result concerning (global) summabil-
ity properties of generalized solutions to problem (XIII.5.2) in the aperture
domain Ω.

Theorem XIII.8.1 Let the flux Φ satisfy the assumption of Theorem XIII.7.4.
Then any corresponding generalized solution v to (XIII.5.2) that obeys the
energy inequality (XIII.6.6) enjoys the following summability properties:

v ∈ D1,q(Ω) ∩ L3q/(3−q)(Ω) for all q ∈ (1, 2].

Moreover, denoting by p the pressure field associated to v by Lemma XIII.5.1
we have

p− p± ∈ Ls(R±) for all s ∈ (1, 3],

where the constants p± are defined in Lemma XIII.5.1.

Proof. We have to show only the summability of p. However, since

v · ∇v ∈ D−1,s
0 (Ω) for all s ∈ (1, 3],

the stated property follows at once from Theorem VI.5.1. ut
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XIII.9 Asymptotic Structure of Generalized Solutions
for Flow in an Aperture Domain

Using the results on the Stokes problem in the half-space as given in Theorem
IV.3.2 and Theorem IV.3.3, it is a straightforward exercise to show that every
generalized solution to problem (XIII.5.2) satisfies the following asymptotic
properties

lim
|x|→∞

Dαv(x) = 0

lim
|x|→∞,x∈R3

±
Dα(p(x) − p±) = 0,

(XIII.9.1)

for all |α| ≥ 0; cf. Exercise XIII.9.1. However, nothing can be said about the
order of decay, unless we put some suitable restriction on the magnitude of
the flux Φ of the velocity field through the aperture S. Actually, under the
hypothesis of Theorem XIII.7.4, it is a relatively simple task to determine
the precise asymptotic structure of any corresponding generalized solution
v and of the associated pressure field p. In showing this, we shall follow an
approach entirely analogous to that employed in similar circumstances for flow
in exterior domains; cf. Section X.8 and X.6.

First of all, we need a representation for v. By Theorem XIII.7.4, any
generalized solution corresponding to “small” Φ satisfies the condition

vlvi ∈ L2(Ω), l, i = 1, 2, 3,

and so, by Lemma VI.5.1, it follows that for all x ∈ R3
± v(x) admits the

representation

vj(x) = −1

ν

∫

R3
±

DlG
±
ij(x, y)vl(y)vi(y)dy

−
∫

S

[vi(y)Til(G
±
j , g

±
j )(x, y)nl(y)dσy,

(XIII.9.2)

where G± is the Green’s tensor for the Stokes problem in R3
± and g± is the

associated “pressure” field. Relation (XIII.9.2) is the starting point of our
asymptotic analysis. Since what we shall say equally applies to R3

+ and R3
−,

to fix the ideas we shall deal with R3
+. Setting, for simplicity, G+ = G and

g+ = g, we begin to notice that from (XIII.9.2) we derive, in particular, for
all x ∈ R3

+

vj(x) = −1

ν

∫

R3
+

DlGij(x, y)vl(y)vi(y)dy + Ti3(Gj , gj)(x, 0)

∫

S

vi(y)dσy

−
∫

S

[Til(Gj, gj)(x, y) − Til(Gj, gj)(x, 0)] vi(y)nl(y)dσy.
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Recalling the estimates (IV.3.50), from the latter relation, it follows for all
sufficiently large x ∈ R3

+ that

vj(x) = −1

ν

∫

R3
+

DlGij(x, y)vl(y)vi(y)dy +BiTi3(Gj , gj)(x, 0) + ϕi(x)

(XIII.9.3)
where

Bi :=

∫

S

vi , ϕi(x) = O(|x|−3). (XIII.9.4)

Our next objective is to give an asymptotic estimate of the integral term in
(XIII.9.3). Specifically, we shall show that this term can be split as the sum of
two terms: the first is proportional toDlGij(x, 0) and the second isO(|x|−3+δ),
for arbitrary positive δ. To reach this goal, we need some preliminary results.
For R > r > δ(S) and with the origin of coordinates in the interior of S, we
set

Ωa = R3
+ ∩Ba, a = r, R

Ωr,R = ΩR − Ωr

Ωa = R3
+ − Ωa a = r, R

and

G(R) =

∫

ΩR

∇v : ∇v. (XIII.9.5)

We have the following.

Lemma XIII.9.1 Let the assumptions of Theorem XIII.7.4 be satisfied.
Then the generalized solution v verifies

G(R) ≤ cR−1

with c independent of R.

Proof. Without loss of generality, we set p+ = 0. Multiply (XIII.5.2)1 by v,
integrate by parts over ΩR,R1 , R1 > R, and use (XIII.5.2)3. We thus obtain

ν

∫

ΩR,R1

∇v : ∇v =

∫

∂BR∪∂BR1

[
νv · ∂v

∂n
− pv · n− v2

2
v ·n

]
. (XIII.9.6)

Since, by Theorem XIII.7.4,

v · ∂v
∂n
, pv, v3 ∈ L1(R3

+), (XIII.9.7)

letting R1 → ∞ along a suitable sequence into (XIII.9.6), we find

νG(R) =

∫

∂BR

[
νv · ∂v

∂n
− pv · n− v2

2
v · n

]
.
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In view of (XIII.9.7) we have

G ∈ L1(R,∞), for all R > δ(S),

and since G′(R) < 0, the result follows from Lemma X.8.1. ut

Lemma XIII.9.2 Let the assumptions of Theorem XIII.7.4 be fulfilled. Then
the generalized solution v satisfies

v(x) = O(|x|−1), as |x| → ∞ in R3
+.

Proof. Set |x| = 2R, for R > δ(S). From (XIII.9.3)–(XIII.9.4) and (IV.3.50)
it follows that

|v(x)| ≤ c

[∫

ΩR

v2(y)

|x− y|2 dy+

∫

ΩR

v2(y)

|x− y|2 dy
]

+O(|x|−3). (XIII.9.8)

Since, by Theorem XIII.7.4, v ∈ L2(Ω), we deduce

∫

ΩR

v2(y)

|x− y|2 dy ≤ c1|x|−2. (XIII.9.9)

Furthermore, let δ(S) < ρ/2 < ρ < R and let ψρ be a smooth function in R3

with

ψρ(x) =

{
0 if |x| ≤ ρ/2

1 if |x| ≥ ρ.

Extending v(x) by zero for x ∈ R3
− and applying inequality (II.6.20) to the

function ψρ(x)v(x), we obtain

∫

ΩR

v2(y)

|x− y|2 dy ≤ c2

∫

ΩR

∇v : ∇v

with c2 independent of R. Thus, from (XIII.9.5) and Lemma XIII.9.1 we
deduce ∫

ΩR

v2(y)

|x− y|2 dy ≤ c3|x|−1

and the lemma follows from this inequality, (XIII.9.8), and (XIII.9.9). ut

Lemma XIII.9.3 Let the assumptions of Theorem XIII.7.4 be fulfilled. Then
the generalized solution v satisfies

v(x) = O(|x|−2), as |x| → ∞ in R3
+.
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Proof. From (XIII.9.3)–(XIII.9.4) and (IV.3.50) we see that it is enough to
show that for large |x| in R3

+

Nj(x) =

∫

R3
+

DlGij(x, y)vl(y)vi(y)dy = O(|x|−2) (XIII.9.10)

holds. From (IV.3.50) it follows, in particular, that

|DαGij(x, y)| ≤
c

|x− y|1+|α| , 0 ≤ |α| ≤ 2, (XIII.9.11)

and so

|N(x)| ≤ c

∫

R3
+

v2(y)

|x− y|2 . (XIII.9.12)

We split the region of integration R3
+ into three subregions ΩR, ΩR,3R, and

Ω3R, where R = |x|/2, and denote by I1, I2, and I3 the three corresponding
integrals. Since

|x| ≤ 2|x− y|, for y ∈ ΩR,

we find

I1 ≤ 2c

|x|2
∫

R3
+

v2 =
c1
|x|2 , (XIII.9.13)

where, in the last step, we have used the property v ∈ L2(Ω); cf. Theorem
XIII.7.4. Also,

|y| ≤ 3|x− y|, for y ∈ Ω3R,

and so

I3 ≤ 3c

∫

Ω3R

v2(y)

|y|2 .

Recalling that v ∈ L2(Ω), we conclude

I3 ≤ c2
R2

∫

Ω

v2 =
c3
|x|2 . (XIII.9.14)

Concerning the estimate for I2, we have

I2 =

∫

CR

v2(y)

|x− y|2 dy +

∫

B1(x)

v2(y)

|x− y|2 dy, (XIII.9.15)

where
CR = ΩR,3R − B1(x).

By Lemma XIII.9.2,
v(x) = O(|x|−1) (XIII.9.16)

and so
∫

B1(x)

v2(y)

|x− y|2 dy ≤ c4
|x|2

∫

B1(x)

dy

|x− y|2 =
c5
|x|2 . (XIII.9.17)
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Furthermore, again by (XIII.9.16), for any positive η we have

∫

CR

v2(y)

|x− y|2 dy ≤ c5
|x|3/2−η

∫

CR

v1/2+η(y)

|x− y|2 dy

and so, employing the Hölder inequality,

∫

CR

v2(y)

|x− y|2 dy ≤ c5
|x|3/2−η

(∫

CR

dy

|x− y|2q′

)1/q′ (∫

Ω

v( 1
2+η)q

)1/q

.

By Theorem XIII.7.4, it follows that v ∈ Lr(Ω) for all r > 3/2 and arbitrarily
close to 3/2. Therefore, the preceding inequality yields

∫

CR

v2(y)

|x− y|2 dy ≤ c6
|x|3/2−δ

(XIII.9.18)

where δ > 0 is arbitrarily close to zero. Collecting (XIII.9.10), (XIII.9.12)–
(XIII.9.15), (XIII.9.17), and (XIII.9.18), with the help of (XIII.9.3)–(XIII.9.3)
we derive

v(x) = O(|x|−3/2+δ). (XIII.9.19)

With this improved estimate on v we can give an improved estimate of the
first integral on the right-hand side of (XIII.9.15). Actually, from (XIII.9.19)
we find ∫

CR

v2(y)

|x− y|2 dy ≤ c7
|x|2

∫

CR

v(2−4δ)/(3−2δ)(y)

|x− y|2 dy.

Thus, applying the Hölder inequality and recalling that v ∈ Lr(Ω) for all
r ∈ (3/2, 6] we arrive at ∫

CR

v2(y)

|x− y|2 ≤ c8
|x|2 ,

and the proof of the lemma is complete. ut
Lemma XIII.9.4 Let the assumptions of Theorem XIII.7.4 be fulfilled. Then
the generalized solution v satisfies as |x| → ∞ in R3

+

∫

R3
+

[DlGij(x, y) −DlGij(x, 0)]vl(y)vi(y)dy = O(|x|−3+δ),

with δ an arbitrary small positive number.

Proof. We denote by I the integral we want to estimate and write

I =

∫

ΩR

[DlGij(x, y) −DlGij(x, 0)]vl(y)vi(y)dy

+

∫

ΩR

[DlGij(x, y) −DlGij(x, 0)] vl(y)vi(y)dy

≡ I1 + I2,

(XIII.9.20)
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where |x| = 2R. From the mean value theorem and (XIII.9.11) we deduce

|DlGij(x, y) −DlGij(x, 0)| = |ylDkDlGij(x, βy)| ≤
c|y|

|x− βy|3 , β ∈ (0, 1).

We have
|x| ≤ 2|x− βy|, y ∈ ΩR,

and so

|I1| ≤
8c

|x|3
∫

ΩR

v2(y)|y|dy.

From Lemma XIII.9.3 and the Hölder inequality we find

|I1| ≤
c1
|x|3 |ΩR|1/q′‖v‖3/2

3q/2,Ω

and since, by Theorem XIII.7.4, we can take q arbitrarily close to 1, we derive

|I1| ≤
c2

|x|3−δ
(XIII.9.21)

with δ > 0 arbitrarily close to zero. Moreover, from (XIII.9.11) it follows that

|I2| ≤
∫

ΩR

|DlGij(x, y)vl(y)vi(y)| dy+ |DlGij(x, 0)|
∫

ΩR

v2(y)dy

≤ c

{∫

ΩR

v2(y)

|x− y|2 dy +
1

|x|2
∫

ΩR

v2

}
.

(XIII.9.22)
Therefore, using the estimate on v given in Lemma XIII.9.3 and then applying
Lemma II.9.2, we infer that

∫

ΩR

v2(y)

|x− y|2 dy ≤ c3
|x|2

∫

R3

dy

|x− y|2|y|2 ≤ c4
|x|3 . (XIII.9.23)

Likewise, again from Lemma XIII.9.3 and the property v ∈ Lr(Ω) for all
r ∈ (3/2, 6], we find for any positive δ sufficiently close to zero

∫

ΩR

v2(y)dy ≤ c5
|x|1−δ

∫

Ω

v3/2+δ =
c6

|x|1−δ
. (XIII.9.24)

The lemma then follows from (XIII.9.20)–(XIII.9.24). ut

The representation (XIII.9.3)–(XIII.9.4), together with Lemma XIII.9.4,
allows us to show the following result concerning the asymptotic structure of
a generalized solution corresponding to a flux of suitably restricted size.

Theorem XIII.9.1 Let the flux Φ satisfy the assumption of Theorem XIII.7.4.
Then any corresponding generalized solution v to problem (XIII.5.2) that
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obeys the energy inequality (XIII.6.6) admits the following asymptotic repre-
sentation as |x| → ∞, x ∈ R3

±:

vj(x) = A±
ilDlG

±
ij(x, 0) + B±

i Ti3(G
±
j , g

±
j )(x, 0) + Vj(x), j = 1, 2, 3.

(XIII.9.25)
Here G± ≡ {G±

ij}, g± ≡ {g±j } is the Green’s tensor-solution for the Stokes

problem in R3
± (see (IV.3.46)-(IV.3.49)),G±

j ≡ (G±
1j, G

±
2j, G

±
3j), and

A±
il :=

1

ν

∫

R3
±

vivl , B±
i := ±

∫

S

vi , Vj(x) = O(|x|−3+δ),

with δ an arbitrary positive number.

Remark XIII.9.1 From (XIII.9.25) and (IV.3.50) we obtain the uniform
asymptotic estimate for v (see also Lemma XIII.9.3):

v(x) = O(|x|−2).

Moreover, comparing (XIII.9.25) with the analogous formula (VI.5.23) ob-
tained in the linear case, we recognize in (XIII.9.25) the presence of the extra
terms involving the quantities A±

il . Therefore, unlike the case of an exterior
domain (when v∞ 6= 0), the nonlinearities give an explicit contribution to the
asymptotic expansion. �

Remark XIII.9.2 Following the methods of Coscia & Patria (1992), one can
show that the first derivatives of v obey the asymptotic estimate

Dkv(x) = O(|x|−3), as |x| → ∞.

We shall not perform this study here; we refer the reader to Theorem 12 of
the paper by Coscia & Patria; cf. also Exercise XIII.9.2. �

The final part of this section is devoted to the proof of an asymptotic
representation for the pressure field p. As before, we shall show this in R3

+, an
analogous formula holding in R3

−. Let ϕR(x) be a smooth function that equals
one for |x| ≥ 2R and zero for |x| ≤ R with |∇ϕR| ≤ MR−1, M independent
of R. Setting

w = ϕRv, τ = ϕR(p− p+),

with p, p+ introduced in Lemma XIII.5.1, we easily establish that w, τ satisfy
the following problem

ν∆w = ∇τ + F

∇ ·w = g

}
in R3

+

w = v at x3 = 0

(XIII.9.26)

with
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F = 2∇ϕR · ∇v +∆ϕRv + ϕRv · ∇v + (p − p+) · ∇ϕR

g = ∇ϕR · v.
(XIII.9.27)

Denote, further, by h a solution to the non-homogeneous Stokes problem

ν∆h = ∇σ
∇ · h = −∇ϕR · v

}
in R3

+

h = 0 at x3 = 0.

(XIII.9.28)

As we know from Theorem IV.3.2, this problem admits a (unique) solution
satisfying the estimate

|h|2,q + |σ|1,q ≤ c‖∇ϕR · v‖1,q for all q > 1, (XIII.9.29)

with a constant c independent of R. Using Theorem XIII.7.4, together with
the properties of ϕR, we easily show

lim
R→∞

‖Dβ(∇ϕR)Dχv‖q = 0 for all q > 1, and |β|, |χ|=0,1. (XIII.9.30)

Choosing q = q1 < 3 and modifying σ by the addition of an appropriate
constant, from Theorem II.6.3 we find

‖σ‖3q1/(3−q1) ≤ γ1|σ|q1 . (XIII.9.31)

Thus, from (XIII.9.29) and (XIII.9.31), with the help of Theorem II.9.1, we
find for all x ∈ R3

+

|σ(x)| ≤ γ2 (|σ|1,q1 + |σ|1,q2) q2 > 3,

with γ2 independent of R. From this relation, (XIII.9.29), and (XIII.9.30) we
then conclude

lim
R→∞

σ(x) = 0, for all x ∈ R3
+. (XIII.9.32)

Setting
u = w + h,

from (XIII.9.26)–(XIII.9.28) we find

ν∆u = ∇τ1 + F

∇ · u = 0

}
in R3

+

u = v at x3 = 0

(XIII.9.33)

with

τ1 = τ + σ. (XIII.9.34)
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Taking into account that F is smooth and of compact support, reasoning as
in the proof of Lemma VI.5.1(ii) from (XIII.9.33)–(XIII.9.34) we then find for
all x ∈ R3

+

τ1(x) = −
∫

R3
+

gi(x, y)Fi(y)dy + 2ν

∫

S

vi(y)
∂gi(x, y)

∂x3
dσy, (XIII.9.35)

where, for simplicity, we set g = g+. Our objective is to let ϕR → 1 into
(XIII.9.35) or, equivalently, R → ∞. To this end, we recall that g enjoys the
uniform estimate

|Dαg(x, y)| ≤ c1
|x− y||α|+2

, |α| ≥ 0; (XIII.9.36)

cf. (IV.3.50), (IV.3.51). Therefore, for all x ∈ R3
+ we have

∫

R3
+

|g(x, y) · v(y)∆ϕR(y)| dy ≤ c2

[∫

Bd(x)

|v(y)∆ϕR(y)|
|x− y|2 dy

+

∫

R3
+−Bd(x)

|v(y)∆ϕR(y)|
|x− y|2 dy

]

where d < x3. The Hölder inequality, with r > 3 and s < 3/2, yields

∫

Bd(x)

|v(y)∆ϕR(y)|
|x− y|2 dy ≤

(∫

Bd(x)

|x− y|−2r′
dy

)1/r′

‖∆ϕRv‖r

∫

R3
+−Bd(x)

|v(y)∆ϕR(y)|
|x− y|2 dy ≤

(∫

R3
+−Bd(x)

|x− y|−2s′
dy

)1/s′

‖∆ϕRv‖s

(XIII.9.37)
and so, in view of (XIII.9.30) from (XIII.9.37) we conclude

lim
R→∞

∫

R3
+

g(x, y) · v(y)∆ϕR(y)dy = 0. (XIII.9.38)

By similar reasonings, which we leave to the reader, we show

lim
R→∞

∫

R3
+

g(x, y) · ∇v(y) · ∇ϕR(y)dy = 0

lim
R→∞

∫

R3
+

g(x, y) · ∇ϕR(y)(p(y) − p+)(y)dy = 0

lim
R→∞

∫

R3
+

v(y) · ∇v(y) · g(x, y)ϕR(y)dy =

∫

R3
+

v(y) · ∇v(y) · g(x, y)dy.

(XIII.9.39)
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Collecting (XIII.9.27)1, (XIII.9.32), (XIII.9.34), (XIII.9.38), and (XIII.9.39)
we arrive at the following representation for p

p(x) = p+−
∫

R3
+

gi(x, y)vl(y)Dlvi(y)dy+2ν

∫

S

vi(y)
∂gi(x, y)

∂x3
dσy. (XIII.9.40)

Using the mean value theorem, together with (XIII.9.36), from (XIII.9.40) we
find

p(x) = p+ −
∫

R3
+

gi(x, y)vl(y)Dlvi(y)dy + 2ν
∂gi(x, 0)

∂x3

∫

S

vi +O(|x|−4).

(XIII.9.41)
Our next task is to furnish an estimate of the volume integral I on the right-
hand side of (XIII.9.41). To this end, we write

I =

∫

R3
+−B1(x)

gi(x, y)vl(y)Dlvi(y)dy +

∫

B1(x)

gi(x, y)vl(y)Dlvi(y)dy.

Integrating by parts the first integral, we find

I = −
∫

R3
+−B1(x)

Dlgi(x, y)vl(y)vi(y)dy +

∫

S

gi(x, y)vi(y)vl(y)nl(y)dσy

+

∫

∂B1(x)

gi(x, y)vi(y)vl(y)nl(y)dσy +

∫

B1(x)

gi(x, y)vl(y)Dlvi(y)dy

and so, employing the estimates of Theorem XIII.9.1 and Exercise XIII.9.2
we deduce that

I = −
∫

R3
+−B1(x)

Dlgi(x, y)vl(y)vi(y)dy +

∫

S

gi(x, y)vi(y)vl(y)nl(y)dσy

+O(|x|−4), as |x| → ∞.
(XIII.9.42)

However, from (IV.3.46)3,4 and (IV.3.48)5,6, it follows that g(x, y)|y3=0 = 0

for all x ∈ R3
+ and from (XIII.9.42) we conclude that

I = −
∫

R3
+−B1(x)

Dlgi(x, y)vl(y)vi(y)dy+O(|x|−4), as |x| → ∞. (XIII.9.43)

Let us denote by I1 the integral in (XIII.9.43). We have

I1 = Dlgj(x, 0)

∫

R3
+

vlvi +

∫

R3
+−B1(x)

[Dlgj(x, y) −Dlgi(x, 0)] vl(y)vi(y)dy

−Dlgi(x, 0)

∫

B1(x)

vlvi
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and so, by Theorem XIII.9.1 and (XIII.9.36) we find

I1 = Dlgj(x, 0)A+
il+

∫

R3
+−B1(x)

[Dlgj(x, y) −Dlgi(x, 0)]vl(y)vi(y)dy

+ O(|x|−4)
(XIII.9.44)

where A+
il is defined in Theorem XIII.9.1. By (XIII.9.36) and the mean value

theorem we have

|Dlgi(x, y) −Dlgi(x, 0)| ≤ c
|y|

|x− βy|4 .

As a consequence, setting |x| = 2R, it follows that
∫

ΩR

|Dlgj(x, y) −Dlgi(x, 0)| v2(y)dy ≤ c1
|x|4

∫

ΩR

v2(y)|y|dy.

Reasoning as in the proof of (XIII.9.21) we then show
∫

ΩR

|Dlgj(x, y) −Dlgi(x, 0)| v2(y)dy = O(|x|−4+δ) (XIII.9.45)

where δ > 0 can be taken arbitrarily close to zero. Furthermore, again by
(XIII.9.36) and Theorem XIII.9.1, we have

|Dlgj(x, 0)|
∫

ΩR

v2 ≤ c2
|x|4−δ

∫

ΩR

v3/2+δ(y)dy = O(|x|−4+δ) (XIII.9.46)

and∫

ΩR−B1(x)

|Dlgj(x, y)|v2(y)dy ≤ c3

|x|4−δ

∫

|x−y|≥1

dy

|x− y|3|y|δ

= O(|x|−4+δ).

(XIII.9.47)

Collecting (XIII.9.41) and (XIII.9.43)–(XIII.9.47) we then obtain the fol-
lowing result.

Theorem XIII.9.2 Let the flux Φ satisfy the assumption of Theorem XIII.7.4.
Then the pressure field associated to any generalized solution to (XIII.5.2)
that obeys the energy inequality (XIII.6.6) admits the following asymptotic
representation as |x| → ∞, x ∈ R3

±

p(x) = p± +Dlg
±
i (x, 0)A±

il + 2νD3g
±
i (x, 0)B±

i + P (x) (XIII.9.48)

where p± and A±
il , B

±
i are defined in Lemma XIII.5.1 and Theorem XIII.9.1,

respectively, while g± is the vector “pressure field” associated to the Green’s
tensor for the Stokes problem in the R3

±; see (IV.3.46)–(IV.3.49). Finally,

P (x) = O(|x|−4+δ),

with δ a positive number that can be taken arbitrarily close to zero.
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Remark XIII.9.3 From (XIII.9.36) and (XIII.9.48) we derive, in particular,
the following uniform asymptotic estimate

p(x) − p± = O(|x|−3), |x| → ∞, x ∈ R3
±.

�

Remark XIII.9.4 A consideration similar to that performed in Remark
XIII.9.1 applies to the representation formula (XIII.9.48). �

Exercise XIII.9.1 Let v be any generalized solution to problem (XIII.5.2). Show

that v and the corresponding pressure field p obey the asymptotic conditions (9 .1).

Hint: Consider (XIII.5.2) as a Stokes problem in R
3
± with a body force −v ·∇v. Then

apply the estimate of Theorem IV.3.2, Theorem IV.3.3 together with the embedding

inequalities of Theorem II.3.4.

Exercise XIII.9.2 Let the assumptions of Theorem XIII.9.1 be fulfilled. Show that
the first derivatives of the velocity field v satisfy the following asymptotic estimate.

Dkv(x) = O(|x|−2), |x| → ∞, k = 1, 2, 3.

Hint: From the representation formula (XIII.9.3)–(XIII.9.4) we have

vj(x) =
1

ν

Z

R
3
+

Gij(x, y)vl(y)Dlvi(y)dy +BiTi3(Gj , gj)(x, 0) + ϕi(x).

Differentiate both sides of this relation and argue as in the proof of (X.8.28). Finally,

use the asymptotic estimates given in (IV.3.50)1 and in Lemma XIII.9.3.

Remark XIII.9.5 In the case of a two-dimensional aperture domain, the
asymptotic structure of any generalized solution v obeying the energy inequal-
ity and corresponding to small flux Φ is known if the aperture S is symmetric
around the axis orthogonal to S, see Galdi, Padula, & Solonnikov (1996); see
also Nazarov (1996). In such a case, v and the associated pressure p admit
the following representation for large |x|

v(x) = V ±(x) + O(|x|−1−α)

p(x) = P±(x) + O(|x|−2−α)
x ∈ R2

±, α ∈ (0, 1),

where V ±, P± is a suitable Jeffery–Hamel solution for the half-plane R2
±, cor-

responding to Φ (Rosenhead, 1940). Specifically, in a polar coordinate system
(r, θ±) with the origin at x = 0 and θ counted from the positive [respectively,
negative] x1-axis, we have

V ±(x) = ±Φf±(θ)

r
er

P±(x) = ±ΦP(f±)

r
+ const.
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Here, er is the unit vector in the r direction, f±(θ) is a symmetric solution to
a suitable second-order nonlinear ordinary differential problem with

max
θ∈[0,2π]

{
|f±(θ)|, |f ′±(θ)|

}

sufficiently small, and P a known function of f±. �

XIII.10 Notes for the Chapter

Section XIII.1. The first, significant contribution to the solvability of Leray’s
problem is due to Amick (1977, 1978)1 who reduced the proof of existence to
the resolution of a well-known variational problem relating to the stability
of Poiseuille flow in a pipe; see Remark XIII.3.5. Our definition of general-
ized solution is essentially taken from his work. However, Amick left out the
investigation of uniqueness while he examined the asymptotic structure of so-
lutions only in some particular cases. A rich and detailed analysis of Leray’s
problem and, more generally, of the problem of flow in domains having outlets
to infinity of bounded (not necessarily constant) cross sections is due to the St
Petersburg School. We refer, in particular, to the papers of Ladyzhenskaya &
Solonnikov (1980), Solonnikov (1983), Kapitanskĭi (1982), Nazarov & Pileckas
(1983, 1990), Kapitanskĭi & Pileckas (1983) and the literature cited therein.
One of the main features of this approach is, as we already observed, that
condition (XIII.1.4)1 is replaced with suitable “growth” assumptions at large
distances.

Existence of solutions in two-dimensional, suitably symmetric channels
with “islands” has been investigated by Morimoto & Fujita (2002). In this
connection, we refer the reader to the other contributions by the same authors
provided in the bibliography cited therein, and pertaining to more general flow
regions, as well as to the review article of Morimoto (2007).

A different approach to existence (and uniqueness) in a two-dimensional
infinite channel, based on the theory of semi-Fredholm operators, has been
taken by Rabier (2002a, 2002b). More precisely, this author shows the exis-
tence of solutions “around” a Poiseuille flow corresponding to any given flux Φ
and to symmetric data, whereas for data that are not necessarily symmetric,
the same result holds provided 3|Φ|/(4ν)< 4647.

The problem of existence and uniqueness of flow in curved pipes has been
addressed by Galdi and Robertson (2005).

Section XIII.2. The method used here has been inspired by the work of La-
dyzhenskaya & Solonnikov (1980). However, all main results, such as Theorem
XIII.2.1, are due to me.

1 A previous attempt of Ladyzhenskaya, unfortunately, failed, cf. Dokl. Akad. Nauk
SSSR, 124 (1959) 551-553.
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Section XIII.3. The methods and results of this section are due to me.

Section XIII.4. The main results of this section, Theorem XIII.4.1 and
Corollary XIII.4.1, are due to me. They are obtained by coupling the ideas of
Horgan & Wheeler (1978) with those of Ladyzhenskaya & Solonnikov (1980).
In particular, Lemma XIII.4.2 and Lemma XIII.4.3 are special cases of analo-
gous results of Ladyzhenskaya & Solonnikov. Somewhat weaker estimate can
be obtained from the work of Horgan (1978) and Ames & Payne (1989). Spa-
tial decay estimates in outlets with cross sections that reduce to a point at
large distances have been obtained by Iosif‘jan (1979).

In the case n = 2, the straight semi-infinite cylinder reduces to the semi-
infinite channel {x1 ∈ (0, d) , x2 > 0}, where the decay of the solution (to the
appropriate data at infinity) has been shown to be of exponential type, for
small data at least. It is interesting to observe that if, instead, we consider the
three-dimensional semi-infinite layer, {x1 ∈ (0, d) , x2 ∈ R , x3 > 0}, solutions
only show a power-like decay (for small data), that turns out to be optimal;
see Pileckas (2002), Nazarov & Pileckas (1999b).

Section XIII.5. The aperture flow problem was formulated by Heywood
(1976, §6). To him is due the generalized formulation given in Definition
XIII.5.1.

Properties of the pressure field in weighted spaces, analogous to those
furnished in Lemma XIII.5.1 in L3-spaces, are proved by Borchers, Galdi, &
Pileckas (1993, Theorem 3.1).

Section XIII.6. Results of this section are due to me. The idea of exploiting
the energy inequality in the study of uniqueness is taken from Borchers, Galdi,
& Pileckas (1993).

Section XIII.7. Existence of generalized solutions for the aperture flow prob-
lem was first proved by Heywood (1976, Theorem 17) under the assumption
of small flux. This restriction was successively removed by Ladyzhenskaya &
Solonnikov (1977). Other significant results in this direction, in classes of so-
lutions that are more regular than weak ones at large distances, are due to
Borchers & Pileckas (1992) and Chang (1993); cf. also Coscia & Patria (1992),
Chang (1992). In particular, Borchers & Pileckas (1992) prove existence for
the formulation where the flux condition is replaced by the prescription of the
pressure drop p+ − p−.

Lemma XIII.7.1 and Theorem XIII.7.4 are due to me. Similar results can
be found in Borchers & Pileckas (1992) and Borchers, Galdi, & Pileckas (1993).

There is much literature concerning steady flow in domains with exits
having unbounded cross sections, more general than aperture domains. In
addition to the papers already quoted, we wish to mention the work of Pileckas
(1981, 1984) and Galdi & Sohr (1992). Special regards are deserved by the
contribution of Amick & Fraenkel (1980); cf. also Amick (1979). Here the
authors analyze existence and pointwise asymptotic decay of plane flow in
domains with two outlets Ωi of unbounded cross section Σi, i = 1, 2, under
very general assumptions on the way in which Σi may grow at large distances.
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For instance, Ωi can be a symmetric channel of the type

Ωi =
{
x ∈ R2 : x2 ∈ Σi(x1), x1 > 0

}
(∗)

with

Σi = (−xk
1 , x

k
1), k ≥ 0. (∗∗)

Existence is proved either with small or arbitrary flux, depending on the rate
at which Σi widens at infinity (that is, in case (∗), (∗∗), on the value of k).
It is interesting to observe that, as expected (cf. Remark VI.4.6), if this rate
is too slow, the pressure field becomes unbounded at infinity. Such a detailed
study is made possible since, in the two-dimensional case, it is possible to use
conformal-mapping techniques. Important questions, however, left out of this
work are uniqueness and decay order of solutions.

The problem of existence, uniqueness and asymptotic behavior of solutions
in domainsΩ withm ≥ 2 outlets Ωi, i = 1, . . .m, whose cross-section becomes
unbounded in such a way that the Dirichlet integral of the velocity field is
infinite, has been recently studied and solved in a series of papers by Pileckas
(1996a, 1996b, 1996c, 1997) and Nazarov & Pileckas (1997), in the particular
case when each Ωi is a body of revolution of the type

{x ∈ Rn : xn > 0, |x′| < gi(xn)} , n = 2, 3.

Here gi(xn) are smooth functions satisfying the following “growth” conditions

(i) gi(t) ≥ g0 = const. > 0; |gi(t2) − gi(t1)| ≤M |t2 − t1|
(ii) lim

t→∞
dgi

dt
= 0;

∣∣∣∣
dgi

dt

∣∣∣∣ ≤M

(iii)

∫ ∞

0

g
−(n−1)(q−1)−q
i (t)dt <∞, some q > 2;

∫ ∞

0

g
−(n+1)
i (t)dt = ∞.

Notice that (iii) implies that the velocity field has an infinite Dirichlet in-
tegral, see the Introduction to Chapter VI. Moreover, requirements (i) and
(ii) exclude the case of aperture domains Then, for n = 2, if the total flux
is sufficiently small one shows the existence of a unique solution and the va-
lidity of corresponding sharp asymptotic estimates. For n = 3 existence and
asymptotic decay are shown for arbitrary values of the total flux, provided gi

satisfies the further conditions
∫ ∞

0

g
4/3
i (t)dt = ∞

∣∣∣∣g
1/3
i (t)

dgi

dt

∣∣∣∣ ≤ γ << 1, for sufficiently large t.

As expected, uniqueness only holds for small flux. For detailed result and
further references, we refer the reader to the review article of Pileckas (1996c).
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Section XIII.8. The results of this section are due to me. Results similar
to those proved in Lemma XIII.8.2 are given by Borchers & Pileckas (1992)
under the following assumption on the velocity field v

∫

Ω

|x|1+ε∇v : ∇v <∞, for some ε > 0.

Section XIII.9. Asymptotic representation formulas similar to (XIII.9.25)
and (XIII.9.48) are furnished by Borchers & Pileckas (1992). Results of the
same type as those showed in Theorem XIII.9.1 and Theorem XIII.9.2 can be
derived from Borchers, Galdi, & Pileckas (1993, Theorem 4.1).

Existence, uniqueness, and asymptotic behavior of solutions to the plane
aperture domain problem in the case of symmetric aperture have been given,
independently, by Nazarov (1996) and Galdi, Padula, & Solonnikov (1996).

Finally, existence, uniqueness, and asymptotic behavior of solutions in
two-dimensional domains constituted by a semi-infinite channel merging into
a half-plane, have been addressed by Nazarov, Sequeira, & Videman (2001,
2002).

E ’a canzuncella
d’ ’aruta nuvella,
guardate, vedite . . . fenesce accussi’.

S. DI GIACOMO, A’ Testa d’Aruta, vv. 42-44





Bibliography

Numbers in square brackets denote the chapter and section where the reference is
quoted.

Acosta, G., Durán, R.G., and Muschietti A.M., 2006, Solutions of the Diver-
gence Operator on John Domains, Adv. Math., 206, 373-401 [III.3]

Adams, R.A. 1975, Sobolev Spaces, Academic Press, New York [ II.3, Notes for II,
III.4]

Adams, R.A., and Fournier J.J.F, 2003, Sobolev Spaces (second edition), Aca-
demic Press, New York [Notes for II]

Agmon, S., Douglis, A., and Nirenberg, L., 1959, Estimates Near the Boun-
dary for Solutions of Elliptic Partial Differential Equations Satisfying General
Boundary Conditions I, Comm. Pure Appl. Math., 12, 623 -727 [II.11, III.1,
III.9, Introduction to IV, IV.5, IV.6, IV.7]

Agmon, S., Douglis, A., and Nirenberg, L., 1964, Estimates Near the Bound-
ary for Solutions of Elliptic Partial Differential Equations Satisfying General
Boundary Conditions II, Comm. Pure Appl. Math., 17, 35 -92 [Introduction to
IV, IV.7]

Alekseev G. V., and Tereshko D. A., 1998, Stationary Optimal Control Prob-
lems for Equations of Viscous Heat Conducting Fluid, Sibirsk. Zh. Industr. Mat.,
1, 24-44 (in Russian) [IX.4]

Ames, K.A., and Payne, L.E., 1989, Decay Estimate in Steady Pipe Flow, SIAM
J. Math. Anal., 20, 789-815 [Notes for VI, Notes for XIII]

Amick, C.J., 1976, Decomposition Theorems for Solenoidal Vector Fields, J. Lon-
don Math. Soc., 15, 288-296 [III.3, Notes for III, Notes for IV]

Amick, C.J., 1977, Steady Solutions of the Navier-Stokes Equations in Unbounded
Channels and Pipes, Ann. Scuola Norm. Pisa, (4) 4, 473-513 [I.3, Introduction
to VI, Notes for VI, XIII.3, Notes for XIII]

Amick, C.J., 1978, Properties of Steady Solutions of the Navier-Stokes Equations
for Certain Unbounded Channels and Pipes, Nonlin. Anal., Theory, Meth.
Appl., 2, 689-720 [I.3, Introduction to VI, Notes for VI, Notes for XIII]

Amick, C.J., 1979, Steady Solutions of the Navier-Stokes Equations Representing
Plane Flow in Channels of Various Types, Approximation Methods for Navier-
Stokes Problems, Rautmann, R., Ed., Lecture Notes in Mathematics, Vol. 771,
Springer-Verlag, 1-11 [Introduction to VI, Notes for XIII]



978 Bibliography

Amick, C.J., 1984, Existence of Solutions to the Nonhomogeneous Steady Navier-
Stokes Equations, Indiana Univ. Math. J., 33, 817-830 [IX.4, Notes for IX]

Amick, C. J., 1986, On Steady Navier-Stokes Flow Past a Body in the Plane, Proc.
Symposia Pure Math., 45, Amer. Math. Soc., 37-50 [I.2, XII.3]

Amick, C. J., 1988, On Leray’s Problem of Steady Navier-Stokes Flow Past a
Body in the Plane, Acta Math., 161, 71-130 [I.2, Introduction to XII, XII.3,
XII.4, Notes for XII]

Amick, C. J., 1991, On the Asymptotic Form of Navier-Stokes Flow Past a Body
in the Plane, J. Differential Equations, 91, 149-167 [I.2, Notes for XII]

Amick, C.J., and Fraenkel, L.E., 1980, Steady Solutions of the Navier-Stokes
Equations Representing Plane Flow in Channels of Various Types, Acta Math.,
144, 83-152 [I.3, Introduction to VI, VI.3, VI.4, Notes for XIII]

Amrouche, C., and Girault, V., 1990, Propriétés Fonctionnelles d’Opérateurs.
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Bogovskǐi, M.E., 1980, Solution of Some Vector Analysis Problems Connected
with Operators Div and Grad, Trudy Seminar S.L.Sobolev, #1, 80, Akade-
mia Nauk SSSR, Sibirskoe Otdelnie Matematiki, Nowosibirsk, 5-40 (in Russian)
[III.3, III.4, Notes for III].
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[II.2, III.5]

Burenkov, V.I., 1976, On the Extension of Functions with Preservation of Semi-
norm, Dokl. Akad. Nauk SSSR, 228, 971-976; English Transl.: Soviet Math
Dokl., 17, 806-810 [II.6, Notes for II]

Bykhovski, E.B., and Smirnov, V.I., 1960, On Orthogonal Expansions of the
Space of Vector Functions which are Square Summable over a Given Domain,
Trudy Mat. Inst. Steklov, 59, 6-36 (in Russian) [III.1]

Caccioppoli, R., 1937, Sui Teoremi di Esistenza di Riemann, Ann. Scuola Norm.
Pisa, (3) 6, 177-187 [IV.2, VIII.2]



Bibliography 981

Calderón, A.P., and Zygmund, A., 1956, On Singular Integrals, Amer. J. Math.,
78, 289-309 [II.11]

Calderón, A.P., and Zygmund, A., 1957, Singular Integral Operators and Dif-
ferential Equations, Amer. J. Math., 79, 901-921 [II.11]

Cattabriga, L., 1961, Su un Problema al Contorno Relativo al Sistema di Equa-
zioni di Stokes, Rend. Sem. Mat. Padova,31, 308-340 [Notes for III, Introduction
to IV, IV.3, IV.5. IV.8, Notes for IV]

Chandrasekhar, S., 1981, Hydrodynamic and Hydromagnetic Stability,Dover Pu-
bl. Inc., New York [I.1]

Chang, H., 1992, The Steady Navier-Stokes Problem for Low Reynolds Number
Viscous Jets into a Half Space, Navier-Stokes Equations: Theory and Numerical
Methods, Heywood J.G., Masuda, K., Rautmann R., & Solonnikov, V.A., Eds.,
Lecture Notes in Mathematics, Vol. 1530, Springer-Verlag, 85-96 [I.3, Notes for
XIII]

Chang, H., 1993, The Steady Navier-Stokes Problem for Low Reynolds Number
Viscous Jets, Stability and Appl. Anal. Cont. Media, 2, 203-228 [I.3, Notes for
XIII]

Chang, I-D. and Finn, R., 1961, On the Solutions of a Class of Equations Occur-
ring in Continuum Mechanics, with Application to the Stokes Paradox, Arch.
Rational Mech. Anal., 7, 388-401 [Notes for V, Notes for VII]

Chasles, M., 1830, Notes sur les Propriétés Générales de deux Corps Semblables
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ment Fini ou Infiniment Petit d’un Corps Solide Libre, Bull. Sci. Math. Astron.
Phys. et Chim. A, 14, 321-326 [Introduction to VIII]

Choe, H., and Kim, H., 2000, Isolated Singularity for the Stationary Navier-Stok-
es System, J. Math. Fluid Mech., 2, 151-184 [Notes for IX]

Choquet-Bruhat, Y., and Christodoulou, D. 1981, Elliptic Systems in Hs,δ-
Spaces on Manifolds which are Euclidic at Infinity, Acta Math., 146, 129-150
[Notes for V]

Cimmino, G., 1938a, Sulle Equazioni Lineari alle Derivate Parziali del Secondo
Ordine di Tipo Ellittico Sopra una Superficie Chiusa, Ann. Scuola Norm. Pisa
(3) 7, 73-96 [IV.2, VIII.2]

Cimmino, G., 1938b, Nuovo Tipo di Condizioni al Contorno e Nuovo Metodo
di Trattazione per il Problema Generalizzato di Dirichlet, Rend. Circ. Mat.
Palermo, 61, 177-221 [IV.2, VIII.2]

Clark, D., 1971, The Vorticity at Infinity for Solutions of the Stationary Navier-
Stokes Equations in Exterior Domains, Indiana Univ. Math. J., 20, 633-654
[VII.6, X.8, XII.8]

Conca, C., 1989, Stokes Equations with Nonsmooth Data, Rev. Mat. Apl., 10,
115–122 [Notes for IV]

Coscia, V., and Galdi, G.P., 1997, Existence of Steady-State Solutions of the
Equations of a Fluid of Second Grade with Non-homogeneous Boundary Con-
ditions, Zapiski Nauk. Sem. POMI., 243, 117-130 [III.3]

Coscia, V., and Patria, M.C., 1992, Existence, Uniqueness and Asymptotic Be-
haviour of Stationary Navier-Stokes Equations in a Half Space, Stability and
Appl. Anal. Cont. Media, 2, 101-127 [I.3, II.7, XIII.9, Notes for XIII]

Courant, R., and Hilbert, D., 1937, Methoden der MathematischenPhysik, Ba-
nd II, Springer-Verlag, Berlin [II.5, III.3]

Crispo, F. and Maremonti, P., 2004, An Interpolation Inequality in Exterior
Domains, Rend. Sem. Mat. Univ. Padova, 112, 11-39 [Notes for II]



982 Bibliography

Crudeli, U., 1925a, Metodo di Risoluzione di un Problema Fondamentale nella
Teoria del Moto Lento Stazionario di Liquidi Viscosi, Atti Accad. Naz. Lincei,
(IV), 25, 247-251 [Notes for IV]

Crudeli, U., 1925b, Sopra un Problema Fondamentale nella Teoria del Moto
Lento Stazionario dei Liquidi Viscosi, Rivista di Mat. e Fis., Circolo Mat.-Fis.
Univ. Messina [Notes for IV]

Dacorogna, B., 2002, Existence and Regularity of Solutions of dω = f with
Dirichlet Boundary Conditions, Nonlinear Problems in Mathematical Physics
and Related Topics, Int. Math. Ser. (N. Y.), Kluwer/Plenum, New York, I, 67-
82 [Notes for III]

Dacorogna, B., Fusco, N., and Tartar, L., 2004, On the Solvability of The
equation div u = f in L1 and in C0, Atti Accad. Naz. Lincei Cl. Sci. Fis.
Mat. Natur. Rend. Lincei (9) Mat. Appl., 14, 239-245 [III.3]

Darrigol, O., 2002,, Between Hydrodynamics and Elasticity Theory: The First
Five Births of the Navier-Stokes Equation, Arch. Hist. Exact Sci., 56, 95-150
[Introduction to I]

Dauge, M., 1989, Stationary Stokes and Navier-Stokes Equations on Two or Three-
Dimensional Domains with Corners, SIAM J. Math. Anal., 20, 74-97 [Notes
for IV]

Deny, J., and Lions, J.L., 1954, Les Espaces du Type de Beppo Levi, Ann. Inst.
Fourier, 5, 305-370 [II.7, Notes for II]

de Saint-Venant, B., 1843, Comptes Rendus (Paris), 17, 1240-1243 [Introduc-
tion to I]

Deuring, P., 1990a, An Integral Operator Related to the Stokes System in Exte-
rior Domains, Math. Meth. in the Appl. Sci., 13, 323-333; Addendum, Ibid., 14,
445 [Notes for V]

Deuring, P., 1990b, The Resolvent Problem for the Stokes System in Exterior
Domains: An Elementary Approach, Math. Meth. in the Appl. Sci., 13, 335-
349 [Notes for V]

Deuring, P., 1990c, The Stokes System in Exterior Domains: Lp-Estimates for
Small Values of a Resolvent Parameter, J. Appl. Math. Phys. (ZAMP), 41,
829-842 [Notes for V]

Deuring, P., 1991, The Stokes System in Exterior Domains: Existence, Uniqu-
eness, and Regularity of Solutions in Lp-Spaces, Commun. in Partial Diff. Equa-
tions, 16, 1513-1528 [Notes for V]

Deuring, P., 1994, The Stokes System in an Infinite Cone, Mathematical Re-
search, Vol. 78, Akademie Verlag [Notes for IV]

Deuring, P., 2005, Exterior Stationary Navier-Stokes Flows in 3D with Nonzero
Velocity at Infinity: Asymptotic Behavior of the Second Derivatives of the Ve-
locity, Comm. Partial Diff. Equations, 30, 987-1020 [X.8]

Deuring, P., and Galdi, G.P., 2000, On the Asymptotic Behavior of Physically
Reasonable Solutions to the Stationary Navier-Stokes System in Threedimen-
sional Exterior Domains with Zero Velocity at Infinity, J. Math. Fluid Mech.,
2, 353-364 [I.2, X.9]
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wichteten Sobolevräumen, Universität Bonn, SFB 256, #110 [Notes for V,
Notes for X]

Farwig, R., 1992a, A Variational Approach in Weighted Sobolev Spaces to the
Operator −∆+∂/∂x1 in Exterior Domains of R

3, Math. Z., 210, 449–464 [Notes
for VII, Notes for X]

Farwig, R., 1992b, The Stationary Exterior 3D-Problem of Oseen and Navier-
Stokes Equations in Anisotropically Weighted Sobolev Spaces, Math. Z., 211,
409–447 [Notes for VII, VIII.3, Notes for X]

Farwig, R., 1993, The Weak Neumann Problem and the Helmholtz Decomposi-
tion in General Aperture Domains, Progress in Partial Differential Equations:
The Metz Surveys 2, Chipot, M., Ed., Pitman Research Notes in Mathematics
Series, Longman Scientific & Technical, Vol. 296, 86-96 [Notes for III]

Farwig, R., 2003, Weighted Lq-Helmholtz Decompositions in Infinite Cylinders
and in Infinite Layers, Adv. Differential Equations, 8, 357-384 [Notes for III]

Farwig, R., 2005, Estimates of Lower Order Derivatives of Viscous Fluid Flow
past a Rotating Obstacle, Banach Center Publ., Polish Acad. Sci., Warsaw, 70,
73-84 [Notes for VIII]

Farwig, R., 2006, An Lq-Analysis of Viscous Fluid Flow Past a Rotating Obstacle,
Tohoku Math. J., 58, 129-147 [VIII.8, Notes for VIII]



984 Bibliography

Farwig, R., Galdi, G.P., and Kyed, M., 2010, Asymptotic Structure of a Leray
Solution to the Navier-Stokes Flow Around a Rotating Body, Pacific J. Math.,
in press [Introduction to XI, XI.7]

Farwig, R., Galdi, G.P., and Sohr, H, 2006, Very Weak Solutions and Large
Uniqueness Classes of Stationary Navier-Stokes Equations in Bounded Domains
of R

2, J. Differential Equations, 227, 564-580 [Notes for IX]
Farwig, R., and Hishida, T., 2007, Stationary Navier-Stokes Flow Around a Ro-

tating Obstacle, Funkcial. Ekvac., 50, 371-403 [Notes for VIII]
Farwig, R., and Hishida, T., 2009, Asymptotic Profile of Steady Stokes Flow

Around a Rotating Obstacle, Preprint, TU Darmstadt [VIII.6, XI.7, Introduc-
tion to XI]

Farwig, R., and Hishida, T., 2009, Leading Term at Infinity of Steady Navier-
Stokes Flow around a Rotating Obstacle, Preprint 2591, TU Darmstadt, 20 pp.
[XI.7]

Farwig, R., Hishida, T., and Müller, D., 2004, Lq-Theory of a Singular “Wind-
ing” Integral Operator Arising from Fluid Dynamics, Pacific J. Math., 215,
297-312 [Notes for VIII]

Farwig, R., Kozono, H. and Yanagisawa, T., 2010, Leray’s Inequality in Gen-
eral Multi-Connected Domains in R

n, Preprint, TU Darmstadt [IX.4]
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Hurri, R., 1990, The Weighted Poincaré Inequalities, Math. Scand., 67, 145-160
[Notes for II]

Imai, I., 1951, On the Asymptotic Behavior of Viscous Fluid Flow at a Great Dis-
tance from a Cylindrical Body, with Special Reference to Filon’s Paradox, Proc.
Roy. Soc. London, Ser. A, 208, 487-516 [Introduction to VII]

Iosif’jan, G.A., 1978, An Analogue of Saint-Venant’s Principle and the Unique-
ness of the Solutions of the First Boundary Value Problem for Stokes’ System
in Domains with Noncompact Boundaries, Dokl. Akad. Nauk SSSR, 242, 36-39;
English Transl.: Soviet Math Dokl., 19, 1048-1052 [Notes for VI]

Iosif‘jan, G.A., 1979, Saint-Venant’s Principle for the Flow of a Viscous Incom-
pressible Liquid, Uspehi Mat. Nauk. 34, 191-192; English Trans.: Russian Math.
Surveys 34, 1979, 166-167 [Notes for XIII]

Jones, F., 2001, Lebesgue Integration on Euclidean Space, Jones and Bartlett
Publishers Canada [II.2]

Joseph, D.D., 1976, Stability of Fluid Motions, Springer Tracts in Natural Philos-
ophy, Vol. I [Notes for IX]

Kang, K., 2004, On Regularity of Stationary Stokes and Navier-Stokes Equations
Near Boundary, J. Math. Fluid Mech., 6, 78-101 [Notes for IV]

Kantorovich, L.V., and Akilov, G.P., 1964, FunctionalAnalysis in Normed Sp-
aces, Pergamon Press [II.1, IX.3]
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Kračmar, S., Novotný, A., and Pokorný, M., 1999, Estimates of Three-Dim-
ensional Oseen Kernels in Weighted Lp Spaces., Applied Nonlinear Analysis, Vol
3., Sequeira, A., Beirão da Veiga, H., and Videman, J., Eds., Kluwer/Plenum
New York, 281-316 [Notes for VII]
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Navier, C.L.M.H., 1827, Mémoire sur les Lois du Mouvement des Fluides, Mem.
Acad. Sci. Inst. de France, (2) 6, 389-440 [Introduction to I]

Nazarov, S.A., 1996, On the two-dimensional aperture problem for Navier-Stokes
equations, C. R. Acad. Sci. Paris, 323, 699-703 [XIII.9, Notes for XIII]

Nazarov, S.A., and Pileckas, K.I., 1983, On the Behavior of Solutions of the
Stokes and Navier-Stokes Systems in Domains with a Periodically Varying Sec-
tion, Trudy Mat. Inst. Steklov, 159, 137-149; English Transl.: Proc. Steklov Math
Inst., 159, 1984, 97-104 [Notes for VI, Notes for XIII]

Nazarov, S.A., and Pileckas, K.I., 1990, The Reynolds Flow of a Fluid in a
Three-Dimensional Channel, Liet. Mat. Rink., 30, 772-783 (in Russian) [Notes
for XIII]

Nazarov, S.A., and Pileckas, K.I., 1998, Asymptotic of Solutions to Stokes and
Navier-Stokes Equations in Domains with Paraboloidal Outlets to Infinity,
Rend. Sem. Mat. Padova, 99, 1-43 [I.3, Notes for XIII]



Bibliography 999

Nazarov, S.A., and Pileckas, K., 1999a, The Asymptotic Properties of the So-
lution to the Stokes Problem in Domains that are Layer-like at Infinity, J. Math.
Fluid Mech., 1, 131-167 [Notes for VI]

Nazarov, S.A., and Pileckas, K., 1999b, On the Solvability of the Stokes and
Navier–Stokes Problems in the Domains that are Layer-like at Infinity, J. Math.
Fluid Mech., 1, 78-116 [Notes for XIII]

Nazarov, S.A., and Pileckas, K., 2000, On Steady Stokes and Navier-Stokes
Problems with Zero Velocity at Infinity in a Three-Dimensional Exterior Do-
main, J. Math. Kyoto Univ., 40, 475-492 [X.9]

Nazarov, S.A., and Pileckas, K., 2001, On the Fredholm Property of the Stokes
Operator in a Layer-like Domain., Z. Anal. Anwendungen, 20, 155-182 [Notes
for VI]
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Mat. Palermo, 8, 57-155 [II.5]
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pressure associated to, 421
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representation of, 470
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generalized, 175, 191
Poincaré–Sobolev inequality, 75
Poiseuille solution, 18, 366, 900
Poiseuille constant, 369
Poisson integral, 133
PR solutions, see Physically Reasonable

solutions
Pressure field associated to a q-gene-

ralized solution, 235, 305, 371,
390, 421, 500, 590, 655, 752, 904,
929–930

Problem ∇ · v = f
in bounded domains, 161ff
in domains with noncompact

boundary, 191ff
in exterior domains, 188ff
in a half-space, 261

Projection operator Pq, 142

q-generalized solutions
for generalized Oseen flow, 499
for Navier–Stokes flow 587, 644
for Oseen flow 420
for Stokes flow in bounded domains,

234
for Stokes flow, interior estimates,

266, 270
for Stokes flow, estimates near the

boundary, 278
for Stokes flow in R

n; existence and
uniqueness of, 244

for Stokes flow in a half-space;
existence and uniqueness of, 257

for Stokes flow in exterior domains,
341

asymptotic behavior of, 313, 314
regularity of, 265, 266, 276, 306, 372

q-weak solutions, see q-generalized
solutions

Regularity of generalized solutions
see generalized Oseen flow,
Navier–Stokes flow, Oseen flow,
Stokes flow

Regularized distance, 219
Regularizer, 44
Representation formulas

for Navier–Stokes flow in exterior
domains

three-dimensional case 692–693
two-dimensional case 867–868

for Navier–Stokes flow in aperture
domains 965–966

for Oseen flow, 472–473
local, 471

for Stokes flow in aperture domains,
411, 414

for Stokes flow in bounded domains,
292, 294

for Stokes flow in exterior domains,
315

local, 312
for time-dependent Oseen flow, 532

Reynolds number, 231, 420, 496
effective, 497

see also limit of vanishing Reynolds
number

Riesz potential, 126

Scalar potential, 141
Schauder estimates, 287
Schmidt orthogonalization procedure,

425
Schwarz inequality, 42
Segment property, 51
Self-propelled body 352, 364, 653, 703
Semi-infinite straight channel

Stokes flow in; estimates in Wm,q ,
375

Stokes flow in; asymptotic decay, 379
Sequence

Cauchy, 30
weak, 32

convergent, 29
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weakly convergent 32

Singular kernel, 129
Sobolev “cut-off” function, 102

Sobolev theorem, 128
Sobolev space, 50
Space

Banach, 30
Ck(Ω), 35

C∞(Ω), 35
Ck

0 (Ω), 35

C∞
0 (Ω), 35

Ck,λ(Ω), 36

Dm,q(Ω), 80
Ḋm,q(Ω), 83

Dm,q
0 (Ω), 84

D−m,q
0 (Ω) 109

D(Ω), 142
D1,q

0 (Ω), 214
bD1,q

0 (Ω), 214
Gq(Ω), 142

Hq(Ω), 142
H1

q (Ω), 193
bH1

q (Ω), 193

Lq(Ω) 40
Lq(At), 526

Lr,q(At), 526
Wm,q(Ω), 49

Wm,q
0 (Ω), 50

W−m,q′ (Ω), W−m,q′
0 (Ω), 60

Wm−1/q,q (∂Ω), 64, 67

Sobolev, 50
anisotropic, 55

homogeneous, 80
negative, 60

trace, 64, 67–68
Star-shaped or star-like 38
Steady-state Navier-Stokes

equations, 4

Steady fall of a body, 653
Stein theorem

on extension maps, 58
on singular transforms in weighted

spaces, 131
on regularized distance, 219

Stokes flow in an aperture domain, see
also Heywood’s problem, 407

generalized solutions for, 388
asymptotic behavior of, 414–415

existence and uniqueness of, 392,
407

pressure associated to, 390
representation of, 411, 414

existence and uniqueness in D1,q,
407

Stokes flow in bounded domains, 231ff
generalized solutions for, 234

existence and uniqueness of, 237
regularity of, 267, 277

q-generalized solutions for, 234
estimates of

in Hölder spaces,
in Wm,q , 227 234
interior, 263ff
near the boundary, 271ff

existence and uniqueness of
in Hölder spaces, 287ff
in Wm,q , 279ff

pressure field associated to, 186
uniqueness of, 228

maximum modulus theorem for, 298
Green’s tensor, 288

estimates for 289
Stokes flow in channels with unbounded

cross sections 387ff
generalized solutions for, 388

asymptotic behavior of, 393ff
existence and uniqueness of, 390
pressure associated to, 390

Stokes flow in exterior domains, 299ff
existence and uniqueness in Dm,q ,

334–335
generalized solutions, 304

asymptotic behavior of, 313, 314
pressure field associated to, 305
regularity of, 306

q-generalized solutions for, 304
existence and uniqueness of, 341

Green’s tensor, 349
estimates for, 350–351

representation of linear functionals,
345

Stokes flow in R
n, 238ff

existence and uniqueness
in Dm,q, 243
of q-generalized solutions, 244

Stokes flow in R
n
+, 247ff

existence and uniqueness
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in Dm,q, 256
of q-generalized solutions, 257

Green’s tensor, 261–262
estimates for, 263

Stokes flow in a semi-infinite straight
channel

asymptotic behavior of, 379ff
estimates in Wm,q , 374–375

Stokes flow in an unbounded distorted
channel, see Leray’s problem

Stokes flow, transition to
from Navier-Stokes flow

in bounded domains, 640ff
in three-dimensional exterior

domains, 731ff
in two-dimensional exterior

domains, 887ff
from Oseen flow, 487ff

Stokes fundamental solution, 239–240
Stokes paradox, 302, 309, 318, 319,

351ff, 839, 854, 894
for generalized solutions, 309

Stokes potential
volume, 240
double-layer in a half-space, 247

Stokes solution
past a sphere, 300
past a cylinder, 302

Stokes-Fujita truncated fundamental
solution, 310

Stream function, 301
Stretching tensor, 2
Stress tensor, 2
Support of a function, 28
Symmetric flow, 826, 855

Tensor
stretching, 2
Cauchy stress, 2

Time-dependent Oseen flow
Cauchy problem for

existence of solutions to, 527, 538,
540–541

uniqueness of solutions to, 527, 536,
539, 540–541

representation of solutions to, 532
Time-dependent Oseen fundamental

solution, 515–516
estimates of

integral, 517ff
pointwise, 517

Total head pressure, 819
Trace inequalities, 62–64, 68, 122
Trace of a function, 63–64

on a bounded boundary, 61ff
on a bounded portion of the

boundary, 68
defined in a half-space, 121ff

Trace operator, 64, 67
Trace space of functions

from Wm,q , 64, 67
from D1,q(Rn

+), 122, 125
Transition to the Stokes flow

from Oseen flow, 487ff
from Navier–Stokes flow,

in bounded domains, 640ff
in three-dimensional exterior

domains, 731ff
in two-dimensional exterior

domains, 887ff
Trilinear form, 588

continuity of, 588, 592, 661, 908
Troisi inequality, 55
Truncated fundamental solution

Oseen-Fujita, 470
Stokes-Fujita, 310

Unbounded Dirichlet integral, 20, 367
Unbounded regions with unbounded

boundary
flow in, 17
Stokes flow in, 365ff
see also Stokes flow in a half

space, in semi-infinite channels,
in channels with unbounded cross
section, in aperture domains

Navier–Stokes flow in, 899ff
see also Heywood’s problem, Leray’s

problem
Uniqueness

see generalized Oseen flow, Navier–
Stokes flow, Oseen flow, Stokes
flow

Unsteady flow, 4
Unsteady Oseen flow, 514ff

Variational formulation, 233, 304, 420,
586, 653, 751, 903
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Vector potential, 141
Very weak solution, 297, 644–645
Viscosity

infinite limit, see limit of vanishing
Reynolds number

kinematic, 4
Vorticity, 474, 806

asymptotic behavior of, 475, 720,
828–829, 887

see also Navier–Stokes flow, Oseen
flow

Wake region
generalized Oseen flow, 554, 555
Navier–Stokes flow

irrotational, three-dimensional 714
rotational, 749, 777
two-dimensional, 881–882

Oseen flow
three-dimensional, 436
two-dimensional, 440

Weak compactness, 32
Weak convergence, 32
Weak derivative, 48
Weak solution, see generalized solution
Weakly complete, 32
Weakly divergence free, 155
Weakly singular kernels, 126
Weierstrass kernel, 515
Weighted inequalities, 85–86, 98, 135
Whitehead paradox, 417, 432
Wirtinger inequality, 76

Young inequality
for convolutions, 125
for numbers, 42


